Microcoding, VLIW and
Vector Computers

Suvinay Subramanian
6.823 Spring 2016

Microcoding

» Abstraction layer between hardware and
architecture of computer

- i.e. separates ISA from actual hardware implementation
details.

» Layer of hardware-levelinstructions that
implement higher-level (i.e. ISA) instructions

Benefits of Microcoding

»

»

>

\

>

A\

»

Originally developed as a simpler method for developing control logic

- Direct combinational logic for powerful instruction set can be complex,
prone to bugs/difficult to debug

- Multi-step addressing modes, varied length instructions etc.

Enables complexISAs
- Reduced instruction fetch bandwidth; smaller code footprint

Same ISA, differentimplementations
- Flexibility in how data paths, micro-arch. blocks designed
- IBM 360: Model 30, Model 40 etc.

Allows for “patching” in the field

New instructions supported without modifyingdatapath

Microcode Implementation

absolute
Opcode —| ext
op-grou
p-group \ \ ‘ LPC |PC4+1
input encoding reduces +1
ROM height HPC (state) T pesre
zero
k4
address busy
uJumpType = Control ROM
next | spin
| fetch | dispatch data
| feqz | fnez I \ \ \ \

4/29/16 Control Signals (17) 4

Microcode Fragments

State

fetch,
fetch,
fetch,
fetch;
ALU,
ALU,
ALU,

ALUi,
ALUi,
ALUi,

Control points

MA < PC

IR &< Memory
A < PC
PC<A+4

A & Reg|rs]
B < Regrt]
Reg[rd]<func(A,B)

A < Reglrs]
B < sExt;g(Imm)
Reg[rd]< Op(A,B)

next-state

next
spin
next
dispatch

next
next
fetch

next
next
fetch

VLIW

» Premise: Static instruction scheduling + super-
scalar execution to extract ILP.

» Tradeoff: Complex hardware vs Complex compiler
“Conservation of complexity”

- 000 processors do dynamic scheduling
Figure outindependentinstructions on-the-fly

- VLIW machines: Compilers figure out independent
instructions and schedules them suitably

VLIW Hardware

Int Op 1 Int Op 2 Mem Op 1 Mem Op 2 FP Op 1 FP Op 2

Two Integer Units, | | | —
Single Cycle Latency

Two Load/Store Units,
Three Cycle Latency Two Floating-Point Units,
Four Cycle Latency

« Multiple operations packed into one instruction
- Each operation slot is for a fixed function
- Constant operation latencies are specified

4/29/16

VLIW Software

» Key Questions:

- How do we find independentinstructions to
fetch/execute?

- How to enable more compiler optimizations?

» Key ldeas:
- Get rid of control flow
* Predicated execution, loop unrolling

- Optimize frequently executed code-paths
* Trace scheduling

- Others: Software pipelining, speculative execution

Loop Unrolling

for (i=0; i<N; i++)
Bli] = A[i] + C;

Compile
loop: Id f1, O(r1)
addr1, 8
fadd f2, f0, f1
sd f2, 0(r2)
add r2, 8

bne r1, r3, loop

4/29/16

Int1 Int2 M1 M2 FP+

loop: |add r1 d .|

fadd

Schedule /

add r2 bne sd

How many FP ops/cycle?
1 fadd / 8 cycles =0.125

Loop Unrolling

» Unrollloop to perform M iterations at once

- Get more independentinstructions

- Need to be carefulabout case where M is not a multiple of
number of loop iterations

for (i=0; i<N; i+=4)
{

for (i=0; i<N; i++)
Bli] = AJi] + C;

i] =A[l] +C;

i+1] = A[i+1] + C;
i+2] = A[i+2] + C;
i+3] = A[i+3] + C;

D W W W

4/29/16

Loop Unrolling

loop: Id f1, O(r1)

Int1 Int2 M1 M2 FP+ FPx

Id 2, 8(r1) loop: Id f1.

Id 3, 16(r1) Idf2 ™\,

d 4, 24(r1) d 3

:d;dr:s, ?;(2) ; add r1 Id {4 Jfadd 5
15 10, ‘
fadd 16, 0, 12 Schedule // :agg :Gy
fadd 7, 10, {3 | / f:dd fél
fadd 18, f0, f4

sd 15, 0(r2) —

sd 16, 8(r2) =d 0

sd 17, 16(r2) sd 7

sd 18, 24(r2) addr2 bne | sd f8

add r2, 32

bne r1, r3, loop

4 fadds/ 11 cycles = 0.36

4/29/16

Loop Unrolling

1. Combine M iterations of loop

2. Pipeline schedule to reduce RAW stalls

- In the example above, notice that we move (re-order)
loads to the top

3. Rename registers
- f1, f2, 13, f4

Software Pipelining

loop:

4/29/16

Id f1, O(r1)

Id 2, 8(r1)

Id 3, 16(r1)
Id 4, 24(r1)
add r1, 32
fadd £5, f0, f1
fadd f6, f0, f2
fadd £7, {0, {3
fadd 18, f0, f4
sd 15, 0(r2)
sd 16, 8(r2)
sd 17, 16(r2)
add r2, 32

sd 18, -8(r2)
bne r1, r3, loop

4 fadds / 4 cycles=1

/‘

iterate

epilog <

Int1 Int2 M1 M2 FP+ FPx
Id f1
Id f2
Id {3
add r1 Id f4
Id f1 fadd {5
Id f2 fadd f6
Id 3 fadd {7
add r1 Id f4 fadd {8

sd f5 | fadd f
sd 16 | fadd 16
add r2 sd {7 | fadd {7
bne sd 18 | fadd {8
sd 5 =

Loop Unrolling Limitations

» Code growth
» Does not handle inter-iteration dependences well

Predicated Execution

» Limited ILP within a basic-block; branches limit
available ILP

» ldea: Eliminate hard-to-predict branches by
converting control dependence to data
dependence

- Each instruction (within the branch basic block) has a
predicate bit set

- Onlyinstructions with true predicates are executed and
committed. Others are treated as nops.

Predicated Execution

b0: Inst 1 if

Inst 2
br a==b, b2

b1: Inst3 else D
Inst 4 ..
br b3 Predication
b2: Inst 5
Inst 6 then j

b3: Inst 7
Inst 8

Four basic blocks

4/29/16

Inst 1

Inst 2

p1,p2 <- cmp(a==b)
(p1)Inst3 Il (p2)Inst5
(p1)Inst4 1l (p2) Inst6
Inst 7

Inst 8

One basic block

16

Speculative Execution

» Move instructions above branches to explore more

ILP options

Inst 1

Inst 2
br a==b, b2

1

Load r1

Use r1
Inst 3

Can’t move load above branch
because might cause spurious
exception

4/29/16

Load.s r1

Inst 1
Inst 2
br a==b, b2

1

Chk.s r1

Use r1
Inst 3

Speculative load
never causes
exception, but sets
“poison” bit on
destination register

Check for exception in
original home block
jumps to fixup code if
exception detected

17

Speculative Execution

int32 t calculateSomething(int32 t *a, int32 t *b) {
int32 t result;
if (mp >mqg+ 1) {
result = a[*b];
} else {
result = defaultValue;
}

return result;

Speculative execute load of a[*b] before branch condition is resolved.
Say:m_p, m_g arebound checks.

1. Whatifm_p < m_qg + 1?Say,b = nullptr.
Exception!
2. But exceptions canarise in other ways. What if a[*b] is valid, but there
is a page-fault? Exception! Trap to OS routine.

Trace Scheduling

» ldea: For non-loop situations:
- Find common path in program trace

- Re-align basic blocks to form straight-line trace
* Trace: Fused basic-block sequence

- Schedule trace

- Create fixup code in case trace !=actual path
 Canbe nasty

Trace Scheduling

#0: 1ldf f2,Y(rl)

Y
If (A[ii 0) #1: bfnez f2,instr#4
A = W[i] #2: 1df f2,W(rl)
Else: #3: jump instr#5
Q[i] _ o #4: stf fo,Y(rl)

#6: mulf f6,f4,f2
#7: stf f6,Z(rl)

Trace Scheduling

A #o: 1df 2,Y(rl)
#1: bfnez f2,instr#4

B NT: 10:%/ \90% C

#2: 1ldf f2,W(rl) #4:. stf fo,Y(rl)
#3: jump instr#5

\/

#5: 1df f4,X(rl)
#6: mulf fe,f4,f2
#7: stf £6,Z(rl)

D

Trace Scheduling

#O:
#1:
#4 .
#5:
#6:
#7:

l1df £2,Y(rl) Recovery / repair code
bfeqz f2,#2 —

stf fo,Y(rl) #2 : 1df f2,W(rl)

1df f4,X(rl1) #5°: 1df f4,X(rl)

mulf f6,f4,f2 #6’ : mulf f6,f4,f2

stf £6,Z(r1) #7° . stf f6,Z(rl)

A, C, D superblock (trace)

» Trace scheduling can be combined with other
techniques:
- What if we moved #5, #6 before #47? Speculative load issue
- Whatif we moved #5, #6 even further, above #17?

- Whatif branch was biased the other way?
- What if branch was evenly biased — 50%, 50%? Predication

VLIW Summary

» Loop unrolling
- Reduces branch frequency
- Tighter packing of instructions
- Dependences b/w iterations; handling “extra” iterations

» Predicated execution, speculative execution
- Control-flow
- Control-flow, Load-store speculation

» Trace scheduling
- Recovery code

- Combined with other techniques above; moving code
upward/downward may provide benefits

Vector Computers

» |ldea: Operate on vectors instead of scalars

- ISA is more expressive, therefore captures more
information

» Advantages:

- No dependences within a vector

- Reduced instruction fetch bandwidth

- (Sometimes) regular memory access pattern
- No need to explicitly code loops

» Pitfalls:
- Only works if code sequence (or parallelism) is regular

Vector Computers

To program a vector machine, the compiler or hand coder
must make the data structures in the code fit nearly exactly the
regular structure built into the hardware. That’s hard to do in
first place, and just as hard to change. One tweak, and the
low-level code has to be rewritten by a very smart and
dedicated programmer who knows the hardware and often the
subtleties of the application area. Often the rewriting is

unsuccessful; it’s back to the drawing boards again. Many

4/29/16 25

Vector Computers

Terminology:

» Vector length register (VLR)

» Conditional execution using vector mask (VM)
» Vector lanes

» Vector chaining

Vector Computers

LV vl
MULV v3,vl,6v2
ADDV v5, v3, v4

V1

Load
Unit

Memory

4/29/16

Chain

N <

W<

‘\Chezlin

B <L

n <

27

That’s all folks!

