
 1

Computer System Architecture
6.823 Quiz #3

April 22nd, 2016
Professors Daniel Sanchez and Joel Emer

Name: ________Solutions_____________

This is a closed book, closed notes exam.

80 Minutes
 18 Pages (+2 Scratch)

Notes:
• Not all questions are of equal difficulty, so look over the entire exam and

budget your time carefully.
• Please carefully state any assumptions you make.
• Please write your name on every page in the quiz.
• You must not discuss a quiz's contents with other students who have not yet

taken the quiz.
• Pages 19 and 20 are scratch pages. Use them if you need more space to answer

one of the questions, or for rough work.

 Part A ________ 24 Points
 Part B ________ 25 Points
 Part C ________ 26 Points
 Part D ________ 25 Points

TOTAL ________ 100 Points

 2

Part A: Cache Coherence (24 points)

We want to compare the standard directory-based MESI protocol with its simpler sibling, MEI.

The figure below shows their state-transition diagrams.

 Figure A-1: MESI protocol state transition diagram

 Figure A-2: MEI protocol state transition diagram

MEI has no shared state, and both loads and stores must request exclusive permission. Therefore,
there is at most one valid copy of the line (in E state if clean, and in M state if dirty).

For this part, assume that all integers are 32-bits, and cache lines are 32-bits (i.e. each integer
fits exactly in a single cache line). Also assume that if you do not have the cache line with the
required permissions, it counts as a miss .i.e. (I à S/M/E; S àM upgrades all count as
misses).

M E

S I InvReq
/ InvRespclean

InvReq / InvRespclean

PrWr / --

PrRd / --

DownReq/
DownRespdirty

PrRd / --
PrWr / --
PrRd /--

PrWr /
ExReq

BusRd / --
PrRd / ShReq

if other sharers

PrRd / ShReq
if no other

sharers

M E

I

InvReq /
InvRespclean

PrWr / -- PrRd / --
PrWr / --
PrRd /--

PrRd /
ShReq

Processor	Initiated

Directory	Initiated

 3

Question 1 (4 points)

Two threads running on different cores execute the following code:

int A[1024]; // shared across threads

void worker() {
 int counter = 0;
 while (true) {
 for (int i = 0; i < 1024; i++) {
 counter = counter + A[i];
 }
 }
}

Assume counter, i, and the starting address of A are stored in registers, so each iteration
of the loop performs a single load operation to fetch A[i]. Each core has a 2048-word cache, so
the whole A array fits in the cache. Threads 0 and 1 execute at roughly the same speed, and stay
about 512 elements apart over time (e.g., when thread 0 is reading element 0, thread 1 is reading
element 512, and so on).

(a) In steady state, how many misses per iteration (of the for loop) does MESI incur?
 0: Both caches can hold the line in the S state.

(b) In steady state, how many misses per iteration (of the for loop) does MEI incur?
 1: Each cache keeps invalidating the other cache when it reads A[i]

 4

Question 2 (6 points)

Two threads running on different cores execute the following code:

int A[1024]; // shared across threads

void worker() {
 while (true) {
 for (int i = 0; i < 1024; i++) {
 A[i] = A[i] + 1;
 }
 }
}

As before, assume that counter, i, and the starting address of A are stored in registers, so
each iteration of the loop performs one load operation to fetch A[i], followed by one store
operation to update its value. Each core has a 2048-word cache, so the whole A array fits in the
cache. Threads 0 and 1 execute at roughly the same speed, and stay about 512 elements apart
over time (e.g., when thread 0 is reading element 0, thread 1 is reading element 512, and so on).

(a) In steady state, how many misses per iteration (of the for loop) does MESI incur?
 2: Each access to A[i] goes through the sequence I à S à M (and correspondingly gets
 downgraded à S à I, when the other core accesses the same A[i]). Hence two misses.

(b) In steady state, how many misses per iteration (of the for loop) does MEI incur?
 1: Each access to A[i] brings the line involves a I à M transition.

 5

Question 3 (4 points)

Two threads running on different cores execute the following code:

int A[1024];
int B[1024];

void worker() {
 while (true) {
 for (int i = 0; i < 1024; i++) {
 A[i] = A[i] + B[i];
 }
 }
}

This code combines the access patterns from Questions 1 and 2: each iteration loads B[i], and
both loads and stores A[i]. As before, each private cache has 2048 words, and threads 0 and 1
execute at roughly the same speed and stay about 512 elements apart over time (e.g., when
thread 0 is reading element 0, thread 1 is reading element 512, and so on). Also assume i and
starting address of A, B are stored in registers.

(a) In steady state, how many misses per iteration (of the for loop) does MESI incur?
 2: Accesses to A[i] result in 2 misses. Accesses to B[i] result in 0 misses. The reasoning is
 similar to that in questions 1 and 2.

(b) In steady state, how many misses per iteration (of the for loop) does MEI incur?
 2: Accesses to A[i] and B[i] each result in 1 miss, following similar reasoning to questions 1
 and 2.

 6

Question 4 (10 points)

To improve the performance of MESI, we modify the directory to predict whether it should give
the line in E or S instead of using the current number of sharers. Each tag in the directory is
extended with an additional bit, Exclusive-Predict (EP), which works as follows:
• If the line’s EP bit is 0, the directory handles read requests like conventional MESI, granting

E to the first sharer and S to successive sharers.
• If the line’s EP bit is 1, the directory works like MEI: it always grants E to read requests,

invalidating other sharers if needed.
Note that the prediction is done on a per-line basis, to accommodate mixed access patterns like
the one in Question 3. Also the prediction changes when it is detected that the opposite
prediction would have avoided a transaction to the directory (i.e. there is no hysteresis in the
predictor).

Your goal is to derive the update rules for the EP bit (Hint: remember that, in MESI, private
caches respond to invalidations/downgrades differently if they are in S or E than if they are in M:
in S and E, the line is clean, so caches do not include the data in the invalidation/downgrade
response; however, in M, the line is dirty, so private caches include the data in their
invalidation/downgrade response).

(a) (5 points) Assume a given line’s EP is initially 0. What event should cause the directory to set
the line’s EP to 1?

An ExReq from a processor cache for the line, when the current state of the directory for that line
is S.

(b) (5 points) Assume a given line’s EP is initially 1. What event should cause the directory to
set the line’s EP to 0?

A clean invalidation response from a processor cache for the line, when the current state of the
directory for that line is E.

 7

Part B: Memory Consistency Models (25 points)

Consider two processes P1 and P2 running on two different processors.
Assume that memory locations X and Y contain initial value 0.

P1 P2

P1.1: LD R1 ß (Y)
P1.2: LD R2 ß (X)

P2.1: ST (X) ß 1
P2.2: ST (Y) ß 1

Question 1 (3 points)

Out of the following possible final values of (X, Y, R1, R2), circle the ones that could
occur if the system is Sequentially Consistent (SC).

(0,0,0,0) (0,0,0,1) (0,0,1,0) (0,0,1,1)

(1,1,0,0) (1,1,0,1) (1,1,1,0) (1,1,1,1)

Question 2 (3 points)

Out of the following possible final values of (X, Y, R1, R2), circle the ones that could
occur if the system enforces RMO, a weak memory model where loads and stores can be
reordered after prior loads or stores.

(0,0,0,0) (0,0,0,1) (0,0,1,0) (0,0,1,1)

(1,1,0,0) (1,1,0,1) (1,1,1,0) (1,1,1,1)

 8

Question 3 (4 points)

The RMO machine has the following fine-grained barrier instructions:

• MEMBARRR guarantees that all reads initiated before MEMBARRR will be performed before
any read initiated after it.

• MEMBARRW guarantees that all reads initiated before MEMBARRW will be performed before
any write initiated after it.

• MEMBARWR guarantees that all writes initiated before MEMBARWR will be performed
before any read initiated after it.

• MEMBARWW guarantees that all writes initiated before MEMBARWW will be performed
before any write initiated after it.

Use the minimum number of memory barrier instructions, rewrite P1 and P2 such that the
RMO machine produces the same outputs as the SC machine for the given code.

P1 P2

P1.1: LD R1 ß (Y)

 MEMBARRR

P1.2: LD R2 ß (X)

P2.1: ST (X) ß 1

 MEMBARWW

P2.2: ST (Y) ß 1

 9

Again, consider two processes P1 and P2 running the code below on two different processors.
Assume that memory locations X, Y, and Z contain initial value 0.

P1 P2

P1.1: LD R1 ß (Z)
P1.2: ST (Y) ß 1
P1.3: LD R2 ß (X)

P2.1: ST (X) ß 1
P2.2: LD R3 ß (Y)
P2.3: ST (Z) ß 1

Question 4 (5 points)

Out of the following possible final values of (R1, R2, R3), circle the ones that could occur
if the system is Sequentially Consistent (SC).

(0,0,0) (0,1,0) (1,0,0) (1,1,0)

(0,0,1) (0,1,1) (1,0,1) (1,1,1)

Question 5 (5 points)

Out of the following possible final values of (R1, R2, R3), circle the ones that could occur
if the system enforces RMO (loads and stores can be reordered after prior loads or stores).

(0,0,0) (0,1,0) (1,0,0) (1,1,0)

(0,0,1) (0,1,1) (1,0,1) (1,1,1)

 10

Question 6 (5 points)

Using the minimum number of memory barrier instructions (given in Question 3), rewrite P1
and P2 such that the RMO machine produces the same outputs as the SC machine for the
given code.

P1 P2

P1.1: LD R1 ß (Z)

 MEMBARRW

P1.2: ST (Y) ß 1

 MEMBARWR

P1.3: LD R2 ß (X)

P2.1: ST (X) ß 1

 MEMBARWR

P2.2: LD R3 ß (Y)

 MEMBARRW

P2.3: ST (Z) ß 1

 11

Part C: Synchronization (26 points)

For this question, we will use the load-reserve (LR) and store-conditional (SC) instructions
discussed in Lecture 16. Consider the following implementation, in which SC leverages the
coherence protocol to cancel reservations from other cores:

• Assume a multi-core system where each core has a private cache. Private caches are kept
coherent with a directory-based MSI protocol.

• Each core features a reservation flag, an address, and a status bit for the outcome of SC.
• LR loads a value from memory (fetching the line with shared read-only permission if

needed, as a normal load), and sets the reservation flag and address.
• Each core listens for invalidations to the address its hold the reservation for. On a

matching invalidation, the core clears the reservation flag.
• SC first checks whether the flag is set and the address matches its own. If so, it requests

exclusive permission for the line (potentially triggering an upgrade request and
invalidating all other copies). It then checks whether the reservation flag is still set. If set,
it performs the store and sets the status flag to 1, denoting success. Otherwise, it does not
perform the store and sets the status flag to 0, denoting failure.

Load-Reserve (LR) Store-Conditional (SC)

BL1: LR rs, (rt):
BL2: <flag, addr> ß <1, rt>
BL3: rs ß Mem[rt]

BS1: SC (rt), rs:
BS2: if <flag, addr> == <1, rt>:
BS3: ExclReq(addr)
BS4: if <flag, addr> == <1, rt>:
BS5: Mem[addr] ß rs
BS6: status ß 1
BS7: else:
BS8: status ß 0
BS9: else:
BS10: status ß 0

 Listing B-1: Load-Reserve, Store-Conditional Implementation

We will first use LR/SC to implement a multi-producer, multi-consumer FIFO queue (i.e.,
producer threads push elements to the tail of the queue, and consumer threads pop elements from
the head of the queue). Assume an unbounded queue for all questions below.

headtail
Producer

Rtail R

Producer

Rtail R

Producer

Rtail R

Consumer

Rtail Rhead R

Consumer

Rtail Rhead R

 12

Question 1 (6 points)

The listing below shows the code for the pop operation, executed by consumer threads.

1.1: Try: LR Rhead, (head)
1.2: Spin: Load Rtail, (tail)
1.3: if (Rhead == Rtail): goto Spin
1.4: Load R, Rhead
1.5: Rhead = Rhead + 1
1.6: SC (head), Rhead

// Queue is empty
// Read element at head of queue
// New value of head pointer
// Update head pointer

1.7: if (status == 0): goto Try
1.8: Process(R)

Suppose we have several consumer threads popping elements using the code above.

a) (3 points) Assume the queue is never empty. Can all consumer threads be stuck in the
Try loop for an unbounded amount of time (i.e., can the consumers livelock)? Why or
why not?
No. For a SC to fail, some other thread must have issued an invalidation for the line i.e.
reached its SC first. Even if multiple threads request exclusive access, one thread’s
request is guaranteed to succeed, in turn invalidating other threads’ flags. Thus at least,
one consumer thread makes forward progress.

b) (3 points) Assume the queue is never empty. Can one or more consumer threads spend
an unbounded amount of time in the Try loop (i.e., can starvation occur)? Why or why
not?
Yes. It is possible that a particular thread continuously gets invalidated between its LR
and SC, as other threads’ requests succeed.

 13

Question 2 (4 points)

The listing below shows an implementation of the push operation, executed by producer threads.

2.1: // Assume R holds the element to push
2.2: Try: LR Rtail, (tail)
2.3: Store (Rtail), R
2.4: Rtail = Rtail + 1
2.5: SC (tail), Rtail
2.6: If (status == 0): goto Try

Is this code correct? If not, describe what might go wrong.

No. Multiple producers may load(-reserve) the same value of the tail pointer. This may cause the
winner thread’s (i.e. the one that succeeds with the SC) element to be over-written.

Question 3 (4 points)

The listing below shows an alternative implementation of the push operation.

3.1: // Assume R holds the element to push
3.2: Try: LR Rtail, (tail)
3.3: Rtail = Rtail + 1
3.4: SC (tail), Rtail
3.5: If (status == 0): goto Try
3.6: Store (Rtail), R

Is this code correct? If not, describe what might go wrong.

No. A consumer thread may incorrectly read (or pop) an element from the queue before the
producer has successfully written (pushed) the element into the queue. Note that the update to the
tail pointer succeeds before the element has been written (pushed) to the queue.

 14

Question 4 (6 points)

Ben Bitdiddle is unhappy with the performance of our LR/SC implementation: when multiple
threads take turns updating a shared variable (e.g., the head pointer in Question 1), each LR/SC
incurs two roundtrips to the directory: first, LR fetches the variable’s line in the S state, and then
SC causes an upgrade to M state.

To improve performance, Ben argues that LR should fetch the variable’s line in M state directly.
This way, SC will not incur a second roundtrip in the common case, improving performance.

Does Ben’s change affect the correctness or forward-progress guarantees of the implementation?
Explain why or why not.

Ben’s optimization no longer guarantees forward-progress. Since each thread’s LR fetches the
line in M state, it is possible that before reaching a SC, an intervening LR from another thread
invalidates the line, causing the SC to fail. It is possible that multiple threads’ LR interleave
before any thread has the opportunity to complete a SC successfully.

 15

Question 5 (6 points)

Ben Bitdiddle wants to make our implementation of LR/SC more efficient (consider again our
standard implementation from Question 1, not the one from Question 4). Ben argues that,
because we are using the coherence protocol, the reservation flag and address register are not
needed: LR works just like a normal load, and SC fails if the line is invalidated from the core’s
private cache anytime before SC acquires exclusive permission to the line, as shown below.

Load-Reserve (LR) Store-Conditional (SC)

5L1: LR rs, (addr):
5L2: rs ß Mem[addr]

5S1: SC (addr), rs:
5S2: if addr in I:
5S3: status ß 0
5S4: else:
5S5: ExclReq(addr)
5S6: if addr was invalidated
5S7: before we acquired M:
5S8: status ß 0
5S9: else:
5S10: Mem[addr] ß rs
5S11: status ß 1

This way, if there are multiple racing SCs, one of them will reach the directory first, causing all
other copies to be invalidated, and all losing SCs will fail. In other words, the line’s state is used
to fulfill the same role as the reservation flag in the original implementation.

Does removing the reservation flag affect the correctness or forward-progress guarantees of the
implementation? If so, describe a concrete scenario where LR/SC behaves incorrectly.

In the absence of the reservation flag, suppose a thread (T1) initiates a SC and issues an
ExclReq. But before the request is complete, T1 is switched out (say by the OS), and a new
thread (T2) begins execution on the core. The ExclReq initiated by T1 completes, and the line is
now present in cache in the M state. T2 performs a LR-SC on the same address, and is then
switched out. T1 is now switched in by the OS, and sees the line in M state in its cache, and
successfully completes its SC. But this is incorrect behavior.

In essence, in the presence of multiple threads, it appears as if no other cache has performed a
LR-SC on this address. A similar situation can arise in the context of multi-threading without
reservation flags. In the presence of reservation flags, the flag registers are saved as part of the
thread context and uniquely associated with each thread preventing this problem.

 16

Part D: On-chip Networks (25 points)

Question 1 (6 points)

Determine whether the following routing algorithms are deadlock-free for a 2D-mesh. State your
reasoning.

a) (3 points) Randomized dimension-order: All packets are routed minimally. Half of the
packets are routed completely in the X dimension before the Y dimension, and the other
packets are routed in the Y dimension before the X dimension.
Not deadlock-free. All turns in the turn model are allowed, and hence not deadlock-free.
Alternatively, you may argue that the CDG has a cycle.

b) (3 points) Less randomized dimension-order: All packets are routed minimally. Packets
whose minimal direction is increasing in both X and Y always route X before Y. Packets
whose minimal direction is decreasing in both X and Y always route Y before X. All
other packets choose randomly between X before Y and vice-versa.
Deadlock-free. In essence, this prevents north-to-east and west-to-south turns in the turn
model which is sufficient to prevent deadlock.

 17

Question 2 (19 points)

Consider the following topology:

(a) (2 points) What is the diameter of this topology?
 3

(b) (2 points) What is the bisection bandwidth (in flits/cycle) of this topology?
 4

(c) (5 points) Assume that 180-degree turns are prohibited. No other turns are prohibited. Show
how deadlock could arise in the given topology.
 AB à BD à DE à EA à AB is a cycle in the CDG

A

E

B

D
F C

 18

(d) (10 points) We now restrict all routes to be minimal and disallow the following turns on the
mesh (among the nodes A, B, E, D): north-to-east, north-to-west, south-to-east, south-to-west. Is
the routing strategy deadlock-free? Draw the CDG to justify your answer.

Deadlock-free as shown by the CDG below.

BCABBD

FA

AEBACB

AF

EADEEF

CD

DBEDFE

DC

 19

Scratch Space

Use these extra pages if you run out of space or for your own personal notes. We will not grade
this unless you tell us explicitly in the earlier pages.

 20

Scratch Space

