
Last updated:
2/24/2016

 1

Problem M1.1: Self Modifying Code on the EDSACjr

This problem gives us a flavor of EDSAC-style programming and its limitations. Please read
Handout #1 (EDSACjr) and Lecture 2 before answering the following questions (You may find
local labels in Handout #1 useful for writing self-modifying code.)

Problem M1.1.A Writing Macros For Indirection

With only absolute addressing instructions provided by the EDSACjr, writing self-modifying
code becomes unavoidable for almost all non-trivial applications. It would be a disaster, for both
you and us, if you put everything in a single program. As a starting point, therefore, you are
expected to write macros using the EDSACjr instructions given in Table H1-1 (in Handout #1)
to emulate indirect addressing instructions described in Table M1.1-1. Using macros may
increase the total number of instructions that need to be executed because certain instruction
level optimizations cannot be fully exploited. However, the code size on paper can be reduced
dramatically when macros are appropriately used. This makes programming and debugging
much easier.

Please use following global variables in your macros.

_orig_accum: CLEAR ; temp. storage for accum
_store_op: STORE 0 ; STORE template
_bge_op: BGE 0 ; BGE template
_blt_op: BLT 0 ; BLT template
_add_op: ADD 0 ; ADD template

These global variables are located somewhere in main memory and can be accessed using their
labels. The _orig_accum location will be used to temporarily store the accumulator’s value.
The other locations will be used as “templates” for generating instructions.

Opcode Description
ADDind n Accum ← Accum + M[M[n]]
STOREind n M[M[n]] ← Accum
BGEind n If Accum ≥ 0 then PC ← M[n]
BLTind n If Accum < 0 then PC ← M[n]

Table M1.1-1: Indirection Instructions

Last updated:
2/24/2016

 2

Problem M1.1.B Subroutine Calling Conventions

A possible subroutine calling convention for the EDSACjr is to place the arguments right after
the subroutine call and pass the return address in the accumulator. The subroutine can then get its
arguments by offset to the return address.

Describe how you would implement this calling convention for the special case of one argument
and one return value using the EDSACjr instruction set. What do you need to do to the
subroutine for your convention to work? What do you have to do around the calling point? How
is your result returned? You may assume that your subroutines are in set places in memory and
that subroutines cannot call other subroutines. You are allowed to use the original EDSACjr
instruction set shown in Handout #1 (Table H1-1), as well as the indirection instructions listed in
Table M1.1-1.

To illustrate your implementation of this convention, write a program for the EDSACjr to
iteratively compute fib(n), where n is a non-negative integer. fib(n) returns the nth
Fibonacci number (fib(0)=0, fib(1)=1, fib(2)=1, fib(3)=2…). Make fib a
subroutine. (The C code is given below.) In few sentences, explain how could your convention
be generalized for subroutines with an arbitrary number of arguments and return values?

The following program defines the iterative subroutine fib in C.

int fib(int n) {
 int i, x, y, z;
 x=0, y=1;
 if(n<2)
 return n;
 else{
 for(i=0; i<n-1; i++){
 z=x+y;
 x=y;
 y=z;
 }
 return z;
 }
}

Last updated:
2/24/2016

 3

Problem M1.1.C Subroutine Calling Other Subroutines

The following program defines a recursive version of the subroutine fib in C.

int fib_recursive (int n){
 if(n<2)
 return n;
 else{
 return(fib(n-1) + fib(n-2));
 }
}

In a few sentences, explain what happens if the subroutine calling convention you implemented
in Problem M1.1.B is used for fib_recursive.

Last updated:
2/24/2016

4

Problem M1.2: CISC and RISC: Comparing ISAs

This problem requires the knowledge of Handout #2 (CISC ISA—x86jr), Handout #3 (RISC
ISA—MIPS32), and Lectures 1 and 2. Please read these materials before answering the
following questions.

Problem M1.2.A CISC

Let us begin by considering the following C code.

int b; //a global variable

void multiplyByB(int a){
 int i, result;
 for(i = 0; i<b; i++){
 result=result+a;
 }
}

Using gcc and objdump on a Pentium III, we see that the above loop compiles to the following
x86 instruction sequence. (On entry to this code, register %ecx contains i, register %edx contains
result and register %eax contains a. b is stored in memory at location 0x08047580.) A brief
explanation of each instruction in the code is given in Handout #2.

xor %edx,%edx
xor %ecx,%ecx

 loop: cmp 0x08047580,%ecx
 jl L1
 jmp done
 L1: add %eax,%edx
 inc %ecx
 jmp loop
 done: ...

How many bytes is the program? For the above x86 assembly code, how many bytes of
instructions need to be fetched if b = 10? Assuming 32-bit data values, how many bytes of data
memory need to be fetched? Stored?

Problem M1.2.B RISC

Translate each of the x86 instructions in the following table into one or more MIPS32
instructions in Handout #3. Place the L1 and loop labels where appropriate. You should use the
minimum number of instructions needed. Assume that upon entry R2 contains a and R3 contains
i. R1 should be loaded with the value of b from memory location 0x08047580, while R4 should

Last updated:
2/24/2016

5

receive result. If needed, use R5 to hold the condition value and R6, R7, etc., for temporaries.
You should not need to use any floating point registers or instructions in your code.

x86 instruction label MIPS32 instruction sequence
xor %edx,%edx

xor %ecx,%ecx

cmp 0x08049580,%ecx

jl L1

jmp done

add %eax,%edx

inc %ecx

jmp loop

... done: ...

How many bytes is the MIPS32 program using your direct translation? How many bytes of
MIPS32 instructions need to be fetched for b = 10 using your direct translation? How many
bytes of data memory need to be fetched? Stored?

Problem M1.2.C Optimization

To get more practice with MIPS32, optimize the code from part B so that it can be expressed in
fewer instructions. Your solution should contain commented assembly code, a paragraph which
explains your optimizations and a short analysis of the savings you obtained.

Last updated:
2/24/2016

6

Problem M1.3: Addressing Modes on MIPS ISA

Ben Bitdiddle is suspicious of the benefits of complex addressing modes. So he has decided to
investigate it by incrementally removing the addressing modes from our MIPS ISA. Then he will
write programs on the “crippled” MIPS ISAs to see what the programming on these ISAs is like.

Problem M1.3.A Displacement addressing mode

As a first step, Ben has discontinued supporting the displacement (base+offset) addressing mode,
that is, our MIPS ISA only supports register indirect addressing (without the offset).

Can you still write the same program as before? If so, please translate the following load
instruction into an instruction sequence in the new ISA. If not, explain why.

LW R1, 16(R2) è

Problem M1.3.B Register indirect addressing

Now he wants to take a bolder step by completely eliminating the register indirect addressing.
The new load and store instructions will have the following format.

LW R1, imm16 ; R1 <- M[imm16]
SW R1, imm16 ; M[imm16] <- R1

6 5 5 16

Opcode Rs Offset

Can you still write the same program as before? If so, please translate the following load
instruction into an instruction sequence in the new ISA. If not, explain why. (Don’t worry about
branches and jumps for this question.)

LW R1, 16(R2) è

Last updated:
2/24/2016

7

Problem M1.3.C Subroutine

Ben is wondering whether we can implement a subroutine using only absolute addressing. He
changes the original ISA such that all the branches and jumps take a 16-bit absolute address (the
2 lower orders bits are 0 for word accesses), and that jr and jalr are not supported any longer.

With the new ISA he decides to rewrite a piece of subroutine code from his old project. Here is
the original C code he has written.

int b; //a global variable

void multiplyByB(int a){
 int i, result;
 for(i=0; i<b; i++){
 result=result+a;
 }
}

The C code above is translated into the following instruction sequence on our original MIPS ISA.
Assume that upon entry, R1 and R2 contain b and a, respectively. R3 is used for i and R4 for
result. By a calling convention, the 16-bit word-aligned return address is passed in R31.

Subroutine: xor R4, R4, R4 ; result = 0

xor R3, R3, R3 ; i = 0
loop: slt R5, R3, R1

bnez R5, L1 ; if (i < b) goto L1
return: jr R31 ; return to the caller
L1: add R4, R4, R2 ; result += a

addi R3, R3, #1 ; i++
j loop

If you can, please rewrite the assembly code so that the subroutine returns without using a jr
instruction (which is a register indirect jump). If you cannot, explain why.

Last updated:
2/24/2016

8

Problem M1.4: Fully-Bypassed Simple 5-Stage Pipeline

We have reproduced the fully bypassed 5-stage MIPS processor pipeline from Lecture 7 in
Figure M1.4-A. In this problem, we ask you to write equations to generate correct bypass and
stall signals. Feel free to use any symbol introduced in the lecture.

Problem M1.4.A Stall

Do we still need to stall this pipeline? If so, explain why. (1) Write down the correct equation for
the stall condition and (2) give an example instruction sequence which causes a stall.

Problem M1.4.B Bypass Signal

In Lecture 5, we gave you an example of bypass signal (ASrc) from EX stage to ID stage. In the
fully bypassed pipeline, however, the mux control signals become more complex, because we
have more inputs to the muxes in the ID stage.

Write down the bypass condition for each bypass path in Mux 1. Please indicate the priority of
the signals; that is, if all bypass conditions are met, indicate which signals have the highest and
the lowest priorities.

Bypass EX->ID ASrc = (rsD=wsE).we-bypassE.re1D (given in Lecture 5)

Bypass MEM->ID =

Bypass WB->ID =

Priority:

Problem M1.4.C Partial Bypassing

While bypassing gives us a performance benefit, it may introduce extra logic in critical paths and
may force us to lower the clock frequency. Suppose we can afford to have only one bypass in the
datapath. How would you justify your choice? Argue in favor of one bypass path over another.

Last updated:
2/24/2016

9

Figure M1.4-A: Fully-Bypassed MIPS Pipeline

ASrc
IR IR IR

PC A

B

Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4
Add

IR ALU

Imm
Ext

rd1

GPRs

rs1
rs2

ws
wd rd2

we

wdat
a

addr

wdata

rdata Data
Memory

we

31

nop

stall

D

E M W

PC for JAL, ...

BSrc

Last updated:
2/24/2016

10

Problem M1.5: Basic Pipelining

Unlike the Harvard-style (separate instruction and data memories) architectures, machines using
the Princeton-style have a shared instruction and data memory. In order to reduce the memory
cost, Ben Bitdiddle has proposed the following two-stage Princeton-style MIPS pipeline to
replace a single-cycle Harvard-style pipeline from our lectures.

Every instruction takes exactly two cycles to execute (i.e., instruction fetch and execute) and
there is no overlap between two sequential instructions; that is, fetching an instruction occurs in
the cycle following the previous instruction’s execution (no pipelining).

Assume that the new pipeline does not contain a branch delay slot. Also, don’t worry about self-
modifying code for now.

IR

0x4

clk

RegDst

PCSrc1 RegWrite

BSrc zero?

WBSrc

31

PCSrc2

ExtSelOpCode

0x4Add

rd1

GPRs

rs1
rs2

ws
wd rd2

we

Imm
Ext

addr

wdata

rdata
Data
Memory

z
ALU

Add

OpSel

ALU
Control

clk

Add

we

MemWrite

clk

PC

PCen

IRen AddrSrc

clk

Figure M1.5-A: Two-stage pipeline, Princeton-style

Last updated:
2/24/2016

11

Problem M1.5.A Mux Control Signals (1)

Please complete the following control signals. You are allowed to use any internal signals (e.g.,
OpCode, PC, IR, zero?, rd1, data, etc.) but not other control signals (ExtSel, IRSrc, PCSrc, etc.).

Example syntax: PCEn = (OpCode == ALUOp) or ((ALU.zero?) and (not (PC == 17)))

You may also use the variable S which indicates the pipeline’s operation phase at a given time.

S := I-Fetch | Execute (toggles every cycle)

PCEn =

IREn =

AddrSrc = Case _____________

____________ => PC

____________ => ALU

Last updated:
2/24/2016

12

Problem M1.5.B Modified pipeline

After having implemented his proposed architecture, Ben has observed that a lot of datapath is
not in use because only one phase (either I-Fetch or Execute) is active at any given time. So he
has decided to fetch the next instruction during the Execute phase of the previous instruction.

Figure M1.5-B: Modified Two-stage Princeton-style MIPS Pipeline

Do we need to stall this pipeline? If so, for each cause (1) write down the cause in one sentence
and (2) give an example instruction sequence. If not, explain why. (Remember there is no delay
slot.)

Last updated:
2/24/2016

13

Problem M1.5.C Mux Control Signals (2)

Please complete the following control signals in the modified pipeline. As before, you are
allowed to use any internal signals (e.g., OpCode, PC, IR, zero?, rd1, data, etc.) but not other
control signals (ExtSel, IRSrc, PCSrc, etc.)

PCEnable =

AddrSrc = Case _____________

____________ => PC

____________ => ALU

IRSrc = Case _____________

____________ => nop

____________ => Mem

Last updated:
2/24/2016

14

Problem M1.5.D

Now we are ready to put Ben’s machine to the test. We would like to see a cycle-by-cycle
animation of Ben’s two-stage pipelined, Princeton-style MIPS machine when executing the
instruction sequence below. In the following table, each row represents a snapshot of some
control signals and the content of some special registers for a particular cycle. Ben has already
finished the first two rows. Complete the remaining entries in the table. Use * for “don’t care”.

Label Address Instruction
I1 100 ADD
I2 104 LW
I3 108 J I7
I4 112 LW
I5 116 ADD
I6 120 SUB
I7 312 ADD
I8 316 ADD

Time PC “IR” PCenable PCSrc1 AddrSrc IRSrc
t0 I1:100 - 1 pc+4 PC Mem
t1 I2:104 I1 1 Pc+4 PC Mem
t2
t3
t4
t5
t6

Last updated:
2/24/2016

15

Problem M1.5.E Self-Modifying Code

Suppose we allow self-modifying code to execute, i.e., store instructions can write to the portion
of memory that contains executable code. Does the two-stage Princeton pipeline need to be
modified to support such self-modifying code? If so, please indicate how. You may use the
diagram below to draw modifications to the datapath. If you think no modifications are required,
explain why.

Last updated:
2/24/2016

16

Problem M1.5.F

To solve a chip layout problem Ben decides to reroute the input of the WB mux to come from
after the AddrSrc MUX rather than ahead of the AddrSrc MUX. (The new path is shown with a
bold line, the old in a dotted line.) The rest of the design is unaltered.

How does this break the design? Provide a code sequence to illustrate the problem and explain in
one sentence what goes wrong.

Problem M1.5.G Architecture Comparison

Give one advantage of the Princeton architecture over the Harvard architecture.

Give one advantage of the Harvard architecture over the Princeton architecture.

Last updated:
2/24/2016

17

Problem M1.6: Processor Design (Short Yes/No Questions)

The following statements describe two variants of a processor which are otherwise identical. In
each case, circle "Yes" if the variants might generate different results from the same compiled
program, circle "No" otherwise. You must also briefly explain your reasoning. Ignore differences
in the time that each machine takes to execute the program.

Problem M1.6.A Interlock vs. Bypassing

Pipelined processor A uses interlocks to resolve data hazards, while pipelined processor B has
full bypassing.

Yes / No

Problem M1.6.B Delay Slot

Pipelined processor A uses branch delay slots to resolve control hazards, while pipelined
processor B kills instructions following a taken branch.

Yes / No

Problem M1.6.C Structural Hazard

Pipelined processor A has a single memory port used to fetch instructions and data, while
pipelined processor B has no structural hazards.

Yes / No

