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Computer System Architecture  
6.823 Quiz #1 

March 4th, 2016 
Professors Daniel Sanchez and Joel Emer 

 
 

 
Name: ___________Solutions__________        

 
This is a closed book, closed notes exam. 

80 Minutes 
 16 Pages (+2 Scratch) 

 
Notes: 
• Not all questions are of equal difficulty, so look over the entire exam and 

budget your time carefully. 
• Please carefully state any assumptions you make. 
• Please write your name on every page in the quiz. 
• You must not discuss a quiz's contents with other students who have not yet 

taken the quiz. 
• Pages 17 and 18 are scratch pages. Use them if you need more space to answer 

one of the questions, or for rough work. 
 
 
  

 
    Part A  ________     25 Points 
   Part B  ________     40 Points 
   Part C  ________     35 Points 

 
TOTAL          ________  100 Points 
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Part A: Self-modifying Code (25 points) 
 
In this question, you will implement simple stack operations using self-modifying code on an 
EDSACjr machine. The memory layout is shown in the figure on the right. You have access to 
the named memory locations as indicated. _SP contains the current position of the stack pointer 
(i.e., it holds the address of the current top of the stack). You may create new local and global 
labels as explained in the EDSACjr handout. 
 
 
Table A-1 shows the EDSACjr instruction set. 

 
 
 
You may also use the following macros if required. 
 
Macro Description 
STOREADR n Replace the address field of 

location n with the contents of the 
accumulator 

LOADADR  n Load the address field of location 
n into the accumulator 

 
 
 
 
 
  

Opcode Description Bit Representation 
ADD  n Accum ← Accum + M[n] 00001  n 
SUB  n Accum ← Accum - M[n] 10000  n 
STORE  n M[n] ← Accum 00010  n 
CLEAR Accum ← 0 00011  00000000000 
OR n Accum ← Accum | M[n] 00000  n 
AND  n Accum ← Accum & M[n] 00100  n 
SHIFTR n Accum ← Accum  shiftr  n 00101  n 
SHIFTL n Accum ← Accum  shiftl  n 00110  n 
BGE  n If  Accum ≥ 0 then PC ← n 00111  n 
BLT  n If  Accum < 0 then PC ← n 01000  n 
END Halt machine 01010  00000000000 

…..

Program	Code

Stack	Space

…..

1_ONE
_TMP

0_ZERO

_SP
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Question 1 (10 points) 
 
Write a macro for PUSH, which pushes the contents of the accumulator to the top of the stack. 
PUSH increments the stack pointer and stores the contents of the accumulator to the top of the 
stack. Implement the macro using the EDSACjr instruction set and macros provided above. You 
do not have to worry about stack overflow bound checking. 
 

 
.macro PUSH 

STORE _TMP       ;; Store accumulator value in _TMP 
CLEAR   ;; clear contents of accumulator 
ADD _SP    ;; accum <- M[_SP];  Loads the current stack  

;; pointer in accumulator 
ADD _ONE   ;; accum <- accum + 1; Increment the stack  

;; pointer value 
STORE _SP   ;; M[_SP] <- accum; Store incremented stack  

;; pointer in _SP 
STOREADR _ST  ;; Address field of location _ST has the updated  

;; stack pointer 
CLEAR   ;; Clear accumulator 
ADD _TMP   ;; accum <- M[_TMP]; Restore original value in  

;; accumulator 
_ST:  STORE 0   ;; 0 will be replaced with the incremented stack  

;; pointer location. This will move the contents  
;; of the accumulator to the top of the stack 

.end 
 
 
 
 
It is possible to implement the PUSH macro without using the STOREADR macro. 
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Question 2 (10 points) 
 
We will now implement the POP macro, which stores the contents of the top of the stack into the 
accumulator, and decrements the stack pointer. Implement the POP macro using the EDSACjr 
instruction set and macros provided. You can ignore empty-stack bound checks. 
 

 
.macro POP 
 CLEAR    ;; clear accumulator contents 

ADD _SP   ;; accum <- M[_SP]; accumulator holds stack  
;; pointer 

STOREADR _LD  ;; Address field in location _LD holds the stack 
   ;; pointer 
SUB _ONE   ;; accum <- accum – 1; decrement stack pointer 
STORE _SP   ;; M[_SP] <- accum; Store decremented stack  

;; pointer in _SP 
CLEAR   ;; clear contents of accumulator 

_LD:  ADD 0   ;; 0 will be replaced by address of stack pointer 
    ;; This will move contents of top of stack to  
    ;; accumulator 
.end 
 
 
 
 
It is possible to implement the POP macro without using the STOREADR macro.  
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Question 3 (5 points) 
 
Write assembly code using the EDSACjr instruction set to pop two values from the top of the 
stack, and push their sum to the top of the stack. You may use the PUSH and POP macros in 
your code.  
 
POP    ;; accum <- val1; val1 is the value in top of stack 
STORE _TMP  ;; M[_TMP] <- val1;  
POP    ;; accum <- val2; val2 is the next value in top of  

;; stack 
ADD _TMP   ;; acccum <- val2 + val1 
PUSH    ;; top of stack contains val1 + val2 
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Part B: Caches and Virtual Memory (45 points) 
 
Ben Bitdiddle purchases a new processor to run his 6.823 lab experiments. The processor manual 
informs Ben that the machine is byte-addressed with 20-bit virtual addresses and 16-bit physical 
addresses.  
 
The processor manual only specifies that the machine uses a 3-level page table with the 
following virtual-address breakdown. 

 
Question 1 (4 points) 
 
What is the page size of Ben’s machine?   __________256 bytes__________ 
 
Demarcate the physical address into the following fields: Physical Page Number (PPN), Page 
Offset 

 
 
 

  
  

  

_______ bits ______ bits 

PPN Page 
Offset 

PA 

Virtual	Address 4	bits 4	bits												4	bits											8	bits

L1	Table	
Base	Address

PTP

PTP

PTE

L1	Table

L2	Table
L3	Table

Physical	Address PPN Offset

L1	Index L2	Index L3	Index Page	Offset

Note:	All	page	tables	are	
located	in	physical	memory	
in	this	design.	All	PTPs	refer	
to	physical	addresses	

8 8
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Ben executes the following snippet of code on his new processor. Assume integers are 4-bytes 
long, and the array elements are mapped to virtual addresses 0x0000 through 0x1ffc. Assume 
array and sum have been suitably initialized. 
 

1  int array[2048]; 
2  while (1) { 
3       for (int i = 0; i < 4; i++) 
4          sum += array[i * 256]; 
5  } 

 
The processor manual states this machine has a TLB with 4 entries. Assume that variables i and 
sum are stored in registers, and ignore address translation for instruction fetches; only accesses to 
array require address translation.  
 
Question 2 (8 points) 
 
In steady state, how many misses from the TLB will Ben observe per iteration of the while loop 
(lines 3, 4) on average, if (state your reasoning): 
 

a) the TLB is direct-mapped    _____4_______ 
 
The array elements accessed have VPNs 0x0, 0x4, 0x8, 0xC. In a direct-mapped 
TLB, these map to the same index and hence the same entry in the TLB. Every access 
to each array element, replaces the translation already in the TLB. Hence every access 
results in a TLB miss in steady state. 
 

 
 
 

 
b) the TLB is fully-associative    _____0_______ 

(assume LRU replacement policy) 
 
Here translations to all 4 array elements can reside in the TLB simultaneously. Hence 
in steady state, there are no misses in the TLB. 
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Question 3 (8 points) 
 
In steady state, how many total memory accesses will Ben observe per iteration of the while 
loop (lines 3, 4) on average, if (state your reasoning): 
 

a) the TLB is direct-mapped    ____16______ 
 
Each of the 4 misses has to do a page walk: 3 memory accesses 
Plus 1 memory access for the actual data 
 

 
 
 
 
 
 
 
 
 
 
 

b) the TLB is fully-associative    ______4______ 
(assume LRU replacement policy) 
 
TLB accesses hit. So the only memory access is to fetch the data value. 

 
 
 
 
 
 
 
 
 
 
Question 4 (10 points) 
 
Ben wonders if he can reduce the number of memory accesses required to perform the address 
translations. His friend Alyssa P. Hacker suggests adding a partial-translation cache (PTC), in 
addition to the TLB. The PTC stores a mapping of the higher-order bits of the virtual address to a 
L3 page table entry. If a translation misses in the TLB, but hits in the PTC, the MMU issues an 
access to the corresponding L3 page table directly, skipping the L1 and L2 page tables. On a 
TLB miss + PTC miss, the page walk returns the PPN and also installs a translation from VPN to 
L3 Page Table id in the PTC, and this incurs no additional cost. 
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Alyssa proposes adding a PTC with 1 entry to the processor. Does this addition benefit the code 
snippet in Question 2? How many total memory accesses will Ben observe now, if: 
 

a) the TLB is direct-mapped    ____8_______ 
 
The array elements have the same L1 and L2 index, but differ only in their L3 index. 
The PTC caches the translation from [L1 | L2] à L3. Only the very first array access 
does the entire page walk. The subsequent accesses (which includes all accesses in 
steady state) miss in the TLB, but hit in the PTC. They skip the full page walk, 
instead accessing only the L3 table and fetching the data value. 
 
2 + 2 + 2+ 2 = 8 
 
[[ 2 à L3 table access (1) + fetch data value (1) ]] 

 
 
 

b) the TLB is fully-associative    _____4______ 
(assume LRU replacement policy) 
 
TLB accesses hit. So the only memory access is to fetch the data value. 
 

 
  

TLB

PTP

PTP

PTE

L1	Table

L2	Table
L3	Table

TLB	miss

PTC	miss

Virtual	Address 4	bits 4	bits												4	bits											8	bits

L1	Index L2	Index L3	Index Page	Offset

L1	Table	
Base	Address

PTC
PTC	hit
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Question 5 (10 points) 
 
Alyssa’s processor contains a 64 byte L1 cache with eight 8-byte cache blocks, denoted A—H 
in the figure below. For each configuration shown in the figure, which block(s) can virtual (byte) 
address 0x34 be mapped to? Assume a page size of 16 bytes. Fill out the table at the bottom of 
the page, indicating each of the possible blocks by its assigned letter (A—H).	 
	

	
	
	 	
	
	
	
	
   
   
   
   
   
   
    
    
  
 

 Virtually Indexed Physically Indexed 
Direct-mapped  

(a) 
G A, C, E, G 

2-way set-
associative (b) 

C, G A, C, E, G 

 
 
 
 
 
  

A 

B 

C 

D 

E 

F 

G 

H 

Index	

0 

1 

2 

3 

4 

5 

6 

7 

A 

B 

C 

D 

E 

F 

G 

H 

0 

1 

2 

3 

	Index	

Way	0	 Way	1	

(a) Direct-Mapped	Cache	 (b) Two-Way	Set-Associative	Cache	

8	bytes

8	bytes 8	bytes
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Part C: Instruction Pipelining (35 points) 
 
Consider the following MIPS code sequence: 
 

I1   LW  R1, 0(R3) 
I2   XOR  R1, R1, R4 
I3  MUL   R2, R1, R4 
I4  LW  R4, 5(R2) 
I5  XOR  R4, R4, R5 
I6  SW  R2, 0(R3) 

 
 

Question 1 (4 points) 
 
Assume the classic 5-stage MIPS pipeline as discussed in lecture, with full bypassing and 
correct stall logic. Which instructions in the above sequence would have to stall? 
 
 
I2, I5 will stall due to load-to-use hazards. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ben is unhappy with the performance of the classic 5-stage MIPS pipeline discussed in 6.823 
lectures. Ben uses the L-MIPS ISA, presented in the L-MIPS handout, and pipelines the single-
cycle L-MIPS datapath in the handout as shown in the figure below. This is also a 5-stage 
pipeline, with the following stages: instruction fetch (F), instruction decode and register file fetch 
(D), address generation (A), memory access (M), and execute + write-back (X) stages. We will 
ignore branches and jumps for all following questions. 
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Question 2 (4 points) 
 
Using the new class of Load-ALU instructions available in L-MIPS, rewrite the assembly 
sequence to produce a code sequence with minimum number of instructions. Do not change the 
order of any operations as you do this. 
 
 
I1:  XORM R1, 0(R3), R4 
I2:  MUL  R2, R1, R4 
I3:  XORM R4, 5(R2), R5 
I4:  SW   R2, 0(R3) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IRIR IR

PC
A

B

Y

MD1 MD2

addr
inst

Inst
Memory

0x4
Add

IR

Imm
Ext

+
rd1

GPRs

rs1
rs2

ws
wd rd2

we

wdata

addr

wdata

rdata

Data 
Memory

we

31

nop

stall

D

A M X

0 A

B

MD3
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Question 3 (7 points) 
 
Complete the instruction flow diagram for the new sequence of instructions for Ben’s pipelined L-MIPS processor. Assume no 
bypassing and correct stall logic. (In case you need it, page 18 has an extra/scratch instruction flow diagram.) 
 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

I1 F D A M X               

I2  F D D D D A M X           

I3   F F F F D D D D A M X       

I4       F F F F D A M X      

I5                    

I6                    

I7                    

I8                    
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Question 4 (5 points) 
 
Ben wants to improve performance by adding bypass paths to his pipeline. Help Ben by 
indicating which locations he needs to insert bypass multiplexers. Ignore any bypasses needed 
for control-flow instructions. 

 

 

IRIR IR

PC
A

B

Y

MD1 MD2

addr
inst

Inst
Memory

0x4
Add

IR

Imm
Ext

+
rd1

GPRs

rs1
rs2

ws
wd rd2

we

wdata

addr

wdata

rdata

Data 
Memory

we

31

nop

stall

D

A M X

0 A

B

0 2 5 8

3 6

1 4 7

9
10

11
MD3

From To
9 8
9 10
9 5
9 6
9 11
9 2

From To
8 5
8 6
8 11
8 2
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Question 5 (10 points) 
 
Complete the instruction flow diagram for the new sequence of instructions for the L-MIPS pipeline. Assume full bypassing and 
correct stall logic this time. Use arrows to show forwarding of values from one stage to another. (In case you need it, page 18 has an 
extra/scratch instruction flow diagram.)  
 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

I1 F D A M X               

I2  F D A M X              

I3   F D D D A M X           

I4    F F F D A M X          

I5                    

I6                    

I7                    

I8                    
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Question 6 (5 points) 
 
Is it possible to reorder the instructions in your code sequence (without affecting correctness) to 
improve performance in the fully-bypassed L-MIPS pipeline? If so, give the reordered code 
sequence and explain why. Otherwise, briefly explain why this is not possible. 
 
I1:  XORM R1, 0(R3), R4 
I2:  MUL  R2, R1, R4 
I3:  XORM R4, 5(R2), R5 
I4:  SW   R2, 0(R3) 
 
Instructions I3 and I4 in the above sequence may be re-ordered without affecting correctness. 
Note that both I3 and I4 have a dependence on I2. However, I3 requires the value from I2 in the 
decode stage (D), whereas I4 requires the value from I2 only in the address generation stage (A).  
 
I1’:  XORM R1, 0(R3), R4 
I2’:  MUL  R2, R1, R4 
I3’:  SW   R2, 0(R3) 
I4’:  XORM R4, 5(R2), R5 
 
 
The re-ordered sequence of instructions completes one cycle earlier as shown in the diagram 
below. I3’ proceeds to the address generation stage one cycle earlier as compared to I3. We 
engage suitable bypass paths (9 à 6, 9 à 2) from I2’ to I3’ and I4’. 

 0 1 2 3 4 5 6 7 8 

I1’ F D A M X     

I2’  F D A M X    

I3’   F D A A M X  

I4’    F D D A M X 
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Scratch Space 
 
Use these extra pages if you run out of space or for your own personal notes. We will not grade 
this unless you tell us explicitly in the earlier pages. 
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Extra Instruction Flow Diagram 
 
Use this as scratch space or if you need a new one to answer one of the questions in Part C. 
 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

I1 F D A M X               

I2                    

I3                    

I4                    

I5                    

I6                    

I7                    

I8                    

 
 


