
Microcoding,	VLIW	and	
Vector	Computers

Suvinay Subramanian
6.823	Spring	2016

4/29/16 1

Microcoding

» Abstraction	layer	between	hardware	and	
architecture	of	computer
- i.e.	separates	ISA	from	actual	hardware	implementation	
details.

» Layer	of	hardware-level	instructions	that	
implement	higher-level	(i.e.	ISA)	instructions

4/29/16 2

Benefits	of	Microcoding
» Originally	developed	as	a	simpler	method	for	developing	control	logic
- Direct	combinational	logic	for	powerful	instruction	set	can	be	complex,	
prone	to	bugs/difficult	to	debug
- Multi-step	addressing	modes,	varied	length	instructions	etc.

» Enables	complex	ISAs
- Reduced	instruction	fetch	bandwidth;	smaller	code	footprint

» Same	ISA,	different	implementations
- Flexibility	 in	how	data	paths,	micro-arch.	blocks	designed
- IBM	360:	Model	30,	Model	40	etc.

» Allows	for	“patching”	in	the	field

» New	instructions	supported	without	modifying	datapath

4/29/16 3

Microcode	Implementation

4/29/16 4

Microcode	Fragments

State		 Control	points next-state

fetch0	 MA	← PC	
fetch1	 IR		←Memory
fetch2	 A			← PC
fetch3 PC	← A	+	4	
...
ALU0 A			← Reg[rs]	
ALU1	 B			← Reg[rt]	
ALU2	 Reg[rd]←func(A,B)

ALUi0 A	← Reg[rs]	
ALUi1 B	← sExt16(Imm)
ALUi2	 Reg[rd]←Op(A,B)

4/29/16 5

next
spin
next
dispatch

next
next
fetch

next
next
fetch

VLIW

» Premise:	Static	instruction	scheduling	+	super-
scalar	execution	to	extract	ILP.

» Tradeoff:	Complex	hardware	vs	Complex	compiler
“Conservation	of	complexity”
- OoO processors	do	dynamic	scheduling
Figure	out	independent	instructions	on-the-fly
- VLIW	machines:	Compilers	figure	out	independent	
instructions	and	schedules	them	suitably

4/29/16 6

VLIW	Hardware

4/29/16 7

VLIW	Software

» Key	Questions:
- How	do	we	find	independent	instructions	to	
fetch/execute?
- How	to	enable	more	compiler	optimizations?

» Key	Ideas:
- Get	rid	of	control	flow

• Predicated	execution,	loop	unrolling
- Optimize	frequently	executed	code-paths

• Trace	scheduling
- Others:	Software	pipelining,	speculative	execution

4/29/16 8

Loop	Unrolling

4/29/16 9

fadd

Loop	Unrolling

» Unroll	loop	to	perform	M	iterations	at	once
- Get	more	independent	instructions
- Need	to	be	careful	about	case	where	M	is	not	a	multiple	of	
number	of	loop	iterations

4/29/16 10

Loop	Unrolling

4/29/16 11

4	fadds /	11	cycles	=	0.36

Loop	Unrolling

1. Combine	M	iterations	of	loop
2. Pipeline	schedule	to	reduce	RAW	stalls
- In	the	example	above,	notice	that	we	move	(re-order)	
loads	to	the	top

3. Rename	registers
- f1,	f2,	f3,	f4	

4/29/16 12

Software	Pipelining

4/29/16 4	fadds /	4	cycles	=	1 13

Loop	Unrolling	Limitations

» Code	growth
»Does	not	handle	inter-iteration	dependences	well

4/29/16 14

Predicated	Execution

» Limited	ILP	within	a	basic-block;	branches	limit	
available	ILP
» Idea:	Eliminate	hard-to-predict	branches	by	
converting	control	dependence	to	data	
dependence
- Each	instruction	(within	the	branch	basic	block)	has	a	
predicate	bit	set
- Only	instructions	with	true	predicates	are	executed	and	
committed.	Others	are	treated	as	nops.

4/29/16 15

Predicated	Execution

4/29/16 16

Speculative	Execution

»Move	instructions	above	branches	to	explore	more	
ILP	options

4/29/16 17

Speculative	Execution

int32_t calculateSomething(int32_t *a, int32_t *b) {
int32_t result;
if (m_p > m_q + 1) {

result = a[*b];
} else {

result = defaultValue;
}
return result;

}

4/29/16 18

Speculative	execute	load	of	a[*b] before	branch	condition	 is	resolved.
Say:	m_p, m_q are	bound	 checks.

1. What	if	m_p < m_q + 1?	Say,	b = nullptr.	
Exception!

2. But	exceptions	can	arise	in	other	ways.	What	if	a[*b]	is	valid,	but	there
is	a	page-fault?	Exception!	Trap	to	OS	routine.

Trace	Scheduling

» Idea:	For	non-loop	situations:
- Find	common	path	in	program	trace
- Re-align	basic	blocks	to	form	straight-line	trace

• Trace:	Fused	basic-block	sequence
- Schedule	trace
- Create	fixup	code	in	case	trace	!=	actual	path

• Can	be	nasty

4/29/16 19

Trace	Scheduling

A = Y[i]
If (A == 0)

A = W[i]
Else:

Y[i] = 0
Z[i] = A * X[i]

4/29/16 20

#0: ldf f2,Y(r1)
#1: bfnez f2,instr#4
#2: ldf f2,W(r1)
#3: jump instr#5
#4: stf f0,Y(r1)
#5: ldf f4,X(r1)
#6: mulf f6,f4,f2
#7: stf f6,Z(r1)

Trace	Scheduling

4/29/16 21

#2: ldf f2,W(r1)
#3: jump instr#5

#0: ldf f2,Y(r1)
#1: bfnez f2,instr#4

#4: stf f0,Y(r1)

#5: ldf f4,X(r1)
#6: mulf f6,f4,f2
#7: stf f6,Z(r1)

NT:	10% T:	90%

A

B C

D

Trace	Scheduling

» Trace	scheduling	can	be	combined	with	other	
techniques:
- What	if	we	moved	#5,	#6	before	#4?
- What	if	we	moved	#5,	#6	even	further,	above	#1?
- What	if	branch	was	biased	the	other	way?
- What	if	branch	was	evenly	biased	– 50%,	50%?

4/29/16 22

#0: ldf f2,Y(r1)
#1: bfeqz f2,#2
#4: stf f0,Y(r1)
#5: ldf f4,X(r1)
#6: mulf f6,f4,f2
#7: stf f6,Z(r1)

#2 : ldf f2,W(r1)
#5’: ldf f4,X(r1)
#6’: mulf f6,f4,f2
#7’: stf f6,Z(r1)

A,	C,	D	superblock	(trace)

Recovery	/	repair	code

Speculative	load	issue

Predication

VLIW	Summary

» Loop	unrolling
- Reduces	branch	frequency
- Tighter	packing	of	instructions
- Dependences	b/w	iterations;	handling	“extra”	iterations

» Predicated	execution,	speculative	execution
- Control-flow
- Control-flow,	Load-store	speculation

» Trace	scheduling
- Recovery	code
- Combined	with	other	techniques	above;	moving	code	
upward/downward	may	provide	benefits

4/29/16 23

Vector	Computers

» Idea:	Operate	on	vectors	instead	of	scalars
- ISA	is	more	expressive,	therefore	captures	more	
information

» Advantages:
- No	dependences	within	a	vector
- Reduced	instruction	fetch	bandwidth
- (Sometimes)	regular	memory	access	pattern
- No	need	to	explicitly	code	loops

» Pitfalls:
- Only	works	if	code	sequence	(or	parallelism)	is	regular

4/29/16 24

Vector	Computers

4/29/16 25

Vector	Computers

Terminology:
» Vector	length	register	(VLR)
» Conditional	execution	using	vector	mask	(VM)
» Vector	lanes
» Vector	chaining

4/29/16 26

Vector	Computers

4/29/16 27

Memory

V1

Load
Unit

Mult.

V
2

V
3

Chain

Add

V
4

V
5

Chain

LV v1
MULV v3,v1,v2
ADDV v5, v3, v4

Load
Mul

Add

That’s	all	folks!

4/29/16 28

