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Problem M1.1: Self Modifying Code on the EDSACjr 
 
This problem gives us a flavor of EDSAC-style programming and its limitations. Please read 
Handout #1 (EDSACjr) and Lecture 2 before answering the following questions (You may find 
local labels in Handout #1 useful for writing self-modifying code.) 
 
 
Problem M1.1.A Writing Macros For Indirection 

 
With only absolute addressing instructions provided by the EDSACjr, writing self-modifying 
code becomes unavoidable for almost all non-trivial applications. It would be a disaster, for both 
you and us, if you put everything in a single program. As a starting point, therefore, you are 
expected to write macros using the EDSACjr instructions given in Table H1-1 (in Handout #1) 
to emulate indirect addressing instructions described in Table M1.1-1. Using macros may 
increase the total number of instructions that need to be executed because certain instruction 
level optimizations cannot be fully exploited. However, the code size on paper can be reduced 
dramatically when macros are appropriately used. This makes programming and debugging 
much easier.  
 
Please use following global variables in your macros.  
 
_orig_accum: CLEAR  ; temp. storage for accum 
_store_op: STORE 0  ; STORE template 
_bge_op:  BGE 0  ; BGE template 
_blt_op:  BLT 0  ; BLT template 
_add_op:  ADD 0  ; ADD template 
 
These global variables are located somewhere in main memory and can be accessed using their 
labels.  The _orig_accum location will be used to temporarily store the accumulator’s value.  
The other locations will be used as “templates” for generating instructions.   
 

Opcode Description 
ADDind  n Accum ← Accum + M[M[n]] 
STOREind  n M[M[n]] ← Accum 
BGEind  n If  Accum ≥ 0  then  PC ← M[n] 
BLTind  n If  Accum < 0  then  PC ← M[n] 

 
Table M1.1-1:  Indirection Instructions 
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Problem M1.1.B Subroutine Calling Conventions 
 
A possible subroutine calling convention for the EDSACjr is to place the arguments right after 
the subroutine call and pass the return address in the accumulator. The subroutine can then get its 
arguments by offset to the return address.   
 
Describe how you would implement this calling convention for the special case of one argument 
and one return value using the EDSACjr instruction set. What do you need to do to the 
subroutine for your convention to work? What do you have to do around the calling point? How 
is your result returned? You may assume that your subroutines are in set places in memory and 
that subroutines cannot call other subroutines. You are allowed to use the original EDSACjr 
instruction set shown in Handout #1 (Table H1-1), as well as the indirection instructions listed in 
Table M1.1-1. 
 
To illustrate your implementation of this convention, write a program for the EDSACjr to 
iteratively compute fib(n), where n is a non-negative integer. fib(n) returns the nth 
Fibonacci number (fib(0)=0, fib(1)=1, fib(2)=1, fib(3)=2…). Make fib a 
subroutine. (The C code is given below.) In few sentences, explain how could your convention 
be generalized for subroutines with an arbitrary number of arguments and return values? 
 
The following program defines the iterative subroutine fib in C. 
 

int fib(int n) { 
  int i, x, y, z; 
  x=0, y=1; 
  if(n<2) 
    return n; 
  else{ 
    for(i=0; i<n-1; i++){ 
      z=x+y; 
      x=y; 
      y=z; 
    } 
    return z; 
  } 
} 
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Problem M1.1.C Subroutine Calling Other Subroutines 
 
The following program defines a recursive version of the subroutine fib in C. 
 

int fib_recursive (int n){ 
  if(n<2) 
    return n; 
  else{ 
    return(fib(n-1) + fib(n-2)); 
  } 
} 

 
In a few sentences, explain what happens if the subroutine calling convention you implemented 
in Problem M1.1.B is used for fib_recursive.  
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Problem M1.2: CISC and RISC: Comparing ISAs 
 
This problem requires the knowledge of Handout #2 (CISC ISA—x86jr), Handout #3 (RISC 
ISA—MIPS32), and Lectures 1 and 2. Please read these materials before answering the 
following questions. 
  
 
Problem M1.2.A CISC 

 
Let us begin by considering the following C code. 
 
int b;  //a global variable 
 
void multiplyByB(int a){ 
  int i, result; 
  for(i = 0; i<b; i++){ 
    result=result+a; 
  } 
} 
 
Using gcc and objdump on a Pentium III, we see that the above loop compiles to the following 
x86 instruction sequence. (On entry to this code, register %ecx contains i, register %edx contains 
result and register %eax contains a. b is stored in memory at location 0x08047580.) A brief 
explanation of each instruction in the code is given in Handout #2. 
 

xor    %edx,%edx 
xor    %ecx,%ecx 

 loop:      cmp    0x08047580,%ecx 
   jl     L1  
   jmp    done  
 L1:  add    %eax,%edx 
   inc    %ecx 
   jmp    loop  
 done:    ... 
 
 
How many bytes is the program? For the above x86 assembly code, how many bytes of 
instructions need to be fetched if b = 10? Assuming 32-bit data values, how many bytes of data 
memory need to be fetched? Stored? 
 
 
Problem M1.2.B RISC 

 
Translate each of the x86 instructions in the following table into one or more MIPS32 
instructions in Handout #3. Place the L1 and loop labels where appropriate. You should use the 
minimum number of instructions needed. Assume that upon entry R2 contains a and R3 contains 
i. R1 should be loaded with the value of b from memory location 0x08047580, while R4 should 
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receive result. If needed, use R5 to hold the condition value and R6, R7, etc., for temporaries. 
You should not need to use any floating point registers or instructions in your code. 
 
x86 instruction label MIPS32 instruction sequence 
xor    %edx,%edx 
          

  
 
 

xor    %ecx,%ecx 
          

  
 
 

cmp    0x08049580,%ecx   
 
 

jl     L1  
 

  
 
 

jmp    done   
 
 

add    %eax,%edx   
 
 

inc    %ecx 
 

  
 
 

jmp    loop   
 
 

... done: ... 

 
How many bytes is the MIPS32 program using your direct translation? How many bytes of 
MIPS32 instructions need to be fetched for b = 10 using your direct translation? How many 
bytes of data memory need to be fetched? Stored?  
 
 
Problem M1.2.C Optimization 

 
To get more practice with MIPS32, optimize the code from part B so that it can be expressed in 
fewer instructions. Your solution should contain commented assembly code, a paragraph which 
explains your optimizations and a short analysis of the savings you obtained. 
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Problem M1.3: Addressing Modes on MIPS ISA 
 
Ben Bitdiddle is suspicious of the benefits of complex addressing modes. So he has decided to 
investigate it by incrementally removing the addressing modes from our MIPS ISA. Then he will 
write programs on the “crippled” MIPS ISAs to see what the programming on these ISAs is like. 
 
Problem M1.3.A Displacement addressing mode 

 
As a first step, Ben has discontinued supporting the displacement (base+offset) addressing mode, 
that is, our MIPS ISA only supports register indirect addressing (without the offset).    
 
Can you still write the same program as before? If so, please translate the following load 
instruction into an instruction sequence in the new ISA. If not, explain why. 
 

LW R1, 16(R2)      è 
 
 
 
 
Problem M1.3.B Register indirect addressing 

 
Now he wants to take a bolder step by completely eliminating the register indirect addressing.  
The new load and store instructions will have the following format. 
 

LW R1, imm16   ; R1 <- M[imm16] 
SW R1, imm16   ; M[imm16] <- R1  

 
6 5 5 16 

Opcode Rs  Offset 
 
Can you still write the same program as before? If so, please translate the following load 
instruction into an instruction sequence in the new ISA. If not, explain why. (Don’t worry about 
branches and jumps for this question.) 
 

LW R1, 16(R2)      è 
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Problem M1.3.C Subroutine 

  
Ben is wondering whether we can implement a subroutine using only absolute addressing. He 
changes the original ISA such that all the branches and jumps take a 16-bit absolute address (the 
2 lower orders bits are 0 for word accesses), and that jr and jalr are not supported any longer. 
 
With the new ISA he decides to rewrite a piece of subroutine code from his old project. Here is 
the original C code he has written. 
 
int b;  //a global variable 
 
void multiplyByB(int a){ 
  int i, result; 
  for(i=0; i<b; i++){ 
    result=result+a; 
  } 
} 
 
The C code above is translated into the following instruction sequence on our original MIPS ISA. 
Assume that upon entry, R1 and R2 contain b and a, respectively. R3 is used for i and R4 for 
result. By a calling convention, the 16-bit word-aligned return address is passed in R31. 
 
Subroutine: xor  R4, R4, R4 ; result = 0 

xor  R3, R3, R3 ; i = 0 
loop:  slt  R5, R3, R1  

bnez R5, L1  ; if (i < b) goto L1 
return: jr   R31  ; return to the caller 
L1:  add  R4, R4, R2 ; result += a 

addi R3, R3, #1 ; i++ 
j    loop 

 
If you can, please rewrite the assembly code so that the subroutine returns without using a jr 
instruction (which is a register indirect jump). If you cannot, explain why.   
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Problem M1.4: Fully-Bypassed Simple 5-Stage Pipeline 
 
We have reproduced the fully bypassed 5-stage MIPS processor pipeline from Lecture 7 in 
Figure M1.4-A. In this problem, we ask you to write equations to generate correct bypass and 
stall signals. Feel free to use any symbol introduced in the lecture. 
 
Problem M1.4.A Stall 

 
Do we still need to stall this pipeline? If so, explain why. (1) Write down the correct equation for 
the stall condition and (2) give an example instruction sequence which causes a stall. 
 
Problem M1.4.B Bypass Signal 

 
In Lecture 5, we gave you an example of bypass signal (ASrc) from EX stage to ID stage. In the 
fully bypassed pipeline, however, the mux control signals become more complex, because we 
have more inputs to the muxes in the ID stage. 
 
Write down the bypass condition for each bypass path in Mux 1. Please indicate the priority of 
the signals; that is, if all bypass conditions are met, indicate which signals have the highest and 
the lowest priorities. 
 
Bypass EX->ID ASrc = (rsD=wsE).we-bypassE.re1D  (given in Lecture 5) 
 
Bypass MEM->ID  = 
 
Bypass WB->ID  = 
 
 
Priority:   

 
Problem M1.4.C Partial Bypassing 

 
While bypassing gives us a performance benefit, it may introduce extra logic in critical paths and 
may force us to lower the clock frequency. Suppose we can afford to have only one bypass in the 
datapath. How would you justify your choice? Argue in favor of one bypass path over another.
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Figure M1.4-A: Fully-Bypassed MIPS Pipeline 
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Problem M1.5: Basic Pipelining 
 
Unlike the Harvard-style (separate instruction and data memories) architectures, machines using 
the Princeton-style have a shared instruction and data memory. In order to reduce the memory 
cost, Ben Bitdiddle has proposed the following two-stage Princeton-style MIPS pipeline to 
replace a single-cycle Harvard-style pipeline from our lectures. 
 
Every instruction takes exactly two cycles to execute (i.e., instruction fetch and execute) and 
there is no overlap between two sequential instructions; that is, fetching an instruction occurs in 
the cycle following the previous instruction’s execution (no pipelining). 
 

Assume that the new pipeline does not contain a branch delay slot.  Also, don’t worry about self-
modifying code for now.   
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Figure M1.5-A: Two-stage pipeline, Princeton-style 
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Problem M1.5.A Mux Control Signals (1) 

Please complete the following control signals.  You are allowed to use any internal signals (e.g., 
OpCode, PC, IR, zero?, rd1, data, etc.) but not other control signals (ExtSel, IRSrc, PCSrc, etc.). 
 
Example syntax:  PCEn = (OpCode == ALUOp) or ((ALU.zero?) and (not (PC == 17)))   

You may also use the variable S which indicates the pipeline’s operation phase at a given time.   
 

S := I-Fetch | Execute  (toggles every cycle) 
 
 
 
PCEn =  
 
 
 
IREn =  
 

 
 
 

AddrSrc = Case _____________ 
 
____________  => PC 
 
____________  => ALU 
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Problem M1.5.B Modified pipeline 
 
After having implemented his proposed architecture, Ben has observed that a lot of datapath is 
not in use because only one phase (either I-Fetch or Execute) is active at any given time. So he 
has decided to fetch the next instruction during the Execute phase of the previous instruction. 
  
 
 

 
Figure M1.5-B: Modified Two-stage Princeton-style MIPS Pipeline 

 
Do we need to stall this pipeline? If so, for each cause (1) write down the cause in one sentence 
and (2) give an example instruction sequence. If not, explain why.  (Remember there is no delay 
slot.) 
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Problem M1.5.C Mux Control Signals (2) 
 
Please complete the following control signals in the modified pipeline.  As before, you are 
allowed to use any internal signals (e.g., OpCode, PC, IR, zero?, rd1, data, etc.) but not other 
control signals (ExtSel, IRSrc, PCSrc, etc.) 
 
PCEnable =  
 
 
 

 
 

 
AddrSrc = Case _____________ 
 
____________  => PC 
 
____________  => ALU 
 
 
IRSrc = Case _____________ 
 
____________  => nop 
 
____________  => Mem 
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Problem M1.5.D  

Now we are ready to put Ben’s machine to the test. We would like to see a cycle-by-cycle 
animation of Ben’s two-stage pipelined, Princeton-style MIPS machine when executing the 
instruction sequence below. In the following table, each row represents a snapshot of some 
control signals and the content of some special registers for a particular cycle. Ben has already 
finished the first two rows. Complete the remaining entries in the table. Use * for “don’t care”. 
 
Label Address Instruction 
I1 100 ADD 
I2 104 LW 
I3 108 J I7 
I4 112 LW 
I5 116 ADD 
I6 120 SUB 
I7 312 ADD 
I8 316 ADD 
 

 
 
 
 
 
 
 
 

Time PC “IR” PCenable PCSrc1 AddrSrc IRSrc 
t0 I1:100 - 1 pc+4 PC Mem 
t1 I2:104 I1 1 Pc+4 PC Mem 
t2       
t3       
t4       
t5       
t6       
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Problem M1.5.E Self-Modifying Code 

 
Suppose we allow self-modifying code to execute, i.e., store instructions can write to the portion 
of memory that contains executable code. Does the two-stage Princeton pipeline need to be 
modified to support such self-modifying code? If so, please indicate how.  You may use the 
diagram below to draw modifications to the datapath. If you think no modifications are required, 
explain why. 
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Problem M1.5.F  
 
To solve a chip layout problem Ben decides to reroute the input of the WB mux to come from 
after the AddrSrc MUX rather than ahead of the AddrSrc MUX. (The new path is shown with a 
bold line, the old in a dotted line.) The rest of the design is unaltered. 
 

 
 
How does this break the design? Provide a code sequence to illustrate the problem and explain in 
one sentence what goes wrong. 
 
 
 
 
 
 
 
Problem M1.5.G Architecture Comparison 

 
Give one advantage of the Princeton architecture over the Harvard architecture. 
 
 
 
Give one advantage of the Harvard architecture over the Princeton architecture. 
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Problem M1.6: Processor Design (Short Yes/No Questions) 
 
The following statements describe two variants of a processor which are otherwise identical. In 
each case, circle "Yes" if the variants might generate different results from the same compiled 
program, circle "No" otherwise. You must also briefly explain your reasoning. Ignore differences 
in the time that each machine takes to execute the program. 
 
Problem M1.6.A Interlock vs. Bypassing 

 
Pipelined processor A uses interlocks to resolve data hazards, while pipelined processor B has 
full bypassing. 
 
Yes  /  No 
 
Problem M1.6.B Delay Slot 

 
Pipelined processor A uses branch delay slots to resolve control hazards, while pipelined 
processor B kills instructions following a taken branch. 
 
Yes  /  No 
 
Problem M1.6.C Structural Hazard 

 
Pipelined processor A has a single memory port used to fetch instructions and data, while 
pipelined processor B has no structural hazards. 
 
Yes  /  No 
  
 


