
GPUs,	Transactional	
Memory
Suvinay Subramanian
6.823	Spring	2016

5/6/16 1



GPU:	Graphics	Processing	Unit

»Originally	designed	as	a	graphics	acceleration	
engine
»Has	evolved	into	a	hardware	accelerator	for		
massively	parallel	applications

» Exploit	parallelism	to	achieve	higher	throughput,	
performance
- Hide	latency	by	massive	multi-threading

5/6/16 2



Types	of	Parallelism

» ILP:	Instruction-level	parallelism
- Between	independent	instructions	in	a	sequential	
program

» TLP:	Thread-level	parallelism
- Between	independent	execution	contexts	(threads)

»DLP:	Data-level	parallelism
- Between	elements	of	a	vector	(say);	same	operation	on	
multiple	elements

5/6/16 3



How	to	Utilize	Parallelism?

»Horizontal	parallelism:
More	units	working	in	
parallel

» Vertical	parallelism:
Pipelining:	Keep	units	busy	
when	waiting	for	memory	
dependences	etc.

5/6/16 4

cycle1 cycle2 cycle3 cycle4

cycle1

time

time



How	to	Extract	Parallelism?

5/6/16 5

Horizontal Vertical

ILP Superscalar Pipelining/OoO

TLP Multi-core SMT

DLP SIMD/SIMT/Vector Temporal	SIMT

GPUs	focus	on	TLP,	DLP



Key	Concepts

» SIMT:	Single-instruction	multiple-thread
- Multiple	 instruction	streams	of	scalar	instructions

» Warps:	A	set	of	threads	executing	the	same	instruction	(grouped	
dynamically	by	the	hardware)
- Essentially	 a	SIMD	operation	formed	in	hardware

» SM:	Streaming	multi-processor

» Branch	divergence:	Masking

» Little’s	Law

Programming	abstractions:	Kernel,	Block,	Grid	etc.
5/6/16 6



Streaming	Multiprocessor
Example:
» 16	physical	
lanes
» Tens	of	warps	
with	32	threads	
per	warp
»Warp	scheduler	
issues	SIMD	
instruction,	
when	all	threads	
ready

5/6/16 7



A	Snapshot	of	Challenges
» Warp	scheduling

- Which	warp	to	pick	for	running?
Issues:	Prioritize	 intra-warp	locality,	 inter-warp	locality,	memory	coalescing

» Divergence

» Memory	access	patterns
- Coalescing:	Grouping	memory	requests	from	multiple	warps
- Scatter/Gather	optimization

» Memory	bandwidth,	 interconnect	bandwidth

» Power

» Programming	model	(and	ease	of	programming)

Many	more…
5/6/16 8



Transactional	Memory

» Parallel	 programming	is	hard
- Keeping	track	of	multiple	events	happening	
simultaneously	is	difficult

»Data	parallelism	vs	Task	parallelism

» Key	shortcoming	today:	Lack	of	effective	
mechanisms	for	abstraction	and	composition

5/6/16 9



Transactional	Memory

» Idea:	No	locks,	only	shared	data
Idea:	Optimistic	(speculative)	concurrency
- Execute	critical	section	speculatively
- Abort	on	conflicts

“Better	to	ask	for	forgiveness,	than	to	ask	for	
permission”

5/6/16 10



Transactional	Programming

5/6/16 11

void deposit(account, amount) {
lock(account);

int t = bank.get(account);
t = t + amount;
bank.put(account, t);

unlock(account);
}

void deposit(account, amount) {
atomic {

int t = bank.get(account);
t = t + amount;
bank.put(account, t);

}
}



Transactional	Memory

» Atomicity	(all	or	nothing)
- At	commit,	all	memory	writes	take	effect	at	once
- On	abort,	none	of	the	writes	appear	to	take	effect	

» Isolation
- No	other	code	can	observe	writes	before	commit	

» Serializability
- Transactions	seem	to	commit	in	a	single	serial	order
- The	exact	order	is	not	guaranteed	

5/6/16 12



Transactional	Memory:	
Advantages

1. Ease	of	use	(declarative)
2. Composability
3. Expected	performance	of	fine-grained	locking

5/6/16 13



Composability

5/6/16 14

void transfer(A, B, amount) {
lock(A) {
lock(B) {

withdraw(A, amount);
deposit(B, amount);

}
}

}

void transfer(B, A, amount) {
lock(B) {
lock(A) {

withdraw(B, amount);
deposit(A, amount);

}
}

}

1. Fine	grained	locking	à Can	lead	to	deadlock
2. Need	some	global	locking	discipline	now



Composability

5/6/16 15

void transfer(A, B, amount) {
atomic {

withdraw(A, amount);
deposit(B, amount);

}
}

void transfer(B, A, amount) {
atomic {

withdraw(B, amount);
deposit(A, amount);

}
}



Transactional	Memory	Taxonomy

»Data	Versioning
- Eager
- Lazy

» Conflict	Detection
- Pessimistic
- Optimistic

5/6/16 16



Data	Management	Policy

1. Eager	versioning	(undo-log	based)	
- Update	memory	location	directly	
- Maintain	undo	info	in	a	log
- Fast	commits
- Slow	aborts	

2. Lazy	versioning	(write-buffer	based)
- Buffer	data	until	commit	in	a	write	buffer	
- Update	actual	memory	locations	at	commit	
- Fast	aborts
- Slow	commits	

5/6/16 17

How	to	manage	the	
“tentative	work”	that	
a	transaction	does



Conflict	Detection	Policy

1. Pessimistic	detection
Check	for	conflicts	during	loads	or	stores	

2. Optimistic	detection	
Detect	conflicts	when	a	transaction	attempts	to	
commit	

5/6/16 18

How	to	ensure	
isolation	between	
transactions



TM	Implementation	Space	Examples

»Hardware	TM	systems	
- Lazy	+	optimistic:	Stanford	TCC	
- Lazy	+	pessimistic:	Intel	VTM	
- Eager	+	pessimistic:	Wisconsin	LogTM

» Software	TM	systems	
- Lazy	+	optimistic	(rd/wr):	Sun	TL2	
- Lazy	+	optimistic	(rd)/pessimistic	(wr):	MS	OSTM	
- Eager	+	optimistic	(rd)/pessimistic	(wr):	Intel	STM	

5/6/16 19



A	Snapshot	of	Challenges
»When	is	TM	an	appropriate	programming	abstraction?
- Shared	memory	data	structures	that	are	difficult	to	scale	with	
traditional	locking	(or	have	too	complex	fine-grained	locking	
solutions)?

» Interactions	with	non-transactional	code,	nested	
transactions

» Hardware	trade-offs
- Memory	system,	frequency	of	aborts	vs	cost,	communication	
overhead	etc.

» Deadlock,	livelock,	memory	consistency

» And	more…
5/6/16 20



Thank	You!

5/6/16 21


