

1

Problem M10.1: Microprogramming and Bus-Based Architectures

In this problem, we explore microprogramming by writing microcode for the bus-based
implementation of the MIPS machine described in Handout #14 (Bus-Based MIPS
Implementation). Read the instruction fetch microcode in Table H14-3 which has been
reproduced at the end of this problem (Worksheet M10.1-1) for the readers’ convenience. Make
sure that you understand how different types of data and control transfers are achieved by setting
the appropriate control signals before attempting this problem.
In order to further simplify this problem, ignore the busy signal and assume that the memory is
as fast as the register file.

The final solution should be elegant and efficient (e.g. number of new states needed, amount of
new hardware added).

Problem M10.1.A Implementing Memory-to-Memory Add

For this problem, you are to implement a new memory-memory add operation. The new
instruction has the following format.

ADDm rd, rs, rt
ADDm performs the following operation.

M[rd] ← M[rs] + M[rt]
Fill in Worksheet M10.1-1 with the microcode for ADDm. Use don’t cares (*) for fields where it
is safe to use don’t cares. Study the hardware description well, and make sure all your
microinstructions are legal.
Please comment your code clearly. If the pseudo-code for a line does not fit in the space
provided, or if you have additional comments, you may write in the margins as long as you do it
neatly. Your code should exhibit “clean” behavior and not modify any registers (except rd) in the
course of executing the instruction.
Finally, make sure that the instruction fetches the next instruction (by doing a microbranch to
FETCH0 as discussed above).

2

Problem M10.1.B Implementing DBNEZ Instruction

DBNEZ stands for Decrease Branch Not Equal Zero. This instruction uses the same encoding as
conditional branch instructions on MIPS.

6 5 5 16
opcode rs Offset

DBNEZ decrements register rs by 1, writes the result back to rs and branches to (PC+4)+offset,
if result in rs is not equal to 0. Offset is sign extended to allow for backward branches. This
instruction can be used for efficiently implementing loops.

Your task is to fill out Worksheet M10.1-2 for DBNEZ instruction. You should try to optimize
your implementation for minimum number of cycles necessary and for maximum number of
don’t-care signals. You do not have to worry about the busy signal.

(Note that the microcode for the fetch stage has changed slightly from the one in Problem
M10.1.A, to allow for a more efficient implementation of some instructions.)

Problem M10.1.C Implementing RETZ Instruction

In this question we ask you to implement a special return instruction, return on zero (retz),
which uses the same encoding as a conditional branch instruction on MIPS.

retz Rs, Rt
6 5 5 16

Retz Rs Rt Unused

retz instruction provides fast return from a subroutine call using Rt as the stack pointer. The
instruction first tests the value of register Rs. If it is not zero, simply proceed to the next
instruction at PC+4. If it is zero, the instruction does the following: (1) it reads the return address
from memory at the address in register Rt, (2) increments Rt by 4 and (3) jumps to the return
address.

Fill out Worksheet M10.1-3 for the retz instruction. You should try to optimize your
implementation for minimum number of cycles necessary and for maximum number of don’t-
care signals. You do not have to worry about the busy signal. You may not need all the lines in
the table for your solution.

You are allowed to introduce at most one new µBr target (Next State) for J (Jump) or Z (branch-
if-Zero) other than FETCH0.

3

Problem M10.1.D Implementing CALL Instruction

In this question you will implement a new complex CALL instruction, which uses the same
encoding as a conditional branch instruction on MIPS.

6 5 5 16
opcode ra Offset

CALL stores the return address, PC+4, to memory at the address in register ra (i.e., in M[ra]),
decrements ra by 4, saves the new value back to ra and branches to (PC+4)+offset. This
instruction provides fast subroutine calls, using register ra as the stack pointer.

Your task is to fill out Worksheet M10.1-4 for the CALL instruction. You should optimize your
implementation to execute in the minimum number of cycles and to have the most signals set to
don’t care. You do not have to worry about the busy signal from memory. You may not need all
the lines in the table for your solution.

Problem M10.1.E Instruction Execution Times

How many cycles does it take to execute the following instructions in the microcoded MIPS
machine? Use the states and control points from the MIPS microcontroller in Lecture 21 and
assume Memory will not assert its busy signal.

Instruction Cycles
SUB R3,R2,R1
SUBI R2,R1,#4
SW R1,0(R2)
BEQZ R1,label # (R1 == 0)
BNEZ R1,label # (R1 != 0)
J label
JR R1
JAL label
JALR R1

Which instruction takes the most cycles to execute? Which instruction takes the fewest cycles to
execute?

4

Problem M10.1.F Exponentiation
Ben Bitdiddle needs to compute the power function for small numbers. Realizing there is no
multiply instruction in the microcoded MIPS machine, he uses the following code to calculate
the result when an unsigned number m is raised to the nth power, where n is another unsigned
number.

 if (m == 0) {
 result = 0;
 }
 else {
 result = 1;
 i = 0;

 while (i < n) {
 temp = result;
 j = 1;
 while (j < m) {
 result += temp;
 j++;
 }
 i++;
 }
 }

The variables i, j, m, n, temp and result are unsigned 32-bit values.

Write the MIPS assembly that implements Ben’s code. Use only the MIPS instructions that can
be executed on the microcoded MIPS machine (ALU, ALUi, LW, SW, J, JAL, JR, JALR, BEQZ
and BNEZ). The microcoded MIPS machine does not have branch delay slots. Use R1 for m, R2
for n and R3 for result. At the end of your code only R3 must have the correct value. The
values of all other registers do not have to be preserved.

How many MIPS instructions are executed to calculate the power function? How many cycles
does it take to calculate the power function? Again, use the states and control points from the
MIPS microcontroller in Lecture 21 and assume Memory will not assert its busy signal.

m, n Instructions Cycles
0, 1
1, 0
2, 2
3, 4
M, N

5

Problem M10.1.G Microcontroller Jump Logic
Now we will fill in a gap in the microcontroller implementation. In the lecture on
microprogramming, we did not explain the implementation of the jump logic of the
microcontroller. Your task in this problem is to implement that logic. Use AND gates, OR gates
and inverters to implement the combinational logic that realizes the control equations for the
jump logic of the MIPS microcontroller below. The control equations for the jump logic are

 µPCSrc = Case µJumpTypes

 next => µPC+1
 spin => µPC.busy + (µPC+1).~busy
 fetch => absolute
 dispatch => op-group
 feqz => absolute.zero + (µPC+1).~zero
 fnez => absolute.~zero + (µPC+1).zero

The selection bits for each input of the µPCSrc mux, as well as the µJumpTypes encoding are
given in the tables below. Your task is to create combinational logic that translates between
them, according to the control equations. Assume that the busy and zero signals follow positive
logic (so they are true if the wire is carrying a 1 and false if the wire is carrying a 0). Your design
will be judged for its correctness, clarity and organization. These factors are more important than
the efficiency of your design.

µPCSrc Selection bits
µPC+1 00
µPC 01
absolute 10
op-group 11

Table M10.1-1: µPCSrc Selection bits

µJumpTypes Encoding
next 000
spin 001
feqz 110
fnez 111
fetch 010
dispatch 100

Table M10.1-2: µJumpTypes Encoding

6

State PseudoCode ld

IR
Reg
Sel

Reg
W

en
Reg

ld
A

ld
B

ALUOp en
ALU

ld
MA

Mem
W

en
Mem

Ex
Sel

en
Imm

µB
r

Next State

FETCH0: MA <- PC;
A <- PC

0 PC 0 1 1 * * 0 1 * 0 * 0 N *

 IR <- Mem 1 * * 0 0 * * 0 0 0 1 * 0 N *

 PC <- A+4 0 PC 1 1 0 * INC_A_4 1 * * 0 * 0 D *

. . .

NOP0: microbranch
back to FETCH0

0 * * 0 * * * 0 * * 0 * 0 J FETCH0

ADDM0:

Worksheet M10.1-1

7

State PseudoCode ld

IR
Reg
Sel

Reg
W

en
Reg

ld
A

ld
B

ALUOp en
ALU

Ld
MA

Mem
W

en
Mem

Ex
Sel

en
Imm

µB
r

Next State

FETCH0: MA <- PC;
A <- PC

* PC 0 1 1 * * 0 1 * 0 * 0 N *

 IR <- Mem 1 * * 0 0 * * 0 * 0 1 * 0 N *

 PC <- A+4;
B <- A+4

0 PC 1 1 * 1 INC_A_4 1 * * 0 * 0 D *

. . .

NOP0: microbranch
back to FETCH0

* * * 0 * * * 0 * * 0 * 0 J FETCH0

DBNEZ:

Worksheet M10.1-2

8

State PseudoCode Ld
IR

Reg
Sel

Reg
W

en
Reg

ld
A

ld
B

ALUOp en
ALU

Ld
MA

Mem
W

en
Mem

Ex
Sel

en
Im
m

µBr Next State

FETCH0: MA <- PC;
A <- PC

* PC 0 1 1 * * 0 1 * 0 * 0 N *

 IR <- Mem 1 * * 0 0 * * 0 * 0 1 * 0 N *

 PC <- A+4;
B <- A+4

0 PC 1 1 * 1 INC_A_4 1 * * 0 * 0 D *

. . .

NOP0: microbranch
back to FETCH0

* * * 0 * * * 0 * * 0 * 0 J FETCH0

retz0

Worksheet M10.1-3

9

State PseudoCode ld
IR

Reg
Sel

Reg
W

en
Reg

ld
A

ld
B

ALUOp en
ALU

Ld
MA

Mem
W

en
Mem

Ex
Sel

en
Imm

µB
r

Next State

FETCH0: MA <- PC;
A <- PC

* PC 0 1 1 * * 0 1 * 0 * 0 N *

 IR <- Mem 1 * * 0 0 * * 0 * 0 1 * 0 N *

 PC <- A+4;
B <- A+4

0 PC 1 1 * 1 INC_A_4 1 * * 0 * 0 D *

. . .

NOP0: microbranch
back to FETCH0

* * * 0 * * * 0 * * 0 * 0 J FETCH0

CALL:

Worksheet M10.1-4

Problem M10.2: VLIW Programming

Ben Bitdiddle and Louis Reasoner have started a new company called Transbeta→ and are
designing a new processor named Titanium™. The Titanium processor is a single-issue in-order
VLIW processor with:

• 2 load/store units. There is no cache and a load has a latency of 4 cycles but is fully
pipelined.

• 1 integer ALU: single cycle
• 1 floating-point multiplier: 3 cycles, fully pipelined
• 1 floating-point adder: 2 cycles, fully pipelined
• 1 branch unit with no delay slots and 100% branch prediction accuracy
• 128 GPRs and 128 FPRs

A single Titanium instruction can issue to all the above units simultaneously. By definition, the
operations in a Titanium instruction are independent. Every operation in a Titanium instruction
reads the operands and issues simultaneously. Thus, if one operation is waiting for a result of a
previous Titanium instruction, the entire Titanium instruction is stalled in the decode stage.

Everything is fully bypassed. Each functional unit has a dedicated writeback port, so there is
never any contention. Writing to the same register multiple times in the same instruction is
disallowed in the Titanium ISA. WAW hazards will also cause stalls. The Titanium ISA
resembles MIPS, except that there can be up to 6 instructions on each line separated by
semicolons.

You have been hired to work on some hand-optimized math libraries. The most important of
these is the dot-product, given by Σ(Xn⋅Yn).

Problem M10.2.A

Ben has translated dot-product from MIPS to the Titanium ISA

// R1 – pointer to X
// R2 – pointer to Y
// R5 - n
// R3 - temp
// F4 - temp
// F6 – result
 MOVI2FP F6,R0
loop:
 L.S F3,0(R1); L.S F4,0(R2); ADDI R5,R5,#-1
 MUL.S F3,F3,F4; ADDI R1,R1,#4
 ADD.S F6,F6,F3; ADDI R2,R2,#4; BNEZ R5,loop

Each iteration takes 9 cycles but the program averages 8 cycles per vector element. Alyssa P.
Hacker says that it can be done in 1 cycle per vector element for long vectors. Show Ben and
Louis what the code should be. Louis isn’t too bright so make sure your code is well commented.

 Page 11 of 33

Problem M10.3: Trace Scheduling

Trace scheduling is a compiler technique that increases ILP by removing control dependencies,
allowing operations following branches to be moved up and speculatively executed in parallel
with operations before the branch. It was originally developed for statically scheduled VLIW
machines, but it is a general technique that can be used in different types of machines and in this
question we apply it to a single-issue MIPS processor.

Consider the following piece of C code (% is modulus) with basic blocks labeled.

A: if (data % 8 == 0)
B: X = V0 / V1;
 else
C: X = V2 / V3;
D: if (data % 4 == 0)
E: Y = V0 * V1;
 else
F: Y = V2 * V3;
G:

Assume that data is a uniformly distributed integer random variable that is set sometime before
executing this code.

 Program’s control flow graph Decision tree

The control flow graph and the decision tree both show the possible flows of execution through
basic blocks. However, the control flow graph captures the static structure of the program, while
the decision tree captures the dynamic execution (history) of the program.

A

B C

D

E F

G

A

B C

D D

E E F F

G G G G Path
probabilitie
s for 5.A:

 Page 12 of 33

Problem M10.3.A

On the decision tree, label each path with the probability of traversing that path. For example, the
leftmost block will be labeled with the total probability of executing the path ABDEG. (Hint:
you might want to write out the cases). Circle the path that is most likely to be executed.

Problem M10.3.B

This is the MIPS code (no delay slots):

A: lw r1, data
 andi r2, r1, 7 ;; r2 <- r1%8
 bnez r2, C
B: div r3, r4, r5 ;; X <- V0/V1
 j D
C: div r3, r6, r7 ;; X <- V2/V3
D: andi r2, r1, 3 ;; r2 <- r1%4
 bnez r2, F
E: mul r8, r4, r5 ;; Y <- V0*V1
 j G
F: mul r8, r6, r7 ;; Y <- V2*V3
G:

This code is to be executed on a single-issue processor without branch speculation. Assume that
the memory, divider, and multiplier are all separate, long latency, unpipelined units that can run
in parallel. Rewrite the above code using trace scheduling. Optimize only for the most common
path. Just get the other paths to work. Don’t spend your time performing any other optimizations.
Ignore the possibility of exceptions. (Hint: Write the most common path first and then add fix-up
code.)

Problem M10.3.C

Assume that the load takes x cycles, divide takes y cycles, and multiply takes z cycles.
Approximately how many cycles does the original code take? (Ignore small constants.)
Approximately how many cycles does the new code take in the best case?

 Page 13 of 33

Problem M10.4: VLIW Machines

The program we will use for this problem is listed below. (In all questions, you should assume
that arrays A, B and C do not overlap in memory.)

C code

for (i=0; i<328; i++) {
 A[i] = A[i] * B[i];
 C[i] = C[i] + A[i];
}

In this problem, we will deal with the code sample on a VLIW machine. Our machine will have
six execution units.
- two ALU units: latency one cycle, also used for branch operations
- two memory units: latency three cycles, fully pipelined, each unit can perform either a store

or a load
- two FPU units: latency four cycles, fully pipelined, one unit can perform fadd operations,

the other fmul operations.
Our machine has no interlocks. The result of an operation is written to the register file
immediately after it has gone through the corresponding execution unit: one cycle after issue for
ALU operations, three cycles for memory operations and four cycles for FPU operations. The old
values can be read from the registers until they have been overwritten.

Below is a diagram of our VLIW machine.

Two Integer Units,
Single Cycle Latency

Two Load/Store Units,
Three Cycle Latency

Two Floating-Point Units,
Four Cycle Latency

Int Op 2 Mem Op 1 Mem Op 2 FP ADD FP MULT Int Op 1

 Page 14 of 33

The program for this problem translates to the following VLIW operations:

loop: 1. ld f1, 0(r1) ; f1 = A[i]
 2. ld f2, 0(r2) ; f2 = B[i]
 3. fmul f4, f2, f1 ; f4 = f1 * f2
 4. st f4, 0(r1) ; A[i] = f4
 5. ld f3, 0(r3) ; f3 = C[i]
 6. fadd f5, f4, f3 ; f5 = f4 + f3
 7. st f5, 0(r3) ; C[i] = f5
 8. add r1, r1, 4 ; i++
 9. add r2, r2, 4
 10. add r3, r3, 4
 11. add r4, r4, -1
 12. bnez r4, loop ; loop

Problem M10.4.A

Table M10.4-1, on the next page, shows our program rewritten for our VLIW machine, with
some operations missing (instructions 2, 6 and 7). We have rearranged the instructions to
execute as soon as they possibly can, but ensuring program correctness. Please fill in the missing
operations. (Note, you may not need all the rows.)

Problem M10.4.B

How many cycles are required to complete one iteration of the loop in steady state? What is the
performance (flops/cycle) of the program?

Problem M10.4.C

How many VLIW instructions would the smallest software pipelined loop require? Explain
briefly. Ignore the prologue and the epilogue. Note: You do not need to write the software
pipelined version. (You may consult Table M10.4-1 for help.)

Problem M10.4.D

What would be the performance (flops/cycle) of the program? How many iterations of the loop
would we have executing at the same time?

 Page 15 of 33

ALU1 ALU2 MU1 MU2 FADD FMUL

Add r1, r1, 4 add r2, r2, 4 ld f1, 0(r1)

Add r3, r3, 4 add r4, r4, -1 ld f3, 0(r3)

 fmul f4, f2, f1

 st f4, -4(r1)

 bnez r4, loop

Table M10.4-1: VLIW Program

 Page 16 of 33

Problem M10.4.E

If we unrolled the loop once, would that give us better performance? How many VLIW
instructions would we need for optimal performance? How many flops/cycle would we get?
Explain.

Problem M10.4.F

What is the optimal performance in flops/cycle for this program on this architecture? Explain.

Problem M10.4.G

If our machine had a rotating register file, could we use fewer instructions than in Problem
M10.4.F and still achieve optimal performance? Explain.

Problem M10.4.H

Imagine that memory latency has just increased to 100 cycles. How many instructions
(approximately) an optimal loop would require? (There is no rotating register file, and ignore
prologue/epilogue). Explain briefly.

5 50 100 200

Problem M10.4.I

Now our processor still has a memory latency of up to 100 cycles when it needs to retrieve data
from main memory, but only 3 cycles if the data comes from the cache. Thus a memory
operation can complete and write its result to a register anywhere between 3 and 100 cycles after
being issued. Since our processor has no interlocks, other instructions will continue being issued.
Thus, given two instructions, it is possible for the instruction issued second to complete and
write back its result first. Circle how many instructions (approximately) are required for an
optimal loop. Explain briefly.

5 50 100 200

 Page 17 of 33

Problem M10.5: VLIW & Vector Coding

Ben Bitdiddle has the following C loop, which takes the absolute value of elements within a
vector.

for (i = 0; i < N; i++) {
 if (A[i] < 0)
 A[i] = -A[i];
}

Problem M10.5.A

Ben is working with an in-order VLIW processor, which issues two MIPS-like operations per
instruction cycle. Assume a five-stage pipeline with two single-cycle ALUs, memory with one
read and one write port, and a register file with four read ports and two write ports. Also assume
that there are no branch delay slots, and loads and stores only take one cycle to complete. Turn
Ben’s loop into VLIW code. A[i’s] and N are 32-bit signed integers. Initially, R1 contains N and
R2 points to A[0]. You do not have to preserve the register values. Optimize your code to
improve performance but do not use loop unrolling or software pipelining. What is the average
number of cycles per element for this loop, assuming data elements are equally likely to be
negative and non-negative?

Problem M10.5.B

Ben wants to remove the data-dependent branches in the assembly code by using predication. He
proposes a new set of predicated instructions as follows.

1) Augment the ISA with a set of 32 predicate bits P0-P31.
2) Every standard non-control instruction now has a predicated counterpart, with the following

syntax:

(pbit1) OPERATION1 ; (pbit2) OPERATION2

 (Execute the first operation of the VLIW instruction if pbit1 is set and execute the second
operation of the VLIW instruction if pbit2 is set.)

3) Include a set of compare operations that conditionally set a predicate bit.

 CMPLTZ pbit,reg ; set pbit if reg < 0
 CMPGEZ pbit,reg ; set pbit if reg >= 0
 CMPEQZ pbit,reg ; set pbit if reg == 0
 CMPNEZ pbit,reg ; set pbit if reg != 0

 Page 18 of 33

Eliminate all forward branches from Question M10.5.A with the new predicated operations. Try
to optimize your code but do not use software pipelining or loop unrolling.

What is the average number of cycles per element for this new loop? Assume that the predicate-
set compare instructions have a single cycle latency (i.e., they behave similarly to a regular ALU
instruction including, full bypassing of the predicate bit).

Problem M10.5.C

Unroll the predicated VLIW code to perform two iterations of the original loop before each
backward branch. You should use software pipelining to optimize the code for both performance
and code density. What is the average number of cycles per element for a large value of N?

Problem M10.5.D

Now Ben wants to work with a vector processor with two lanes, each of which has a single-cycle
ALU and a vector load-store unit. Write-back to the vector register file takes a single cycle.
Assume for this part that each vector register has at least N elements.

Ben can also eliminate branches from his code by using vector masks. He wants to introduce a
vector mask register as follows.

1) Augment the ISA with a vector mask register, VM.
2) Every vector instruction now executes each element operation only if the corresponding bit

in the mask register is set.
3) Include compare operations that conditionally set the mask register.

S--V

S--SV

V1,V2

F0,V1

Compare the elements (EQ,NE,GT,LT,GE,LE) in V1 and V2. If condition is
true, put a 1 in the corresponding bit vector; otherwise put 0. Put the
resulting bit vector in a vector-mask register (VM). The instruction S--SV
performs the same compare but using a scalar value as one operand.

Vectorize Ben’s C loop, and replace all branches using vector masks. What is the average
number of cycles per element for this loop in steady state for a very large value of N?

Problem M10.5.E

Modify the code from Part M10.5.D to handle the case when each vector register has m
elements, where m may be less than N and is not necessarily a factor of N.

 Page 19 of 33

Problem M10.6: Predication and VLIW

Problem M10.6.A

Consider the following code.

 l.s f1, 0(r1) ; f1 = *r1
 seq.s r5, f10, f1 ;
 bneq f1, f10, else ; if f1==f10
 add.s f2, f1, f11 ; f2 = f1 + f11
 b if_end ; else
else: add.s f2, f1, f12 ; f2 = f1 + f12
if_end: s.s f2, 0(r2) ; *r2 = f2

Convert the code above to use predication rather than conditional branches. You should use the
CMPLTZ, CMPGEZ, CMPEQZ or CMPNEZ instruction from Problem M5.8.B for predication. You
may use negative predication for instructions, e.g.

 (p1) add r1, r2, r3 ; if (p1) r1 = r2 + r3
 (!p1) add r1, r2, r3 ; if (!p1) r1 = r2 + r3

Problem M10.6.B

Our VLIW processor, called Adamantium, is very similar to the Titanium processor from
Problem M10.2. Below are the details of our machine. Bold parts are different from Titanium.

• 1 load/store unit: There is no cache and a load has a latency of 2 cycles and is fully pipelined.
• 1 integer ALU: Single cycle latency
• no floating-point multiplier unit
• 1 floating-point adder: 2 cycles, fully pipelined
• 1 branch unit with no delay slots and 100% branch prediction accuracy
• 128 GPRs, 128 FPRs and 128 predicate registers

Consider the following simple loop written in predicated MIPS assembler.

loop: l.s f1, 0(r1) ; f1 = *r1
 cmpnez p1, f1 ; p1 = (f1 != 0)
 (p1) add.s f2, f1, f1 ; if (p1) f2 = f1+f1
 (p1) s.s f2, 0(r1) ; if (p1) *r1 = f2
 addi r1, r1, #4 ; r1 += 4
 bneq r1, r2, loop ; if (r1!=r2) goto loop
end:

On the next page, in Table M10.6-1, we have converted the code above into Adamantium code
and unrolled it twice. Complete a software pipelined version of this loop for Adamantium below
in Table M10.6-2. You should assume that the number of times the loop needs to execute is
divisible by the unrolling factor, thus the loop doesn’t need any fix-up code.

Page 20 of 33

Label integer op floating point add memory op branch
loop: l.s f1,0(r1)
 l.s f3,4(r1)
 addi r1, r1, #8 cmpnez p1, f1
 cmpnez p3, f3
 (p1) add.s f2, f1, f1
 (p3) add.s f4, f3, f3
 (p1) s.s f2, -8(r1)
 (p3) s.s f4, -4(r1) bneq r1, r2, loop

Table M10.6-1

label integer op floating point add memory op Branch

 l.s f1,0(r1)

 l.s f3,4(r1)

 addi r1, r1, #8 cmpnez p1, f1

 cmpnez p3, f3 beq r1, r2, epilog
loop:

 bneq ,loop
epilog: (p1) add.s
 (p3) add.s
 (p1) s.s
 (p3) s.s

Table M10.6-2

 Page 21 of 33

Problem M10.7: Vector Machines

In this problem, we analyze the performance of vector machines. We start with a baseline vector
processor with the following features.

• 32 elements per vector register
• 8 lanes
• One ALU per lane: 1 cycle latency
• One MULT per lane: 2 cycle latency, fully pipelined
• One LOAD/STORE unit per lane: 4 cycle latency, fully pipelined
• No dead time
• No support for chaining
• Scalar instructions execute on a separate 5-stage fully-bypassed pipeline

To simplify the analysis, we assume a magic memory system with no bank conflicts and no
cache misses. Also, scalar operands of vector instructions are read in the Decode stage.

The program we will use for this problem is listed below. (In all questions, you should assume
that arrays A, B and C do not overlap in memory.)

C code

for (i=0; i<328; i++) {
 A[i] = A[i] * B[i];
 C[i] = C[i] + A[i];
}

 Page 22 of 33

Problem M10.7.A

Consider the implementation of the C-code on the vector machine that executes it in the least
number of cycles. Assuming the following initial values, insert vector instructions to complete
the implementation.

o R1 points to A[0]
o R2 points to B[0]
o R3 points to C[0]
o R4 contains the value 328

 ANDI R5, R4, 31 # 328 mod 32
 MTC1 VLR, R5 # set VLR to remainder
loop:
 LV V1, R1 # load A
 LV V2, R2 # load B
 SLL R7, R5, 2
 ADD R1, R1, R7 # increment A ptr
 ADD R2, R2, R7 # increment B ptr
 ADD R3, R3, R7 # increment C ptr
 SUB R4, R4, R5 # update loop counter
 LI R5, 32 # reset VLR to max
 MTC1 VLR, R5
 BGTZ R4, loop

 Page 23 of 33

Problem M10.7.B

Complete the pipeline diagram below with the loop code from Question M10.7.A on the baseline
vector processor for one loop iteration. Do not fill in scalar instructions. Assume the scalar
registers are available immediately, whenever needed. You may not require the entire length of
the table.

The following supplementary information explains the diagram.

Scalar instructions execute in 5 cycles: fetch (F), decode (D), execute (X), memory (M), and writeback (W).
A vector instruction is also fetched (F) and decoded (D). Then, it stalls (—) until its required vector
functional unit is available. With no chaining, a dependent vector instruction stalls until the previous
instruction finishes writing back ALL of its elements. A vector instruction is pipelined across all the lanes in
parallel. For each element, the operands are read (R) from the vector register file, the operation executes on
the load/store unit (M) or the ALU (X) or the MUL (Y), and the result is written back (W) to the vector
register file. Assume that there is no structural conflict on the writeback port. A stalled vector instruction does
not block a scalar instruction from executing.
LV1 and LV2 refer to the first and second LV instructions in the loop.

instr.
cycle

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
LV1 F D R M1 M2 M3 M4 W
LV1 R M1 M2 M3 M4 W
LV1 R M1 M2 M3 M4 W
LV1 R M1 M2 M3 M4 W
LV2 F D ⎯ ⎯ ⎯ R M1 M2 M3 M4 W
LV2 R M1 M2 M3 M4 W
LV2 R M1 M2 M3 M4 W
LV2 R M1 M2 M3 M4 W

 Page 24 of 33

Problem M10.7.C

In this question, we analyze the performance benefits of chaining.

Vector chaining is done through the register file. An element can be read (R) on the same cycle
in which it is written back (W), or it can be read on any later cycle (chaining is flexible).

Complete the pipeline diagram below, with loop code from Question M10.7.A on a chained
vector processor for one loop iteration. Do not fill in scalar instructions. Assume the scalar
registers are available immediately, whenever needed. You may not require the entire length of
the table.

instr.
cycle

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
LV1 F D R M1 M2 M3 M4 W
LV1 R M1 M2 M3 M4 W
LV1 R M1 M2 M3 M4 W
LV1 R M1 M2 M3 M4 W
LV2 F D ⎯ ⎯ ⎯ R M1 M2 M3 M4 W
LV2 R M1 M2 M3 M4 W
LV2 R M1 M2 M3 M4 W
LV2 R M1 M2 M3 M4 W

 Page 25 of 33

Problem M10.7.D

What is the performance (flops/cycle) of the program with chaining?

Problem M10.7.E

Would loop unrolling of the assembly code improve performance without chaining? Explain.
(You may rearrange the instructions when performing loop unrolling.)

 Page 26 of 33

Problem M10.8: Vector Machines

In this problem, we analyze the performance of vector machines. We start with a baseline vector
processor with the following features.

• 32 elements per vector register
• 8 lanes
• One ALU per lane: 1 cycle latency
• One load/store unit per lane: 4 cycle latency, fully pipelined
• No dead time
• No support for chaining
• Scalar instructions execute on a separate 5-stage pipeline

To simplify the analysis, we assume a magic memory system with no bank conflicts and no
cache misses.

We consider the execution of the following loop.

C code

for (i=0; i<320; i++) {
 C[i] = A[i] + B[i] – 1;
}

assembly code

initial conditions:
R1 points to A[0]
R2 points to B[0]
R3 points to C[0]
R4 = 1
R5 = 320

loop:
 LV V1, R1 # load A
 LV V2, R2 # load B
 ADDV V3, V1, V2 # add A+B
 SUBVS V4, V3, R4 # subtract 1
 SV R3, V4 # store C
 ADDI R1, R1, 128 # incr. A pointer
 ADDI R2, R2, 128 # incr. B pointer
 ADDI R3, R3, 128 # incr. C pointer
 SUBI R5, R5, 32 # decr. count
 BNEZ R5, loop # loop until done

 Page 27 of 33

Problem M10.8.A

Complete the pipeline diagram of the baseline vector processor running the given code.

The following supplementary information explains the diagram:

Scalar instructions execute in 5 cycles: fetch (F), decode (D), execute (X), memory (M), and writeback (W).
A vector instruction is also fetched (F) and decoded (D). Then, it stalls (—) until its required vector
functional unit is available. With no chaining, a dependent vector instruction stalls until the previous
instruction finishes writing back all of its elements. A vector instruction is pipelined across all the lanes in
parallel. For each element, the operands are read (R) from the vector register file, the operation executes on
the load/store unit (M) or the ALU (X), and the result is written back (W) to the vector register file.
A stalled vector instruction does not block a scalar instruction from executing.
LV1 and LV2 refer to the first and second LV instructions in the loop.

instr.
cycle

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
LV1 F D R M1 M2 M3 M4 W
LV1 R M1 M2 M3 M4 W
LV1 R M1 M2 M3 M4 W
LV1 R M1 M2 M3 M4 W
LV2 F D ⎯ ⎯ ⎯ R M1 M2 M3 M4 W
LV2 R M1 M2 M3 M4 W
LV2 R M1 M2 M3 M4 W
LV2 R M1 M2 M3 M4 W

ADDV F D ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ R X1 W
ADDV R X1 W
ADDV R X1 W
ADDV R X1 W
SUBVS F D ⎯
SUBVS
SUBVS
SUBVS

SV F D ⎯
SV
SV
SV

ADDI F D X M W
ADDI F D X M W
ADDI F D X M W
SUBI F D X M W
BNEZ F D X M W
LV1 F D ⎯
LV1
LV1
LV1

 Page 28 of 33

Problem M10.8.B

In this question, we analyze the performance benefits of chaining and additional lanes. Vector
chaining is done through the register file and an element can be read (R) on the same cycle in
which it is written back (W), or it can be read on any later cycle (chaining is flexible). For this
question, we always assume 32 elements per vector register, so there are 2 elements per lane with
16 lanes, and 1 element per lane with 32 lanes.

To analyze performance, we calculate the total number of cycles per vector loop iteration by
summing the number of cycles between the issuing of successive vector instructions. For
example, in Question M10.8.A, LV1 begins execution in cycle 3, LV2 in cycle 7 and ADDV in
cycle 16. Therefore, there are 4 cycles between LV1 and LV2, and 9 cycles between LV2 and
ADDV.

Complete the following table. The first row corresponds to the baseline 8-lane vector processor
with no chaining. The second row adds flexible chaining to the baseline processor, and the last
two rows increase the number of lanes to 16 and 32.
(Hint: You should consider each pair of vector instructions independently, and you can ignore
the scalar instructions.)

Vector processor
configuration

Number of cycles between
successive vector instructions Total cycles

per vector
loop iter. LV1,

LV2
LV2,

ADDV
ADDV,
SUBVS

SUBVS,
SV

SV,
LV1

8 lanes, no chaining 4 9

8 lanes, chaining

16 lanes, chaining

32 lanes, chaining

 Page 29 of 33

Even with the baseline 8-lane vector processor with no chaining (used in Question M10.8.A), we
can improve performance using software loop-unrolling and instruction scheduling. As a first
step, we unroll two iterations of the loop and rename the vector registers in the second iteration.

loop:
I1: LV V1, R1 # load A
I2: LV V2, R2 # load B
I3: ADDV V3, V1, V2 # add A+B
I4: SUBVS V4, V3, R4 # subtract 1
I5: SV R3, V4 # store C
I6: ADDI R1, R1, 128 # incr. A pointer
I7: ADDI R2, R2, 128 # incr. B pointer
I8: ADDI R3, R3, 128 # incr. C pointer
I9: SUBI R5, R5, 32 # decr. count
I10: LV V5, R1 # load A
I11: LV V6, R2 # load B
I12: ADDV V7, V5, V6 # add A+B
I13: SUBVS V8, V7, R4 # subtract 1
I14: SV R3, V8 # store C
I15: ADDI R1, R1, 128 # incr. A pointer
I16: ADDI R2, R2, 128 # incr. B pointer
I17: ADDI R3, R3, 128 # incr. C pointer
I18: SUBI R5, R5, 32 # decr. count
I19: BNEZ R5, loop # loop until done

Reorder the instructions in the unrolled loop to improve performance on the baseline vector
processor (your solution does not need to be optimal).
Provide a valid ordering by listing the instructions below (a few have already been filled in for
you). You may assume that the A, B and C arrays do not overlap.

Instr. Number Instruction
I1 LV V1, R1
I2 LV V2, R2

I15 ADDI R1, R1, 128
I16 ADDI R2, R2, 128
I17 ADDI R3, R3, 128
I9 SUBI R5, R5, 32
I18 SUBI R5, R5, 32
I19 BNEZ R5, loop

Problem M10.8.C

 Page 30 of 33

Problem M10.9: Vectorizing memcpy and strcpy

Ben Bitdiddle has bought a state-of-the-art vector machine, the Zirconium™, which has vector
registers holding up to 32 elements, and has decided to vectorize his C library functions. As a
starting point, he vectorizes the C function memcpy. The specification for memcpy is given as

/* copy n words from ct to s, and return s. */
/* The actual C code copies one byte at a time. */
/* Our version copies one word at a time. */
void *memcpy(void *s, void *ct, size_t n)

Ben implements memcpy in the following fashion, assuming s, ct, and n are in registers R1,
R2, and R3 respectively. Assume that there are no delay slots.

 ADD R5,R1,R0 ; store destination address in R5
 ADD R4,R2,R0 ; store source address in R4
 ANDI R6,R3,#31 ; N % 32
 MTC1 VLR,R6 ; put length in vector length register
loop:
 LV V1,R4
 SV R5,V1
 SUB R3,R3,R6 ; subtract elements
 SLLI R6,R6,#2
 ADD R4,R4,R6 ; bump source pointer
 ADD R5,R5,R6 ; bump destination pointer
 ADDI R6,R0,#32
 MTC1 VLR,R6 ; reset to full length
 BNEZ R3,loop ; any more to do?

Problem M10.9.A

The Zirconium processor has one load/store unit with a single lane that is fully pipelined with a
latency of 10 cycles and a dead time of 10 cycles. Instructions do not need to spend an extra
cycle writing back values. All scalar instructions are executed on a separate 5-stage pipelined
fully-bypassed datapath. Therefore, the execution of scalar instructions and vector instructions
maybe overlapped. How many cycles are required to copy each element when a very long
memory vector is copied, i.e., in steady state?

 Page 31 of 33

Problem M10.9.B

Ben’s next target is strcpy, defined as follows:

/* copy string ct to string s, including ‘\0’ and return s */
/* The actual C code copies one byte at time. */
/* Our version copies one word at a time. */
void *strcpy(void *s, void *ct)

The difference between strcpy and memcpy is that strcpy terminates when it sees the string
terminating character ‘\0’ while memcpy copies a given length.

Ben makes several attempts to vectorize the code, but gives up deciding that it is not
vectorizable. Alyssa, however, informs Ben that this function can be vectorized using some
additional vector instructions listed below.

CLZM R1,VM Counts the number of leading 0s in the vector-mask register VM and puts

the result in R1. For example, if the contents of VM are 0001010...000,
clzm R1,VM puts 3 into R1.

S--V

S--SV

V1,V2

F0,V1

Compare the elements (EQ,NE,GT,LT,GE,LE) in V1 and V2. If the
condition is true, put a 1 in the corresponding bit vector; otherwise put 0.
Put the resulting bit vector in the vector-mask register (VM). The instruction
S--SV performs the same compare but using a scalar value as one
operand.

Given the additional instructions, help Ben write vectorized code for the Zirconium processor.
Assume s and ct are in register R1 and R2, respectively. The Zirconium processor does not
have virtual memory and does not trap on memory protection violations on vector memory loads.
Also, assume that a string must be word-aligned. The terminating character must start at a word
boundary and the remaining 3 bytes after the terminating character must be 0x0. (Hint: The
ASCII value of ‘\0’ is 0.)

Problem M10.9.C

Compare the performance of vectorized memcpy and vectorized strcpy with and without
vector chaining. Specifically, how many cycles are required to transfer one element in steady
state? Assume that there is one vector compare unit with one lane and one cycle latency that
compares whether two values are equal.

 Page 32 of 33

Problem M10.10: Performance of Vector Machines

The vector processor Germanium™ has a vector addition and a vector multiply unit with the
following attributes.

1) Vector registers have 32 elements. The vector register file supports 2 read ports and 1 write

port for each addition unit and multiplication unit.

2) The vector addition unit has a 2-cycle latency and is fully pipelined.

3) The vector multiplication unit has a 3-cycle latency and is fully pipelined.

You are now given the following code.

I1: ADDV V3,V2,V1
I2: ADDV V4,V2,V1
I3: MULTV V5,V4,V3

Note: All vectors are 32 elements in length.

Problem M10.10.A

Draw a pipeline diagram of the Germanium processor running the given code, assuming it has 8
lanes, a 2-cycle dead time, and no vector chaining. Instruction fetch takes one cycle, so does
instruction decode (unless the instruction is stalled). Reading data from the register file also takes
one cycle. Use F for fetch, D for Decode, R for Vector register read and W for write back.

How many cycles does the given code take to execute? Count execution time as the number of
cycles from when the first result is written to when the last result is written (inclusive).

Pipeline diagram for ADDV V3,V2,V1 and vector lengths of 24 elements, is shown below.
Because we need to do 24 operations using 8 lanes, the vector register file should be read three
times. X1 is the first stage of the addition unit and X2 is the second. In cycle 6, the results of the
first 8 operations are written back. This instruction takes 3 cycles to execute.

Time

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8
F D R X1 X2 W
 R X1 X2 W
 R X1 X2 W

 Page 33 of 33

Problem M10.10.B

Draw a pipeline diagram of the Germanium processor running the given code, assuming it has 8
lanes, no dead time, and vector chaining. Vectoring chaining is done through the register file. A
vector unit can read an element from the register file in the same cycle it is being written back.
How many cycles does the given code take to execute?

Problem M10.10.C

Draw a pipeline diagram of the Germanium processor running the given code, assuming it has 16
lanes, no dead time, and vector chaining. How many cycles does the given code take to execute?

