
http://www.csg.csail.mit.edu/6.823

Joel Emer
Computer Science and Artificial Intelligence Lab

M.I.T.

Sequential Consistency

and

Cache Coherence Protocols

1

Sanchez & Emer5/7/2014 http://www.csg.csail.mit.edu/6.823

Synchronization

producer

consumer

fork

join

P1 P2

• Forks and Joins: A parallel process may
want to wait until several events have
occurred

• Producer-Consumer: A consumer
process must wait until the producer
process has produced data

• Exclusive use of a resource: Operating
system has to ensure that only one
process uses a resource at a given time

The need for synchronization arises whenever there
are parallel processes in a system

(even in a uniprocessor system)

Sanchez & Emer5/7/2014 http://www.csg.csail.mit.edu/6.823

A Producer-Consumer Example

The program is written assuming
instructions are executed in order.

Producer posting Item x:
Load Rtail, (tail)
Store (Rtail), x
Rtail=Rtail+1
Store tail, Rtail

Consumer:
Load Rhead, (head)

spin: Load Rtail, (tail)
if Rhead==Rtail goto spin
Load R, (Rhead)
Rhead=Rhead+1
Store head, Rhead

process(R)

Producer Consumer
tail head

Rtail
Rtail Rhead R

Problems?

Sanchez & Emer5/7/2014 http://www.csg.csail.mit.edu/6.823

A Producer-Consumer Example
continued

Producer posting Item x:
Load Rtail, (tail)
Store (Rtail), x
Rtail=Rtail+1
Store tail, Rtail

Consumer:
Load Rhead, (head)

spin: Load Rtail, (tail)
if Rhead==Rtail goto spin
Load R, (Rhead)
Rhead=Rhead+1
Store head, Rhead

process(R)
Can the tail pointer get updated
before the item x is stored?

Programmer assumes that if 3 happens after 2, then 4
happens after 1.

Problem sequences are:
2, 3, 4, 1
4, 1, 2, 3

1

2

3

4

Sanchez & Emer5/7/2014 http://www.csg.csail.mit.edu/6.823

Sequential Consistency
A Memory Model

“ A system is sequentially consistent if the result of
any execution is the same as if the operations of all
the processors were executed in some sequential
order, and the operations of each individual processor
appear in the order specified by the program”

Leslie Lamport

Sequential Consistency =
arbitrary order-preserving interleaving
of memory references of sequential programs

M

P P P P P P

Sanchez & EmerApril 30, 2014 http://www.csg.csail.mit.edu/6.823

Memory Consistency in SMPs

Suppose CPU-1 updates A to 200.
write-back: memory and cache-2 have stale values
write-through: cache-2 has a stale value

Do these stale values matter?
What is the view of shared memory for programming?

cache-1A 100

CPU-Memory bus

CPU-1 CPU-2

cache-2A 100

memoryA 100

L22-6

Sanchez & EmerApril 30, 2014 http://www.csg.csail.mit.edu/6.823

Write-back Caches & SC

• T1 is executed

prog T2
LD Y, R1
ST Y’, R1
LD X, R2
ST X’,R2

prog T1
ST X, 1
ST Y,11

cache-2cache-1 memory

X = 0
Y =10
X’=
Y’=

X= 1
Y=11

Y =
Y’=
X =
X’=

• cache-1 writes back Y
X = 0
Y =11
X’=
Y’=

X= 1
Y=11

Y =
Y’=
X =
X’=

X = 1
Y =11
X’=
Y’=

X= 1
Y=11

Y = 11
Y’= 11
X = 0
X’= 0

• cache-1 writes back X

X = 0
Y =11
X’=
Y’=

X= 1
Y=11

Y = 11
Y’= 11
X = 0
X’= 0

• T2 executed

X = 1
Y =11
X’= 0
Y’=11

X= 1
Y=11

Y =11
Y’=11
X = 0
X’= 0

• cache-2 writes back
X’ & Y’

L22-7

Sanchez & EmerApril 30, 2014 http://www.csg.csail.mit.edu/6.823

Write-through Caches & SC

cache-2
Y =
Y’=
X = 0
X’=

memory
X = 0
Y =10
X’=
Y’=

cache-1
X= 0
Y=10

prog T2
LD Y, R1
ST Y’, R1
LD X, R2
ST X’,R2

prog T1
ST X, 1
ST Y,11

Write-through caches don’t preserve
sequential consistency either

• T1 executed

Y =
Y’=
X = 0
X’=

X = 1
Y =11
X’=
Y’=

X= 1
Y=11

• T2 executed
Y = 11
Y’= 11
X = 0
X’= 0

X = 1
Y =11
X’= 0
Y’=11

X= 1
Y=11

L22-8

Sanchez & EmerApril 30, 2014 http://www.csg.csail.mit.edu/6.823

Maintaining Sequential Consistency

Motivation: We can do without locks -- SC is sufficient for
writing producer-consumer and mutual exclusion codes
(e.g., Dekker)

Problem: SC requires all processors to see writes occur in
the same order, but multiple copies of a location in various
caches can cause this to be violated.

To meet the ordering requirement it is sufficient for
hardware to ensure:

• Only one processor at a time has write
permission for a location
• No processor can load a stale copy of the location
after a write

 cache coherence protocols

L22-9

Sanchez & EmerApril 30, 2014 http://www.csg.csail.mit.edu/6.823

A System with Multiple Caches

M

L1
P

L1
P

L1
P

L1
P

L2L2

L1
P

L1
P

Interconnect

• Modern systems often have hierarchical caches

• Each cache has exactly one parent but can have zero
or more children

• Only a parent and its children can communicate
directly

• Inclusion property is maintained between a parent
and its children, i.e.,

a  Li  a  Li+1

L22-10

Sanchez & EmerApril 30, 2014 http://www.csg.csail.mit.edu/6.823

Cache Coherence Protocols for SC

write request:
the address is invalidated in all other caches before the
write is performed, or

the address is updated in all other caches after the write
is performed

read request:
if a dirty copy is found in some cache, that is the value
that must be used, e.g., by doing a write-back and
reading the memory or forwarding that dirty value
directly to the reader.

We will focus on Invalidation protocols
as opposed to Update protocols

L22-11

Sanchez & EmerApril 30, 2014 http://www.csg.csail.mit.edu/6.823

Shared Memory Multiprocessor

Watch (snoop on) bus to keep all
processors’ view of memory coherent

M1

M2

M3

Snoopy
Cache

DMA

Physical
Memory

Memory
Bus

Snoopy
Cache

Snoopy
Cache

DISKS

L22-12

Sanchez & EmerApril 30, 2014 http://www.csg.csail.mit.edu/6.823

Snoopy Cache Goodman 1983

• Idea: Have the cache watch (or snoop upon) data
transfers, and then “do the right thing”. Thus,
memory operations are atomic with respect to all
the caches.

Proc.

Cache

Snoopy read port
attached to Memory
Bus

Data
(lines)

Tags and
State

A

D

R/W

Used to drive Memory Bus
when Cache is Bus Master

A

R/W

L22-13

Note: Snoopy cache tags have increased demand –
often they are dual-ported

Sanchez & EmerApril 30, 2014 http://www.csg.csail.mit.edu/6.823

Intervention

When a read-miss for A occurs in cache-2, a read
request for A is placed on the bus

• Cache-1 needs to supply data
• The memory may respond to the request also!

Does memory know it has stale data?
No, Cache-1 needs to intervene through memory controller
to supply correct data to cache-2

cache-1A 200

CPU-Memory bus

CPU-1 CPU-2

cache-2

memory (stale data)A 100

L22-14

Sanchez & Emer

Observed Bus Cycle Cache State Cache Action

Remote Read
Address not cached
Cached, unmodified
Cached, modified

Remote Write
Address not cached
Cached, unmodified
Cached, modified

April 30, 2014 http://www.csg.csail.mit.edu/6.823

Snoopy Cache Actions

L22-15

No action

No action

Cache Intervenes

No action

Cache Purges Copy

??????

Sanchez & EmerApril 30, 2014 http://www.csg.csail.mit.edu/6.823

Cache State Transition Diagram
The MSI protocol

M

S I

M: Modified
S: Shared
I: Invalid

Each cache line has a tag

Address tag

state
bits

Write miss

Other processor
intends to write

Read
miss

Other processor
intends to write

Read by any
processor

P1 reads
or writes

Cache state in
processor P1

Other processor reads
P1 writes back

L22-16

Sanchez & EmerApril 30, 2014 http://www.csg.csail.mit.edu/6.823

2 Processor Example

M

S I

Write miss

Read
miss

P2 intends to write

P2 reads,
P1 writes back

P1 reads
or writes

P2 intends to write

P1

M

S I

Write miss

Read
miss

P1 intends to write

P1 reads,
P2 writes back

P2 reads
or writes

P1 intends to write

P2

P1 reads

P1 writes

P2 reads

P2 writes

P1 writes

P2 writes

P1 reads

P1 writes

L22-17

Sanchez & EmerApril 30, 2014 http://www.csg.csail.mit.edu/6.823

Observation

• If a line is in the M state then no other
cache can have a copy of the line!
– Memory stays coherent,

– multiple differing copies cannot exist

M

S I

Write miss

Other processor
intends to write

Read
miss

Other processor
intends to write

Read by any
processor

P1 reads
or writes

Other processor reads
P1 writes back

L22-18

Sanchez & EmerApril 30, 2014 http://www.csg.csail.mit.edu/6.823

MESI: An Enhanced MSI protocol
increased performance for private data

M E

S I

M: Modified Exclusive
E: Exclusive, unmodified
S: Shared
I: Invalid

Each cache line has a tag

Address tag

state
bits

Write miss

Other processor
intends to write

Read miss,
shared

Other processor
intends to write

P1 write

Read by any
processor

Other processor reads

P1 writes back

P1 read
P1 write
or read

Cache state in
processor P1

Read miss,
not shared

L22-19

Sanchez & EmerApril 30, 2014 http://www.csg.csail.mit.edu/6.823

2 Processor Example

M E

S I

Write miss

Read
miss

P2 intends to write

P1 write
P1 write
or read

P2 reads,
P1 writes back

P1 read

P2 intends to writeP1

M E

S I

Write miss

Read
miss

P1 intends to write

P2 write
P2 write
or read

P1 reads,
P2 writes back

P2 read

P1 intends to writeP2

Block b

Block b

L22-20

Sanchez & EmerApril 30, 2014 http://www.csg.csail.mit.edu/6.823

CC and False Sharing
Performance Issue - 1

state blk addr data0 data1 ... dataN

A cache block contains more than one word and
cache-coherence is done at the block-level and
not word-level

Suppose P1 writes wordi and P2 writes wordk and
both words have the same block address.

What can happen?

L22-21

The block may be invalidated
(ping pong) many times
unnecessarily because the
addresses are in same block.

Sanchez & EmerApril 30, 2014 http://www.csg.csail.mit.edu/6.823

CC and Synchronization
Performance Issue - 2

Cache-coherence protocols will cause mutex to ping-pong
between P1’s and P2’s caches.

Ping-ponging can be reduced by first reading the mutex
location (non-atomically) and executing a swap only if it is
found to be zero.

cache

Processor 1
R  1

L: swap (mutex), R;
if <R> then goto L;

<critical section>
M[mutex]  0;

Processor 2
R  1

L: swap (mutex), R;
if <R> then goto L;

<critical section>
M[mutex]  0;

Processor 3
R  1

L: swap (mutex), R;
if <R> then goto L;

<critical section>
M[mutex]  0;

CPU-Memory Bus

mutex=1cache cache

L22-22

Sanchez & EmerApril 30, 2014 http://www.csg.csail.mit.edu/6.823

CC and Bus Occupancy
Performance Issue - 3

In general, an atomic read-modify-write
instruction requires two memory (bus) operations
without intervening memory operations by other
processors

In a multiprocessor setting, bus needs to be
locked for the entire duration of the atomic read
and write operation

expensive for simple buses
very expensive for split-transaction buses

modern processors use
load-reserve
store-conditional

L22-23

Sanchez & EmerApril 30, 2014 http://www.csg.csail.mit.edu/6.823

Load-reserve & Store-conditional

If the snooper sees a store transaction to the address
in the reserve register, the reserve bit is set to 0

• Several processors may reserve ‘a’ simultaneously
• These instructions are like ordinary loads and stores
with respect to the bus traffic

Special register(s) to hold reservation flag and
address, and the outcome of store-conditional

Load-reserve R, (a):
<flag, adr>  <1, a>;
R M[a];

Store-conditional (a), R:
if <flag, adr> == <1, a>
then cancel other procs’

reservation on a;
M[a] <R>;
status succeed;

else status fail;

L22-24

Sanchez & EmerApril 30, 2014 http://www.csg.csail.mit.edu/6.823

Performance:
Load-reserve & Store-conditional

The total number of memory (bus) transactions
is not necessarily reduced, but splitting an
atomic instruction into load-reserve & store-
conditional:

• increases bus utilization (and reduces
processor stall time), especially in split-
transaction buses

• reduces cache ping-pong effect because
processors trying to acquire a semaphore do
not have to perform stores each time

L22-25

Sanchez & EmerApril 30, 2014 http://www.csg.csail.mit.edu/6.823

Snooper Snooper Snooper Snooper

2-Level On-chip Caches

• Inclusion property: entries in L1 must be in L2
invalidation in L2  invalidation in L1

• Does snooping on L2 affect CPU-L1 bandwidth?
• yes -- to check if a dirty copy is stored in L1

• How can this be avoided?
• Write-through L1 cache

CPU

L1 $

L2 $

CPU

L1 $

L2 $

CPU

L1 $

L2 $

CPU

L1 $

L2 $

Typically
L1 << L2

L22-26

Sanchez & Emer

Implementing SC

1. The memory operations of each individual
processor appear to all processors in the
order the requests are made to the memory.

– Provided by cache coherence, which ensures that all
processors observe the same order of loads and stores to
an address

2. Any execution is the same as if the
operations of all the processors were
executed in some sequential order

– Provided by enforcing a dependence between each
memory operation and the following one.

April 30, 2014 http://www.csg.csail.mit.edu/6.823

L22-27

Sanchez & Emer

SC Data Dependence

• Stall

– Use in-order execution with blocking cache

• Cache coherence plus allowing a processor to have
only one request in flight at a time will provide SC

• Change architecture  Relaxed memory models

– Use OOO and non-blocking caches

• Cache coherence and allowing multiple requests
(different addresses) concurrently gives high
performance, then add fence operations to force
ordering when needed

• Speculate…

April 30, 2014 http://www.csg.csail.mit.edu/6.823

L22-28

Sanchez & Emer

Sequential Consistency Speculation

• Local load-store ordering uses standard OOO mechanism

• Globally non-speculative stores

– Stores execute at commit -> stores are in-order!

• Globally speculative loads

– Guess at issue that the memory location used by a load will not
change between issue and commit of the instruction

• this is equivalent to loads happening in-order at commit

– Check at commit by remembering all loads addresses starting
at issue and watching for writes to that location.

– Data Management for rollback relies on the basic out-of-order
speculative data management used for uni-processor rollback
and instruction re-execution.

April 30, 2014 http://www.csg.csail.mit.edu/6.823

L22-29

Sanchez & Emer

SC Speculative Behavior

April 30, 2014 http://www.csg.csail.mit.edu/6.823

L22-30

CPU A CPU B

ST A

1: ST A

2: LD A

3: LD A

4: ST A

ST A

ST A

ST A

ST A

ST A

http://www.csg.csail.mit.edu/6.823

Next lecture:

How to design a cache coherence protocol

31

