Directory-Based Cache Coherence
Protocols

Joel Emer
Computer Science and Artificial Intelligence Lab
M.I.T.

http://www.csg.csail.mit.edu/6.823

L23-2

Maintaining Cache Coherence

It is sufficient to have hardware such that
e only one processor at a time has write permission

for a location
e N0 processor can load a stale copy of the location

after a write

= A correct approach could be:

write request:
The address is invalidated in all other caches before

the write is performed

read request:
If a dirty copy is found in some cache, a write-back

is performed before the memory is read

May 5, 2014 http://www.csg.csail.mit.edu/6.823 Sanchez & Emer

L23-3

Directory-Based Coherence
(Censier and Feautrier, 1978)

Snoopy Protocols

=
i

i

(3]
It
! Bus

1
Mentl.

e Snoopy schemes broadcast
requests over memory bus

e Difficult to scale to large
numbers of processors

e Requires additional
bandwidth to cache tags for
snoop requests

May 5, 2014

http://www.csg.csail.mit.edu/6.823

Directory Protocols

$ $ $

tercHn ct
N r
Dir. [Mem.

e Directory schemes send
messages to only those caches
that might have the line

e Can scale to large numbers of
processors

e Requires extra directory
storage to track possible
sharers

Sanchez & Emer

L23-4

A System with Multiple Caches

‘PP RPNP]
A | WE T

P
2
L2
I I I
Interconnect
I
M aka Home

Assumptions: Caches are organized in a hierarchical manner

e Each cache has exactly one parent but can have
zero or more children
e Only a parent and its children can communicate directly
e Inclusion property is maintained between a parent
and its children, i.e.,
ael, = aeli,

May 5, 2014 http://www.csg.csail.mit.edu/6.823 Sanchez & Emer

L23-5

Directory State Encoding

B N N
(sh, e)[a] [Li] [L1] [L1]
P 6l /1 81 9

L 5L
(Sh,g)2|lzl3 4 all (Sh, R:{6})

1 a (Ex, R:{2,4})

Each address in a cache keeps two types of state
info
e sibling info: do my siblings have a copy of address a
- Ex (means no), Sh (means maybe)
e children info: has address a been passed on to
any of my children
- W:{id} means child id has a writable version
- R:dir means only children named in the directory
dir have copies
May 5, 2014 http://www.csg.csail.mit.edu/6.823 Sanchez & Emer

L23-6

Cache State Invariants

Sh: Cache’s siblings and descendents can only
have Sh copies

Ex: Each ancestor of the cache must be in Ex

— either all children can have Sh copies
or one child can have an Ex copy

e Once a parent gives an Ex copy to a child, the
parent’s data is considered stale

e A processor cannot overwrite L1 data in Sh state

e By definition all addresses in the home memory
are in the Ex state

May 5, 2014 http://www.csg.csail.mit.edu/6.823 Sanchez & Emer

L23-7

Cache State Transitions

invalidate ""-..,flush
store
/Oad seeeessenes eeeeee : >
' optimizations
@ S
\ /
write-back

This state diagram is helpful as long as one
remembers that each transition involves

cooperation of other caches and the main
memory.

May 5, 2014 http://www.csg.csail.mit.edu/6.823 Sanchez & Emer

L23-8

Guarded Atomic Actions

e Rules specified using guarded atomic actions:
<guard predicate>

— {set of state updates that must occur
atomically with respect to other rules}
e Example
m.state(a) is R:dir & 3id s.t. idedir
— m.setState(a, R:(dir+{id}));
C4.SetState(a, Sh); c4.setData(a, m.data(a));

May 5, 2014 http://www.csg.csail.mit.edu/6.823 Sanchez & Emer

L23-9

Data Propagation Between Caches

Child Child
Lt L

| v
Parent Parent

Caching rules De-caching rules
e Read caching rule e Write-back rule
e Write caching rule Invalidate rule

May 5, 2014 .
4 http://www.csg.csail.mit.edu/6.823 Sanchez & Emer

L23-10

Caching Rules: parent to child

e Read caching rule
m.state(a) is R:dir & idedir

— m.setState(a, R:(dir+{id}))
Ciq.setState(a, Sh); cy.setData(a, m.data(a));

e Write caching rule
m.state(a) is R:{} (no cache has it)

— m.setState(a, W:{id})
C4.SetState(a, Ex); c¢q4.setData(a, m.data(a));

May 5, 2014 http://www.csg.csail.mit.edu/6.823 Sanchez & Emer

De-caching Rules: chiid to parent

L23-11

e Writeback rule
m.state(a) is W:{id}
— m.setState(a, R:{id})
m.setData(a, c.data(a));
Ciy-SetState(a, Sh);

e Invalidate rule
m.state(a) is R:dir & idedir
— m.setState(a, R:(dir-{id}))
Cq4-invalidate(a);

May 5, 2014 http://www.csg.csail.mit.edu/6.823

Sanchez & Emer

L23-12

A simple CC Protocol: 6823s

Cache-Coherence Protocol Processing

m

e Assume only one processor can talk to the memory about an
address at a time

- a global lock (serving) per address. It remembers the processor and the
type of request being serviced (id, (ShReq | ExReq))
e We can simultaneously examine the current cache state of
one processor and the home directory, and atomically
- begin a memory activity, and
- set the directory state, and
- set the cache state

May 5, 2014 http://www.csg.csail.mit.edu/6.823 Sanchez & Emer

L23-13

6823s: State and Functions

Cache states: Sh, Ex, Pending, Nothing
Memory states: R:dir, W:{id}
Memory locks: False, (id, reqg-type)

Operations on cache:
c.state(a) — returns state s
c.data(a) - returns data v
c.setState(a,s); c.setData(a,v); c.invalidate(a)

Operations on memory:
m.data(a) - returns data v
m.setData(a,v);

Operations on Directory:
m.serving(a) — returns either (id, reg-type) or False
m.setServing(a, id, (ShReq | ExReq)) or m.setServing(False)

m.state(a) - returns state either R:dir or W:{id}
m.setState(q,s);

May 5, 2014 http://www.csg.csail.mit.edu/6.823 Sanchez & Emer

L23-14

6823s CC protocol
Load Rules (at cache)

e Load-hit rule inst = p2m.first()
inst is (Load a)
& ¢y.state(a) is Sh or Ex
— p2m.deq;

m2p.enq(c,y.data(a))

e Load-miss rule
inst is (Load a)
& ¢c4.state(a) is Nothing
& m.serving(a) is False
— C,4.SetState(a, Pen); m.setServing(a, id, ShReq)

May 5, 2014 http://www.csg.csail.mit.edu/6.823 Sanchez & Emer

6823s CC protocol
Store Rules (at cache)

L23-15

e Store-hit rule
inst is (Store a v)
& c4.State(a) is Ex
—> p2m.deq;
m2p.enq(Ack);
C4.SetData(a, v)

e Store-miss rules
inst is (Store a v)
& c4.state(a) is Nothing or Sh
& m.serving(a) is False
> C,4.SetState(a, Pen);
m.setServing(a, id, ExReq)

May 5, 2014 http://www.csg.csail.mit.edu/6.823

Sanchez & Emer

L23-16

6823s CC protocol
Volunta 'y Rules (at cache)

e Purge rule
“no space in cache”
& cg4.state(a) is Sh & m.state(a) must be R:dir
—> C4-invalidate(a); m.setState(a, R:(dir-{id}));

e Writeback rule
C4.State(a) is Ex & m.state(a) must be W:{id}
— c.setState(a,Sh); m.setState(a, R:{id});
m.setData(a, ¢4.data(a))

May 5, 2014 http://www.csg.csail.mit.edu/6.823 Sanchez & Emer

L23-17

6823s CC protoc_ol
Memory-side ShReq rules

e Serving Loads - Only Sh copies are out
m.serving(a) is (id, ShReq) & m.state(a) is R:dir

— m.setState(a, R:(dir+{id})); m.setServing(a, False)
C4.SetState(a, Sh); c4.setData(a, m.data(a));

e Serving Loads — An Ex copy is out
m.serving(a) is (id, ShReq) & m.state(a) is W:{id"}

— m.setState(a, R:{id"}); m.setData(a, cy.data(a));
Cq-SetState(a, Sh);

May 5, 2014 http://www.csg.csail.mit.edu/6.823 Sanchez & Emer

L23-18

6823s CC protoc_ol
Memory-side ExReq rules

e Serving Stores — No copies out
m.serving(a) is (id, ExReq) & m.state(a) is R:{}

— m.setState(a, W:{id}); m.setServing(a, False)

C,4.SetState(a, Ex); c4.setData(a, m.data(a));
e Serving Stores — Only the requesting cache has a copy
m.serving(a) is (id, ExReq) & m.state(a) is R:{id}

— m.setState(a, W:{id}); m.setServing(a, False)

C4.SetState(a, Ex); cq4.setData(a, m.data(a));
e Serving Stores — Sh copies are out
m.serving(a) is (id, ExReq) & m.state(a) is R:dir
& 3 id’ s.t. ((id'edir) & (id'= id))
— m.setState(a, R:(dir-{id"})); cy4-invalidate(a);
eServing Stores — A Ex copy is out
m.serving(a) is (id, ExReq) & m.state(a) is W:{id"}
— m.setState(a, R:{}); m.setData(a, c,y.data(a));

C4-invalidate(a);
May 5, 2014 http://www.csg.csail.mit.edu/6.823 Sanchez & Emer

L23-19

Making 6823s more realistic

Cache-Coherence Protocol Processing

2
m

e Rules require observing and changing the state of cache
and memory simultaneously (atomically).

- very difficult to implement, especially if caches are separated by a
network

Split rules into multiple rules - “request for an action”
followed by “an action and an ack”.
— ultimately all actions are triggered by some processor

May 5, 2014 http://www.csg.csail.mit.edu/6.823 Sanchez & Emer

L23-20

The 6823 CC Protocol an abstract view

p2m

L1

A

\ 4

L1

\ 4

A

May 5, 2014

»
>

Each cache has 2 pairs of queues
— one pair (c2m, m2c) to communicate with the memory
— one pair (p2m, m2p) to communicate with the processor

Message format:
Msg(idsrc,iddest,cmd-priority,a,v)

FIFO message passing between each (src,dest) pair except a
Low priority (L) msg cannot block a high priority (H) msg

http://www.csg.csail.mit.edu/6.823 Sanchez & Emer

L23-21

H and L Priority Messages

e At the memory, unprocessed request
messages cannot block reply messages.
Hence all messages are classified as H or L
priority.

— all messages carrying replies are classified as high
priority

e Accomplished by having separate paths for H
and L priority

— In Theory: separate networks > ,—H<: -
— In Practice: L -

e Separate Queues
e Shared physical wires for both networks

May 5, 2014 http://www.csg.csail.mit.edu/6.823 Sanchez & Emer

May 5, 2014

6823: States and Functions

L23-22

Cache states: Sh, Ex, Pending, Nothing
Memory states: R:dir, W:{id}, Ty:dir, T,,:{id}
If dir is empty then R:dir and Ty:dir
represent the same state
Messages:

Cache to Memory requests: (ShReq a); (ExReq a)
Memory to Cache requests: (WbReq a); (InvReq a); (FlushReqg a)

Cache to Memory replies: (WbRep a v); (InvRep a); (FlushRep a v)
Memory to Cache replies: (ShRep a v); (ExRep a v)

Operations on cache:
cache.state(a) - returns state s
cache.data(a) - returns data v
cache.setState(a,s); cache.setData(a,v); cache.invalidate(a)

inst = first(p2m); msg= first(m2c); mmsg = first(in)

http://www.csg.csail.mit.edu/6.823 Sanchez & Emer

6823 Protocol Animation

http://www.csg.csail.mit.edu/6.823

23

L23-24

Protocol Diagram

May 5, 2014 http://www.csg.csail.mit.edu/6.823 Sanchez & Emer

L23-25

Protocol Diagram

May 5, 2014 http://www.csg.csail.mit.edu/6.823 Sanchez & Emer

L23-26

Protocol Diagram

May 5, 2014 http://www.csg.csail.mit.edu/6.823 Sanchez & Emer

L23-27

Protocol Diagram

May 5, 2014 http://www.csg.csail.mit.edu/6.823 Sanchez & Emer

Protocol Diagram

L23-28

Sh:

Cache 1

a

Sh:

Cache 2

a

InvReq

Cache N

Pen: a

Dir

Main Memory

May 5, 2014

http://www.csg.csail.mit.edu/6.823

Sanchez & Emer

L23-29

Protocol Diagram

May 5, 2014 http://www.csg.csail.mit.edu/6.823 Sanchez & Emer

Protocol Diagram

L23-30

Cache 1

Pen: a

Cache 2

Cache N

Ex: a

ShReq
d
Dir
Main Memory
May 5, 2014 http://www.csg.csail.mit.edu/6.823 Sanchez & Emer

L23-31

Protocol Diagram

May 5, 2014 http://www.csg.csail.mit.edu/6.823 Sanchez & Emer

Thank you

http://www.csg.csail.mit.edu/6.823

32

