
 1

Problem M4.1: Cache Access-Time & Performance

Here is the completed Table M4.1-1 for M4.1.A and M4.1.B.

Component Delay equation (ps) DM (ps) SA (ps)
Decoder 200⋅(# of index bits) + 1000 Tag 3400 3000

Data 3400 3000
Memory array 200⋅log2 (# of rows) +

200⋅log2 (# of bits in a row) + 1000
Tag 4217 4250
Data 5000 5000

Comparator 200⋅(# of tag bits) + 1000 4000 4400
N-to-1 MUX 500⋅log2 N + 1000 2500 2500
Buffer driver 2000 2000
Data output driver 500⋅(associativity) + 1000 1500 3000
Valid output driver 1000 1000 1000

Table M4.1-1: Delay of each Cache Component

Problem M4.1.A Access time: DM

To use the delay equations, we need to know how many bits are in the tag and how many are in
the index. We are given that the cache is addressed by word, and that input addresses are 32-bit
byte addresses; the two low bits of the address are not used.

Since there are 8 (23) words in the cache line, 3 bits are needed to select the correct word from
the cache line.

In a 128 KB direct-mapped cache with 8 word (32 byte) cache lines, there are 4⋅210 = 212 cache
lines (128KB/32B). 12 bits are needed to address 212 cache lines, so the number of index bits is
12. The remaining 15 bits (32 – 2 – 3 – 12) are the tag bits.

We also need the number of rows and the number of bits in a row in the tag and data memories.
The number of rows is simply the number of cache lines (212), which is the same for both the tag
and the data memory. The number of bits in a row for the tag memory is the sum of the number
of tag bits (15) and the number of status bits (2), 17 bits total. The number of bits in a row for the
data memory is the number of bits in a cache line, which is 256 (32 bytes ⋅ 8 bits/byte).

With 8 words in the cache line, we need an 8-to-1 MUX. Since there is only one data output
driver, its associativity is 1.

Decoder (Tag) = 200 ⋅ (# of index bits) + 1000 = 200 ⋅ 12 + 1000 = 3400 ps
Decoder (Data) = 200 ⋅ (# of index bits) + 1000 = 200 ⋅ 12 + 1000 = 3400 ps

 2

Memory array (Tag) = 200 ⋅ log2(# of rows) + 200 ⋅ log2(# bits in a row) + 1000
 = 200 ⋅ log2(212) + 200 ⋅ log2(17) + 1000 ≈ 4217 ps
Memory array (Data) = 200 ⋅ log2(# of rows) + 200 ⋅ log2(# bits in a row) + 1000
 = 200 ⋅ log2(212) + 200 ⋅ log2(256) + 1000 = 5000 ps

Comparator = 200 ⋅ (# of tag bits) + 1000 = 200 ⋅ 15 + 1000= 4000 ps

N-to-1 MUX = 500 ⋅ log2(N) + 1000 = 500 ⋅ log2(8) + 1000 = 2500 ps

Data output driver = 500 ⋅ (associativity) + 1000 = 500 ⋅ l + 1000 = 1500 ps

To determine the critical path for a cache read, we need to compute the time it takes to go
through each path in hardware, and find the maximum.

Time to tag output driver
= (tag decode time) + (tag memory access time) + (comparator time) + (AND gate time)

+ (valid output driver time)
≈ 3400 + 4217 + 4000 + 500 + 1000 = 13117 ps

Time to data output driver
= (data decode time) + (data memory access time) + (mux time) + (data output driver time)
= 3400 + 5000 + 2500 + 1500 = 12400 ps

The critical path is therefore the tag read going through the comparator. The access time is 13117
ps. At 150 MHz, it takes 0.013117 ⋅ 150, or 2 cycles, to do a cache access.

Problem M4.1.B Access time: SA

As in M2.1.A, the low two bits of the address are not used, and 3 bits are needed to select the
appropriate word from a cache line. However, now we have a 128 KB 4-way set associative
cache. Since each way is 32 KB and cache lines are 32 bytes, there are 210 lines in a way
(32KB/32B) that are addressed by 10 index bits. The number of tag bits is then (32 – 2 – 3 – 10),
or 17.

The number of rows in the tag and data memory is 210, or the number of sets. The number of bits
in a row for the tag memory is now quadruple the sum of the number of tag bits (17) and the
number of status bits (2), 76 bits total. The number of bits in a row for the data memory is four
times the number of bits in a cache line, which is 1024 (4 ⋅ 32 bytes ⋅ 8 bits/byte).

As in 1.A, we need an 8-to-1 MUX. However, since there are now four data output drivers, the
associativity is 4.

Decoder (Tag) = 200 ⋅ (# of index bits) + 1000 = 200 ⋅ 10 + 1000 = 3000 ps
Decoder (Data) = 200 ⋅ (# of index bits) + 1000 = 200 ⋅ 10 + 1000 = 3000 ps

 3

Memory array (Tag) = 200 ⋅ log2(# of rows) + 200 ⋅ log2(# bits in a row) + 1000
 = 200 ⋅ log2(210) + 200 ⋅ log2(76) + 1000 ≈ 4250 ps
Memory array (Data) = 200 ⋅ log2(# of rows) + 200 ⋅ log2(# bits in a row) + 1000
 = 200 ⋅ log2(210) + 200 ⋅ log2(1024) + 1000 = 5000 ps

Comparator = 200 ⋅ (# of tag bits) + 1000 = 200 ⋅ 17 + 1000= 4400 ps

N-to-1 MUX = 500 ⋅ log2(N) + 1000 = 500 ⋅ log2(8) + 1000 = 2500 ps

Data output driver = 500 ⋅ (associativity) + 1000 = 500 ⋅ 4 + 1000= 3000 ps

Time to valid output driver
= (tag decode time) + (tag memory access time) + (comparator time) + (AND gate time)

+ (OR gate time) + (valid output driver time)
= 3000 + 4250 + 4400 + 500 + 1000 + 1000 = 14150 ps

There are two paths to the data output drivers, one from the tag side, and one from the data side.
Either may determine the critical path to the data output drivers.

Time to get through data output driver through tag side
= (tag decode time) + (tag memory access time) + (comparator time) + (AND gate time)
 + (buffer driver time) + (data output driver)
= 3000 + 4250 + 4400 + 500 + 2000 + 3000 = 17150 ps

Time to get through data output driver through data side
= (data decode time) + (data memory access time) + (mux time) + (data output driver)
= 3000 + 5000 + 2500 + 3000 = 13500 ps

From the above calculations, it’s clear that the critical path leading to the data output driver goes
through the tag side.

The critical path for a read therefore goes through the tag side comparators, then through the
buffer and data output drivers. The access time is 17150 ps. The main reason that the 4-way set
associative cache is slower than the direct-mapped cache is that the data output drivers need the
results of the tag comparison to determine which, if either, of the data output drivers should be
putting a value on the bus. At 150 MHz, it takes 0.0175 ⋅ 150, or 3 cycles, to do a cache access.

It is important to note that the structure of cache we’ve presented here does not describe all the
details necessary to operate the cache correctly. There are additional bits necessary in the cache
which keeps track of the order in which lines in a set have been accessed. We’ve omitted this
detail for sake of clarity.

 4

Problem M4.1.C Miss-rate analysis

D-map

Address

line in cache hit?

L0 L1 L2 L3 L4 L5 L6 L7
110 inv 11 inv inv inv inv inv inv no
136 13 no
202 20 no
1A3 1A no
102 10 no
361 36 no
204 20 no
114 yes
1A4 yes
177 17 no
301 30 no
206 20 no
135 yes

 D-map
Total Misses 10
Total Accesses 13

4-way

Address

LRU
line in cache Hit?

Set 0 Set 1
way0 way1 way2 way3 way0 way1 way2 way3

110 inv inv inv inv 11 inv inv inv No
136 13 No
202 20 No
1A3 1A No
102 10 No
361 36 No
204 Yes
114 Yes
1A4 Yes
177 17 No
301 30 No
206 Yes
135 Yes

 5

 4-way LRU
Total Misses 8
Total Accesses 13

4-way

Address

FIFO
line in cache Hit?

Set 0 Set 1
way0 way1 way2 way3 way0 way1 way2 way3

110 inv Inv inv inv 11 inv inv Inv No
136 13 No
202 20 No
1A3 1A No
102 10 No
361 36 No
204 Yes
114 Yes
1A4 Yes
177 17 No
301 30 No
206 20 No
135 Yes

 4-way FIFO
Total Misses 9
Total Accesses 13

Problem M4.1.D Average latency

The miss rate for the direct-mapped cache is 10/13. The miss rate for the 4-way LRU set
associative cache is 8/13.

The average memory access latency is (hit time) + (miss rate) ⋅ (miss time).

For the direct-mapped cache, the average memory access latency would be (2 cycles) + (10/13) ⋅
(20 cycles) = 17.38 ≈ 18 cycles.

For the LRU set associative cache, the average memory access latency would be (3 cycles) +
(8/13) ⋅ (20 cycles) = 15.31 ≈ 16 cycles.

The set associative cache is better in terms of average memory access latency.

 6

For the above example, LRU has a slightly smaller miss rate than FIFO. This is because the
FIFO policy replaced the {20} block instead of the {10} block during the 12th access, because
the {20} block has been in the cache longer even though the {10} was least recently used,
whereas the LRU policy took advantage of temporal/spatial locality.

LRU doesn’t always have lower miss rate than FIFO. Consider the following counter example: A
sequence accesses 3 separate memory locations A,B and C in the order of A, B, A, C, B, B, B,
…. When this sequence is executed on a processor employing a fully-associative cache with 2
cache lines and LRU replacement policy, the execution ends up with 4 misses. On the other
hand, the same sequence will only produces 3 misses if the cache uses FIFO replacement policy.
(We assume the cache is empty at the beginning of the execution).

 7

Problem M4.2: Pipelined Cache Access

Problem M4.2.A

Ben’s initial datapath design is shown below:

I-Cache
Address
Decode

I-Cache
Array
Access

I-Cache
Tag
Check

Instruction
Decode &
Register
Fetch

Execute D-
Cache
Address
Decode

D-
Cache
Array
Access

D-
Cache
Tag
Check

Write-
back

Alyssa suggests combining the third and fourth stages, which would result in the following
design (used in the MIPS R4000 processor discussed in Appendix A of the textbook):

I-Cache
Address
Decode

I-Cache
Array
Access

I-Cache
Tag
Check,
Instruction
Decode &
Register
Fetch

Execute D-Cache
Address
Decode

D-Cache
Array
Access

D-Cache
Tag
Check

Write-
Back

This scheme allows an instruction to be read from the register file before it is known whether the
instruction is valid. However, reading values from the register file does not affect processor state
and thus does not affect the correctness of the program execution. If the tag check fails—
meaning that the fetched instruction is invalid—the incorrect instruction can be replaced with a
NOP in the Execute stage, and the processor can wait for the correct instruction to be brought
into the I-cache.

That raises the question of whether Ben can similarly combine the data cache tag check stage
with the write-back stage. Theoretically, the answer is yes, although the issues involved with
combining these two stages make it highly impractical. Thus, both answers are acceptable—the
important thing to consider is the reasoning used. Combining the last two stages would result in
the following pipeline:

I-Cache
Address
Decode

I-Cache
Array
Access

I-Cache
Tag Check,
Instruction
Decode &
Register
Fetch

Execute D-Cache
Address
Decode

D-Cache
Array
Access

D-Cache
Tag Check
& Write-
Back

The obvious problem with this scheme is that a load instruction that misses in the data cache will
write an incorrect value into the register file—therefore merging the stages does not work. This

 8

is correct. However, one can also argue that the scheme can be made to work by modifying the
pipeline. This argument is based on the fact that even if a load instruction places incorrect data
into a register, the load can re-execute and place the correct data into the register, overwriting the
wrong value. As a side note, it should be pointed out that allowing processor state to be
incorrectly updated in a machine which implements precise interrupts would not work without
substantial hardware modifications. However, ignoring the issue of interrupts (which had not
been covered in lecture at the time of the problem set), there is a more fundamental issue with
this approach. Ben’s pipeline currently has no means of correctly re-executing the load
instruction. Simply flushing the pipeline on a data cache miss and restarting execution with the
load instruction does not work because of the following type of instruction:

LW R1, 0(R1)

If the load results in a D-cache miss, it will have overwritten the value in R1 before it re-
executes, meaning that the incorrect address will be calculated the second time around. Another
alternative is to store the address once it has been calculated in the Execute stage. This requires
special address registers in each pipeline stage starting with D-Cache Address Decode. But
another problem is the fact that cache access is pipelined, so a load in the write-back stage that
has caused a D-cache miss has to be sent backwards in the pipeline (along with the correct
address) in order to access the cache once the correct data has been fetched. This requires
additional bypass paths in the processor. In general, speculatively updating processor state
requires rollback mechanisms to be implemented. Backing up the pipeline is the approach used
in the MIPS R4000 in the event of a data cache miss, but the tag check and write-back stages are
separate.

Problem M4.2.B

Ben’s current design does not work for data writes because the tag needs to be checked before
the cache is updated. One solution is to add a fourth stage which handles the actual write in the
event of a cache hit. However, unless the cache can handle two simultaneous accesses, this
scheme does not allow a store to be in this fourth stage at the same time that another memory
operation is in the D-Cache Array Access stage. A better solution is to use a delayed write buffer
(also see Problem M4.7). The store data is written into the write buffer, and if a hit occurs in the
D-Cache Tag Check stage, the data will be written into the cache at a later time (for example,
when the next store instruction is processed)—the processor can continue execution as normal.
This requires load instructions to check the write buffer as well as the cache to ensure that the
correct value is read. With this scheme, a three-stage pipeline can be maintained for the data
cache.

Problem M4.2.C

Ben’s final 8-stage pipeline is shown below:

 9

I-Cache
Address
Decode

I-Cache
Array
Access

I-Cache
Tag
Check,
Instruction
Decode &
Register
Fetch

Execute D-Cache
Address
Decode

D-Cache
Array
Access

D-Cache
Tag
Check

Write-
Back

This pipeline uses direct-mapped instruction and data caches. Replacing these direct-mapped
caches with set-associative caches could potentially reduce the miss rate, at a possible cost in hit
time. However, a close examination of the pipeline and the diagram for a set-associative cache
(seen in Problem M2.1.B) shows that the I-cache must be direct-mapped. For a set-associative
cache, when a word is being read, the result of the tag check is used as an enable signal for the
value being read. However, in the above pipeline, the instruction is needed at the beginning of
the I-Cache Tag Check stage so that it can be decoded in parallel with the tag check. Thus, the I-
cache must be direct-mapped.

For the data cache, the tag check occurs in its own stage. This makes it possible to use a set-
associative cache, since the data for a load instruction isn’t needed until the beginning of the
Write-Back stage. However, in practice this would probably be a bad idea, since the extra delay
required to wait for the tag check before driving out the data might lengthen the clock period.

Problem M4.2.D

Pipelining the caches has a harmful effect on branches. If conditional branch instructions resolve
in the Execute stage, then the processor’s branch delay is 3 cycles, as shown by the following
example in which there are no delay-slot instructions and the datapath is fully-bypassed:

 ADDI R1, R0, #1
 BEQ R1, R0, L1
 SUB R2, R3, R4
L1: AND R5, R6, R7

 t1 t2 t3 t4 t5

I
A
D

BEQ SUB

IAA ADDI BEQ
ITC/ID ADDI BEQ
EX ADDI BEQ
DAD ADDI BEQ
DAA ADDI
DTC
WB

 10

Problem M4.2.E

Since a data cache access takes 3 cycles, it will take more cycles (as compared to the five-stage
pipeline) to obtain the result of a load instruction. If an instruction depends on the load, a simple
scheme is to wait until after the D-Cache Tag Check stage before bypassing the load value. This
will ensure that the dependent instruction does not execute with incorrect data. An interlock can
be used to implement this solution. If an instruction in the Instruction Decode stage needs to read
the result of a load instruction that is either in the Execute, D-Cache Address Decode, D-Cache
Array Access, or D-Cache Tag Check stages, then that dependent instruction will be stalled until
the load reaches the Write-Back stage (at which point the load value will be bypassed to the
Execute stage). This is illustrated by the below example.

LW R1, 0(R2)
ADD R3, R1, R2

 t1 t2 t3 t4 t5 t6 t7

I
A
D

ADD

IAA LW ADD
ITC/ID LW ADD ADD ADD ADD
EX LW ADD
DAD LW
DAA LW
DTC LW
WB LW

As shown by the above resource usage diagram, the load delay for this scheme is 3 cycles.

Problem M4.2.F

Another alternative to waiting until after the D-Cache Tag Check stage before bypassing the load
value is to bypass the value at the end of the D-Cache Array Access stage. If there is a tag
mismatch, the processor will wait for the correct data to be brought into the cache; then it will re-
execute the load and all of the instructions behind it in the pipeline. In order to implement this
scheme, only the program counter of the load instruction needs to be saved in the event of a tag
mismatch. The load instruction will be nullified (as well as instructions behind it in the pipeline).
When the DataReady signal is asserted (indicating that the load data is now available in the
cache), the processor can restart the load instruction and continue as normal. The benefit of this
scheme is that the load delay is now reduced to 2 cycles.

 11

Problem M4.2.G

Even with the scheme in Problem M4.2.F, the load delay is 2 cycles, while it was only 1 cycle in
the original 5-stage pipeline (although to be fair, the cycle time should be shorter in the 8-stage
pipeline). One solution to this problem is the addition of a fast-path cache that can be accessed in
one cycle. The resulting pipeline is shown below.

I-Cache
Address
Decode

I-Cache
Array
Access

I-Cache
Tag Check,
Instruction
Decode &
Register
Fetch

Execute Fast-Path
D-Cache
Access and
Tag Check
& Slow
Path
D-Cache
Address
Decode

Slow-
Path
D-Cache
Array
Access

Slow-Path
D-Cache
Tag Check

Write-
Back

The benefit of this approach is that a load instruction that hits in the fast-path cache will now
have its value available at the end of the Slow-Path D-Cache Address Decode stage, whereas
before it wasn’t available until the end of the Slow-Path D-Cache Array Access stage. We can
re-examine the instruction sequence from the solution to Problem M4.2.E:

LW R1, 0(R2)
ADD R3, R1, R2

If the fast-path cache always hits, the load delay will only be 1 cycle, which saves 1 cycle over
the scheme from Problem M4.2.F and 2 cycles over the scheme from Problem M4.2.E. This
scheme differs from having a single D-cache in the original 5-stage pipeline because the fast-
path cache will be very small in order to avoid lengthening the cycle time. The idea is to keep the
low miss rate of a large primary cache, the shorter cycle time available with a pipelined cache,
and the single-cycle load delay associated with an unpipelined cache.

 12

Problem M4.3: Victim Cache Evaluation

Problem M4.3.A Baseline Cache Design

Component Delay equation (ps) FA (ps)
Comparator 200⋅(# of tag bits) + 1000 6800
N-to-1 MUX 500⋅log2 N + 1000 1500
Buffer driver 2000 2000
AND gate 1000 1000
OR gate 500 500
Data output driver 500⋅(associativity) + 1000 3000
Valid output
driver

1000 1000

Table M4.3-1

The Input Address has 32 bits. The bottom two bits are discarded (cache is word-addressable)
and bit 2 is used to select a word in the cache line. Thus the Tag has 29 bits. The Tag+Status
line in the cache is 31 bits.

The MUXes are 2-to-1, thus N is 2. The associativity of the Data Output Driver is 4 – there are
four drivers driving each line on the common Data Bus.

Delay to the Valid Bit is equal to the delay through the Comparator, AND gate, OR gate, and
Valid Output Driver. Thus it is 6800 + 1000 + 500 + 1000 = 9300 ps.

Delay to the Data Bus is delay through MAX ((Comparator, AND gate, Buffer Driver),
(MUX)), Data Output Drivers. Thus it is MAX (6800 + 1000 + 2000, 1500) + 3000 = MAX
(9800, 1500) + 3000 = 9800 + 3000 = 12800 ps.

Critical Path Cache Delay: 12800 ps

 13

Problem M4.3.B Victim Cache Behavior

Input

Address

Main Cache Victim Cache
L0 L1 L2 L3 L4 L5 L6 L7 Hit? Way0 Way1 Hit?
inv inv inv inv inv inv inv inv - inv inv -

00 0 N N
80 8 N 0 N
04 0 N 8 Y
A0 A N N
10 1 N N
C0 C N N
18 Y N
20 2 N A N
8C 8 N 0 Y
28 Y N
AC A N 2 Y
38 3 N N
C4 Y N
3C Y N
48 4 N C N
0C 0 N 8 N
24 2 N A N

Table M4.3-2

 14

Problem M4.3.C Average Memory Access Time

15% of accesses will take 50 cycles less to complete, so the average memory access
improvement is 0.15 * 50 = 7.5 cycles.

 15

Problem M4.4: Loop Ordering

Problem M4.4.A

Each element of the matrix can only be mapped to a particular cache location because the cache
here is a Direct-mapped data cache. Matrix A has 64 columns and 128 rows. Since each row of
matrix has 64 32-bit integers and each cache line can hold 8 words, each row of the matrix fits
exactly into eight (64⎟8) cache lines as the following:

0 A[0][0] A[0][1] A[0][2] A[0][3] A[0][4] A[0][5] A[0][6] A[0][7]
1 A[0][8] A[0][9] A[0][10] A[0][11] A[0][12] A[0][13] A[0][14] A[0][15]
2 A[0][16] A[0][17] A[0][18] A[0][19] A[0][20] A[0][21] A[0][22] A[0][23]
3 A[0][24] A[0][25] A[0][26] A[0][27] A[0][28] A[0][29] A[0][30] A[0][31]
4 A[0][32] A[0][33] A[0][34] A[0][35] A[0][36] A[0][37] A[0][38] A[0][39]
5 A[0][40] A[0][41] A[0][42] A[0][43] A[0][44] A[0][45] A[0][46] A[0][47]
6 A[0][48] A[0][49] A[0][50] A[0][51] A[0][52] A[0][53] A[0][54] A[0][55]
7 A[0][56] A[0][57] A[0][58] A[0][59] A[0][60] A[0][61] A[0][62] A[0][63]
8 A[1][0] A[1][1] A[1][2] A[1][3] A[1][4] A[1][5] A[1][6] A[1][7]
•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

Loop A accesses memory sequentially (each iteration of Loop A sums a row in matrix A), an
access to a word that maps to the first word in a cache line will miss but the next seven accesses
will hit. Therefore, Loop A will only have compulsory misses (128⋅64⎟8 or 1024 misses).

The consecutive accesses in Loop B will use every eighth cache line (each iteration of Loop B
sums a column in matrix A). Fitting one column of matrix A, we would need 128⋅8 or 1024
cache lines. However, our 4KB data cache with 32B cache line only has 128 cache lines. When
Loop B accesses a column, all the data that the previous iteration might have brought in would
have already been evicted. Thus, every access will cause a cache miss (64⋅128 or 8192 misses).

The number of cache misses for Loop A:_ _1024 _

The number of cache misses for Loop B: 8192________________

 16

Problem M4.4.B

Since Loop A accesses memory sequentially, we can overwrite the cache lines that were previous
brought in. Loop A will only require 1 cache line to run without any cache misses other than
compulsory misses.

For Loop B to run without any cache misses other than compulsory misses, the data cache needs
to have the capacity to hold one column of matrix A. Since the consecutive accesses in Loop B
will use every eighth cache line and we have 128 elements in a matrix A column, Loop B
requires 128⋅8 or 1024 cache lines.

Data-cache size required for Loop A: ______________1_ __________ cache
line(s)

Data-cache size required for Loop B: ____________1024____________ cache
line(s)

Problem M4.4.C

Loop A still only has compulsory misses (128⋅64⎟8 or 1024 misses).

Because of the fully-associative data cache, Loop B now can fully utilize the cache and the
consecutive accesses in Loop B will no longer use every eighth cache line. Fitting one column of
matrix A, we now would only need 128 cache lines. Since 4KB data cache with 8-word cache
lines has 128 cache lines, Loop B only has compulsory misses (128⋅(64⎟8) or 1024 misses).

The number of cache misses for Loop A:____________1024_____________

The number of cache misses for Loop B:____________ 1024_____________

 17

Problem M4.5: Cache Parameters

Problem M4.5.A

TRUE. Since cache size is unchanged, the line size doubles, the number of tag entries is halved.

Problem M4.5.B

FALSE. The total number of lines across all sets is still the same, therefore the number of tags in
the cache remain the same.

Problem M4.5.C

TRUE. Doubling the capacity increases the number of lines from N to 2N. Address i and address
i+N now map to different entries in the cache and hence, conflicts are reduced.

Problem M4.5.D

FALSE. The number of lines doubles but the line size remains the same. So the compulsory
“cold-start” misses stays the same.

Problem M4.5.E

TRUE. Doubling the line size causes more data to be pulled into the cache on a miss. This
exploits spatial locality as subsequent loads to different words in the same cache line will hit in
the cache reducing compulsory misses.

 18

Problem M4.6: Microtags

Problem M4.6.A

A direct-mapped cache can forward data to the CPU before checking the tags for a hit or a miss.

A set-associative cache has to first compare cache tags to select the correct way from which to

forward data to the CPU.

Problem M4.6.B

tag Index offset

of bits in the tag: ____21________

of bits in the index: _____6________

of bits in the offset: _____5________

32-byte line requires 5 bits to select the correct byte.

An 8KB, 4-way cache has 2KB in each way, and each way holds 2KB/32B=64 lines, so we need
6 index bits.
The remaining 32-6-5=21 bits are the tag.

Problem M4.6.C

If the loTags are not unique, then multiple ways can attempt to drive data on the tristate bus out

to the CPU causing bus contention.

(It is possible to have a scheme that speculatively picks one of the ways when there is as match

in loTags, but this would require additional cross-way logic that would slow the design down,

and would also incur extra misses when the speculation was wrong.)

 19

Problem M4.6.D

The loTag has to be unique across ways, and so in a 4-way cache with 2-bit tags the tags would
never be able to hold addresses that were different from a direct-mapped cache of the same
capacity. The conflict misses would therefore be identical.

Problem M4.6.E

When a new line is brought into the cache, any existing line in the set with the same loTag must

be chosen as the victim. If there is no line with the same loTag, any conventional replacement

policy can be used.

Problem M4.6.F

No. The full tag check is required to determine whether the write is a hit to the cached line.

Problem M4.6.G

A 16KB page implies 14 untranslated address bits. An 8KB, 4-way cache requires 11
index+offset bits, leaving 3 untranslated bits for loTag.

Problem M4.6.H

If the loTags include translated virtual address bits, then each cache line must store the physical

page number (PPN) as the hiTag. An access will hit if loTag matches, and the PPN in hiTag

matches. The replacement policy has to maintain two invariants: 1) no two lines in a set have the

same loTag bits and 2) no two lines have the same PPN. If two lines had the same PPN, there

might be a virtual address alias. Because a new line might have the same loTag as an existing

line, and also the same PPN as a different line, two lines might have to be evicted to bring in one

new line.

A slight improvement is to only evict a line with the same PPN if the untranslated part of loTag

is identical. If the untranslated bits are different, the two lines cannot be aliases.

 20

Problem M4.7: Write Buffer for Data Cache

Problem M4.7.A

Little’s law: T = 1 / (20*2) = 1 / 40
 L = 100
 Therefore, N = T*L = 2.5 (entries on average)

Problem M4.7.B

Stall = (Popcount(Wbuf) >= (N – 2)) . (IR == Store)

If you assume that you can figure out the number of store instructions in flight by decoding the
IR in each stage, you will be able to eliminate (-2) in the answer above.

Problem M4.7.C

Stall = (Popcount(WBuf) + Popcount(Pipeline) >N)

If you assume in the previous question that you can figure out the number of store instructions in
flight by decoding the IR in each stage, you may conclude the optimization does not make any
change.

 21

Problem M5.1: Virtual Memory Bits

Problem M5.1.A

The answer depends on certain assumptions in the OS. Here we assume that the OS does
everything that is reasonable to keep the TLB and page table coherent. Thus, any change that OS
software makes is made to both the TLB and the page table.

However, the hardware can change the U bit (whenever a hit occurs this bit will be set) and the
M bit (whenever a page is modified this bit will be set). Thus, these are the only bits that need to
be written back. Note that the system will function correctly even if the U bit is not written back.
In this case the performance would just decrease.

It is also important to note, that if the entry is laid out properly in memory, all the hardware-
modified bits in the TLB can be written back to memory with a single memory write instruction.
Thus it makes no difference whether one or two bits have been modified in the TLB, because
writing back one bit or two bits still requires writing back a whole word.

Problem M5.1.B

An advantage of this scheme is that we do not need the TLB Entry Valid bit in the TLB
anymore. One bit savings is not very much.

A disadvantage of this scheme is that the kernel needs to ensure that all TLB entries always are
valid. During a context switch, all TLB entries would need to be restored (this is time-
consuming). And, in general, whenever a TLB entry is invalidated, it will have to be replaced
with another entry.

Problem M5.1.C

Changes to exceptions: “Page Table Entry Invalid” and “TLB Miss” exceptions are replaced
with exceptions “TLB Entry Invalid” and “TLB No Match”

The TLB Entry Invalid exception will be raised if the VPN matches the TLB tag but the
(combined) valid bit is false. When this exception is raised the kernel will need to consult the
page table entry to see if this is a TLB miss (valid bit in page table entry is true), or an access of
an invalid page table entry (valid bit in page table entry is false). Depending on what the cause of
the exception was, it will then have to perform the necessary operations to recover.

The TLB No Match exception will be raised if the VPN does not match any of the TLB tags. If
this exception is raised the kernel will do the same thing it did when a TLB Miss occurred in the
previous design.

 22

Problem M5.1.D

When loading a page table entry into the TLB, the kernel will first check to see if the page table
entry is valid or not. If it is valid, then the entry can safely be loaded into the TLB. If the page
table entry is not valid, then the Page Table Entry Invalid exception handler needs to be called to
create a valid entry before loading it into the TLB. Thus we only keep valid page table entries in
the TLB. If a page table entry is to be invalidated, the TLB entry needs to be invalidated.

Changes to exceptions: Page Table Entry Invalid exception is not raised by the TLB anymore.

Problem M5.1.E

The solution for Problem M5.1.C ends up taking two exceptions, if the PTE has the combined
valid bit set to invalid. The first exception will be the TLB No Match exception, which will call a
handler. The handler will load the corresponding PTE into the TLB and restart the instruction.
The instruction will cause another exception right away, because the valid bit will be set to
invalid. The exception will be the TLB Entry Invalid exception.

The solution for Problem M5.1.D will only take one exception, because the handler for Page
Table Entry Invalid exception will get called by the TLB Miss handler. When the instruction that
caused the exception is restarted, it will execute correctly, because the handler will have created
a valid PTE and put it in the TLB.

Thus Bud Jet’s solution in M5.1.D will be faster.

Problem M5.1.F

Yes, the R bit can be removed in the same way we removed the V bit in 5.1.D. When loading a
page table entry into the TLB we check if the data page is resident or not. If it is resident, we can
write the entry into the TLB. If it is not resident, we go to the nonresident page handler, loading
the page into memory before loading the entry into the TLB. Thus, we only keep page table
entries of resident pages in the TLB. In order to preserve this invariant, the kernel will have to
invalidate the TLB entry corresponding to any page that gets swapped out. There’s no
performance penalty since the page was going to be loaded in from disk anyway to service the
access that triggered the fault.

Problem M5.1.G

The OS needs to check the permissions before loading the entry into the TLB. If permissions
were violated, then the Protection Fault handler is called. Thus, we only keep page table entries
of pages that the process has permissions to access.

 23

Problem M5.1.H

Whenever a page table entry is loaded into the TLB the U bit in the page table PTE can be set.
Thus, we do not need the U bit in the TLB entry anymore.

Whenever a Write Fault happens (store and W bit is 0) the kernel will check the page table PTE
to see if the W bit is set there. If it is not set the old Write Fault handler will be called. If the W
bit is set, then the kernel will set the M bit in the PTE, set the W bit in the TLB entry to 1, and
restart the store instruction. Thus, the M bit is not needed in the TLB either, and hence, TLB
entries do not need to be written back to the page table anymore.

 24

 Problem M5.2: Page Size and TLBs

Problem M5.2.A

The L1 index and L2 index fields are the same, but the Page Offset field subsumes the L3 index
and increases to 22 bits.

Problem M5.2.B Page Table Overhead

PTO4KB = 16 KB + 16 KB + 8 KB = 40 KB = 1.3%
3 MB 3 MB

PTO4MB = 16 KB + 16 KB = 32 KB = 0.8%
4 MB 4 MB

For the 4KB page mapping, one L3 table is sufficient to map the 768 pages since each contains
1024 PTEs. Thus, the page table consists of one L1 table (16KB), one L2 table (16KB), and one
L3 table (8KB), for a total of 40 KB. The 768 4KB data pages consume exactly 3MB. The total
overhead is 1.3%.

The page table for the 4MB page mapping, requires only one L1 table (16KB) and one L2 table
(16KB), for a total of 32 KB. A single 4MB data pages is used, and the total overhead is 0.8%.

Problem M5.2.C Page Fragmentation Overhead

PFO4KB = 0 = 0% 3 MB

PFO4MB = 1 MB = 33%
3 MB

With the 4KB page mapping, all 3MB of the allocated data is accessed. With the 4MB page
mapping, only 3MB is accessed and 1MB is unused. The overhead is 33%.

L1 index
33 43

L2 index
22 32 21

Page Offset
0

11 bits 11 bits 22 bits

 25

Problem M5.2.D

Data TLB misses
Page table memory

references (per miss)

4KB: 768 3

4MB: 1 2

The program sequentially accesses all the bytes in each page. With the 4KB page mapping, a
TLB miss occurs each time a new page of the input or output data is accessed for the first time.
Since the TLB has more than 3 entries (it has 64), there are no misses during the subsequent
accesses within each page. The total number of misses is 768. With the 4MB page mapping, all
of the input and output data is mapped using a single page, so only one TLB miss occurs.

For either page size, a TLB miss requires loading an L1 page table entry and then loading an L2
page table entry. The 4KB page mapping additionally requires loading an L3 page table entry.

Problem M5.2.E

1.01⋅ 10⋅ 1,000⋅ 1,000,000⋅

Although the 4KB page mapping incurs many more TLB misses, with either mapping the
program executes 2M loads, 1M adds, and 1M stores (where M = 220). With the 4MB mapping,
the single TLB miss is essentially zero overhead. With the 4KB mapping, there is one TLB miss
for every 4K loads or stores. Each TLB miss requires 3 page table memory references, so the
overhead is less than 1 page table memory reference for every 1000 data memory references.
Since the TLB misses likely cause additional overhead by disrupting the processor pipeline, a
1% slowdown is a reasonable but probably conservative estimate.

 26

 Problem M5.3: Page Size and TLBs

Problem M5.3.A

If all data pages are 4KB

Address translation cycles = 100 + 100 +100 (for L1, L2 and L3 PTE)

Data access cycles = 4K * 100
(there is no cache, this assumes that memory access is byte-wise)

If all data pages are 1MB

Address translation cycles = 100 + 100 (for L1, L2 PTE)

Data access cycles = 1M * 100
(there is no cache, this assumes that memory access is byte-wise)

Problem M5.3.B

Address translation cycles = (256*3 + 3 + 1) * 100
(Note that the arrays are contiguous and share some PTE entries. 256 L3 PTEs per array * 3
arrays, 1 L2 PTE per array * 3 arrays, 1 L1 PTE)

Data access cycles = 3M*100

Problem M5.3.C

No. For the sample program given, all L3 PTEs are used only once.

Problem M5.3.D

4. (1 for L1 and 3 for L2)

 27

Problem M5.4: 64-bit Virtual Memory

This problem examines page tables in the context of processors with a 64-bit addressing.

Problem M5.4.A Single level page tables

12 bits are needed to represent the 4KB page. There are 64-12=52 bits in a VPN. Thus, there are
252 PTEs. Each is 8 bytes. 252 * 23 = 255, or 32 petabytes!

Problem M5.4.B Let’s be practical

22 segments * 2(44-12) virtual pages = 234 PTEs. 23 (bytes/PTE) * 234 PTEs = 237 bytes.

It is possible to interpret the question as there being 3 segments of 244 bytes. Thus we’d need:

3 segments * 2(44-12) virtual pages = 233 + 232 PTEs. 23*(233+ 232) = 236 + 235 bytes.

Problem M5.4.C Page table overhead

The smallest possible page table overhead occurs when all pages are resident in memory. In this
case, the overhead is

8(211 + 211*211 + 211*211*210) / 244 ≈ 235 / 244 ≈ 1 / 29

The largest possible page table overhead occurs when only one data page is resident in memory.
In this case, we need 1 L0 page table, 1 L1 page table, 1 L2 page table in order to get data page.
Thus the overhead is:

8(211 + 211 + 210) / 212 = 10

Problem M5.4.D PTE Overhead

PPN is 40-12=28 bits. 28+1+1+3=33 bits.

 28

There are 31 wasted bits in a 64 bit page table entry. It turns out that some of the “wasted” space
is recovered by the OS to do bookkeeping, but not much.

 29

Problem M5.4.E Page table implementation

The top level has 1024 = 210 entries. Next level also has 1024 = 210 entries. The 3rd level has 512
= 29 entries. So the table is as follows:

Index Length (bits)
Top-level (“page directory”) 10
2nd-level 10
3rd-level 9

Problem M5.4.F Variable Page Sizes

Minimum = 4KB * 64 = 256KB
Maximum = 16MB * 64 = 1GB

Problem M5.4.G Virtual Memory and Caches

Alyssa’s suggestion solves the homonym problem. If we add a PID as a part of the cache tag, we
can ensure that two same virtual addresses from different processes can be distinghuished in the
cache, because their PIDs will be different.

Putting a PID in the tag of a cache does not solve the synonym problem. This is because the
synonym problem already deals with different virtual addresses, which presumably would have
different tags in the cache. In fact, those two virtual addresses would usually belong to different
processes, which would have different PIDs.

Ben is wrong in thinking that changing the cache to be direct mapped helps in any way. The
homonym problem still happens, because same virtual addresses still receive the same tags. The
synonym problem still happens because two different virtual addresses still receive different
tags.

One way to solve both these problems is to make the cache physically tagged, as described in
Lecture 5.

 30

Problem M5.5: Cache Basics

Problem M5.5.A

Index V Tags (way0) V Tags (way1)
0 1 0x45 0
1 1 0x3D 0
2 1 0x2D 1 0x25
3 1 0x1D 0

Problem M5.5.B

0x34 (hit: index 2)
-> 0x38 (miss: index 3)
-> 0x50 (miss: index 2)
-> 0x54 (hit: index 2)
-> 0x208 (hit: index 1)
-> 0x20C (hit: index 1)
-> 0x74 (miss: index 2)
-> 0x54 (hit: index 2)

Because there are 5 hits and 3 misses,
Average memory access time = 1 + 3 / 8 * 16 = 7 cycles

 31

Problem M5.6: Handling TLB Misses

Problem M5.6.A

Virtual address 0x00030 -> Physical address (0x00D40)

VPN PPN

0x0100 0x0F01

0x0003 0x00D4

TLB states

Problem M5.6.B

Virtual address 0x00050 -> Physical address (0x00E20)

VPN PPN

0x0100 0x0F01

0x0101 0x0F02

0x0005 0x00E2

TLB states

Problem M5.6.C

New CPI = 2 + (0.01+0.02)*20 = 2.6

 32

Problem M5.7: Hierarchical Page Table & TLB (Fall 2010 Part B)

Suppose there is a virtual memory system with 64KB page which has 2-level hierarchical page
table. The physical address of the base of the level 1 page table (0x01000) is stored in a special
register named Page Table Base Register. The system uses 20-bit virtual address and 20-bit
physical address. The following figure summarizes the page table structure and shows the
breakdown of a virtual address in this system. The size of both level 1 and level 2 page table
entries is 4 bytes and the memory is byte-addressed. Assume that all pages and all page tables
are loaded in the main memory. Each entry of the level 1 page table contains the physical
address of the base of each level 2 page tables, and each of the level 2 page table entries holds
the PTE of the data page (the following diagram is not drawn to scale). As described in the
following diagram, L1 index and L2 index are used as an index to locate the corresponding 4-
byte entry in Level 1 and Level 2 page tables.

2-level hierarchical page table

A PTE in level 2 page tables can be broken into the following fields (Don’t worry about status
bits for the entire part).

 33

Problem M5.7.A

Assuming the TLB is initially at the state given
below and the initial memory state is to the right, what
will be the final TLB states after accessing the virtual
address given below? Please fill out the table with the final
TLB states. You only need to write VPN and PPN
fields of the TLB. The TLB has 4 slots and is fully
associative and if there are empty lines they are taken first
for new entries. Also, translate the virtual address (VA)
to the physical address (PA). For your convenience, we
separated the page number from the rest with the
colon “:”.

.
VPN PPN
0x8 0x3

Initial TLB states

Virtual Address:

 0xE:17B0 (1110:0001011110110000)

VPN PPN
0x8 0x3
0xE 0x6

Final TLB states

VA 0xE17B0 => PA _________0x617B0__________

 34

Problem M5.7.B

What is the total size of memory required to store both the level 1 and 2 page tables?

4 * 4 (level 1) + 4 * 4* 4 (level 2) = 80 bytes

Problem M5.7.C

Ben Bitdiddle wanted to reduce the amount of physical memory required to store the page table,
so he decided to only put the level 1 page table in the physical memory and use the virtual
memory to store level 2 page tables. Now, each entry of the level 1 page table contains the
virtual address of the base of each level 2 page tables, and each of the level 2 page table entries
contains the PTE of the data page (the following diagram is not drawn to scale). Other system
specifications remain the same. (The size of both level 1 and level 2 page table entries is 4 bytes.)

Ben’s design with 2-level hierarchical page table

 35

Assuming the TLB is initially at the state given
below and the initial memory state is to the right
(different from M5.8.A), what will be the final TLB
states after accessing the virtual address given below?
Please fill out the table with the final TLB states. You
only need to write VPN and PPN fields of the TLB. The
TLB has 4 slots and it is fully associative and if there are
empty lines they are taken first for new entries. Also,
translate the virtual address to the physical address.
Again, we separated the page number from the rest with
the colon “:”.
.

Initial TLB states

Virtual Address:

0xA:0708 (1010:0000011100001000)

VPN PPN
0x8 0x1
0x2 0x1
0xA 0xF

Final TLB states

VA 0xA0708 => PA ____________0xF0708___________

VPN PPN
0x8 0x1

 36

Problem M5.7.D

Alice P. Hacker examines Ben’s design and points out that his scheme can result in infinite loops.
Describe the scenario where the memory access falls into infinite loops.

1. When the TLB is empty
2. When the VPN of the virtual address and the VPN of the level 1 page table entry are the

same

