
Caches	and	Virtual	Memory

Suvinay Subramanian
(adapted	from	prior	6.823	offerings)

2/19/2016 6.823	Spring	2016 1



Soul	of	a	Computer	Architect

• Abstractions

• Tradeoffs

2/19/2016 6.823	Spring	2016 2



Caches

• Response	to	the	processor—memory	latency	
gap

• Basic	Idea:	Principle	of	locality
– Spatial
– Temporal

2/19/2016 6.823	Spring	2016 3



Caches:	Basics

• Block	/	Line:	Unit	of	storage	in	cache
• Data	references:
– Hit	or	miss

• Important	cache	design	decisions:
– Placement:	Where,	how	to	find/place	block?
– Replacement:	How	to	remove	line?
– Others…

2/19/2016 6.823	Spring	2016 4



Direct	Mapped	Cache

Tag Index Block	
Offset

<6><9><25>

.

.
.
.

=?

Data	<512>Tag	<25>Valid<1>

Hit/Miss

DIRECT	
MAPPED

Cache	Size? (2^9)*64B	=	32kBMetadata? (2^9)*26b	=	13kb
2/19/2016 6.823	Spring	2016 5



Set	Associative	Cache

Tag Index Block	
Offset

<6><?><?>

.

.
.
.

=?

Data	<512>Tag	<?>Valid<1>

Hit/Miss

2-way	Set	
Associative

32kBTag?	
8
26 Same	Cache	Size

Index?

2/19/2016 6.823	Spring	2016 6



Set	Associative	Cache:	Decisions

• Each	block	has	a	“priority”
How	to	determine	/	adjust	priority?

• Insertion,	Promotion,	Eviction

• LRU	Replacement	Policy
– Evict	the	least-recently	used	block
–What	information	do	you	need?
• In	hardware,	how	many	bits?
• How	does	it	affect	access	time	for	cache?

2/19/2016 6.823	Spring	2016 7



• Architects	expend	considerable	effort	
optimizing	cache	design
– Big	impact	on	performance,	power

• Large	design	space
– Cache	size,	block	size,	associativity,	replacement	
policy,	write-back/through,	write-allocation	etc.

– Tradeoffs:	Performance	vs	Power	vs	Area	vs	
Complexity	vs	Cost

2/19/2016 6.823	Spring	2016 8



Virtual	Memory

• Abstraction
– Programmer	sees	virtual	memory
– Transparently	managed
– Can	support	larger	virtual	memory	than	physical	
memory

• Protection

Basic	Idea:	Indirection

2/19/2016 6.823	Spring	2016 9



Page-based	Virtual	Memory
VA1User	1

Page	Table	

VA1User	2

Page	Table	

VA1User	3

Page	Table	

• Divide	physical	memory	 into	“pages”	(Typically 4kB)
• Each	user	works	with	Virtual	Addresses and	has	a	Page	Table
• Page	table	translates	virtual address	to	physical	address

Ph
ys
ic
al

M
em

or
y

FREE

OS
pages

2/19/2016 6.823	Spring	2016 10



Address	Translation
Parameters
– P	=	2p =	page	size	(bytes).		
– N	=	2n =	Virtual-address	limit
– M	=	2m =	Physical-address	limit

2/19/2016 6.823	Spring	2016 11

Virtual	Page	Number Page	Offset Virtual	Address
0p-1pn-1

Page	Offset Physical	Address
0p-1p

Physical	Page	Number

Address	Translation

Page	offset	bits	do	not	change	with	translation

m-1



Page	Table	Issues

(A):	How	large	is	the	page	table?	How	do	we	
store	and	access	it?

(B):	How	much	time	does	it	take	for	translation?

(C):	When	do	we	do	the	address	translation?

Many	others…

2/19/2016 6.823	Spring	2016 12



(A):	Hierarchical	Page	Tables

• Issue	(A):	Page	Table	Size

2/19/2016 6.823	Spring	2016 13

Virtual	Page	Number Page	Offset Virtual	Address

12	bits52	bits

How	many	entries	in	the	page	table?	 252



(A):	Hierarchical	Page	Tables

2/19/2016 6.823	Spring	2016 14

31	 11		 0

Virtual	Address Index	1 Index	2						Index	3						 Offset
31																				23																			 17																										11																								0

Context
Register

PTP

PTP

PTE

Page	Directory

L1	Table
L2	Table

Physical	Address PPN Offset



Page	Table	Issues

(A):	How	large	is	the	page	table?	How	do	we	
store	and	access	it?

(B):	How	much	time	does	it	take	for	translation?

(C):	When	do	we	do	the	address	translation?

Many	others…

2/19/2016 6.823	Spring	2016 15



(B):	Speeding	up	the	Common	Case

• Page	Tables	stored	in	Memory
– 1st Memory	Access:	obtain	physical	address
– 2nd Memory	Access:	get	data

• Translation	Lookaside Buffer	(TLB)
– Fully-associative	cache	containing	PPNs	for	VPNs
– Is	TLB	miss	same	as	a	Page	Fault?

No.
TLB	miss	=>	VPN	to	PPN	mapping	not	found	in	TLB.	
Page	Fault	=>	Page	not	found	in	memory

2/19/2016 6.823	Spring	2016 16

Page	walk



Page	Table	Issues

(A):	How	large	is	the	page	table?	How	do	we	
store	and	access	it?

(B):	How	much	time	does	it	take	for	translation?

(C):	When	do	we	do	the	address	translation?

Many	others…

2/19/2016 6.823	Spring	2016 17



(C):	Address	Translation	in	CPU	Pipeline

• Need	mechanisms	to	cope	with	the	additional	latency	of	a	TLB
– slow	down	the	clock
– pipeline	the	TLB	and	cache	access
– virtual	address	caches
– parallel	TLB/cache	access

PC
Inst 
TLB

Inst. 
Cache D Decode E M

Data 
TLB

Data 
Cache W+

L1	Performance	is	critical.
Needs	to	be	1	cycle!

L1	Performance	is	critical.
Needs	to	be	1	cycle!

2/19/2016 6.823	Spring	2016 18



(C):	Physical	or	Virtual	Address	Caches?

• one-step process in case of a hit (+)
• cache needs to be flushed on a context switch unless 

address space identifiers (ASIDs) included in tags (-)
• aliasing problems due to the sharing of pages (-)

CPU Physical
CacheTLB Primary

Memory
VA

PA

Alternative: place the cache before the TLB

CPU

VA

(StrongARM)Virtual
Cache

PA
TLB

Primary
Memory

2/19/2016 6.823	Spring	2016 19



(C):	Physical	or	Virtual	Address	Caches?

2/19/2016 6.823	Spring	2016 20

CPU Physical
CacheTLB Primary

Memory
VA

PA

CPU

VA

Virtual
Cache

PA
TLB

Primary
Memory

CPU
VA PA

TLB Primary
Memory

Cache



Concurrent	Accesses	to	TLB	and	Cache
Virtual	Address	<40>

Virtual	Page	Number	<28> Page	Offset	<12>

L1	index	<6>

TLB	Data	<28>TLB	Tag	<28>

Block	
Offset	<6>

L1	Data	<512>L1	Tag	<28>=?

=?TLB	Hit/Miss

L1	Hit/Miss

To	CPU

To	CPU
Physical	
Page	
Number

L1	Size	=	Page	Size

2/19/2016 6.823	Spring	2016 21



Concurrent	Accesses	to	TLB	and	Cache

• Cache	Size	≤	Page	Size for	direct-mapped
• Cache	Size	≤	A*(Page	Size)	for	associativity	A

2/19/2016 6.823	Spring	2016 22



Aliasing	in	Virtual-Address	Caches

VA1

VA2

Page Table

Data Pages

PA

VA1

VA2

1st Copy of Data at PA

2nd Copy of Data at PA

Tag Data

Two virtual pages share 
one physical page

Virtual cache can have two 
copies of same physical data. 
Writes to one copy not visible 

to reads of other!

2/19/2016 6.823	Spring	2016 23



How	to	avoid	aliasing?
• Direct Mapped Caches

– VAs of shared pages must agree in cache index bits
– All VAs accessing same PA will map in same location in 

cache

• Exploit inclusive L2
– L1 is virtually addressed (for speed), L2 is physically 

addressed (since address translation ready by then)
– Suppose VA1 and VA2 both map to PA
– VA1 is already in both L1 and L2
– After VA2 is resolved to PA, collision will be detected in L2 

(mapped to same index)
– Purge VA1 from L1 and L2, and load VA2

2/19/2016 6.823	Spring	2016 24



Pages	vs.	Cache	Blocks

• Pages	==	Cache	Blocks/Lines
• Page	Number	==	Cache	Index	+	Tag
• Page	Offset	==	Block	Offset

2/19/2016 6.823	Spring	2016 25



Summary

• Caches,	Virtual	Memory:	Two	important	
components	of	modern	computer	systems

• Principles:	Locality,	Indirection

• Interaction	between	cache	and	VM
– Virtual	vs	Physical	Cache	vs	Combination
– Aliasing

2/19/2016 6.823	Spring	2016 26


