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Summary: 

 This term in 6.823 we will be using Pin, a binary instrumentation tool provided by 

Intel. The purpose of this lab is to familiarize you with compiling and running Pin tools, 

as well as to make sure that you are able to use the class infrastructure and computers.   

To test the infrastructure, you will build and run a small Pin tool.   

 

  In order to develop architectures that run programs quickly architects must 

thoroughly understand the properties of representative programs.  Architects experiment 

with different programs to help them make design decisions about features that will be 

included in processors. There are a few approaches that can be used to evaluate the 

behavior a program. One is simulation. In this case, a software model of a processor is 

built, and the program executed on the model. Simulators have the advantage of being 

arbitrarily detail – in theory one could build a SPICE processor simulator. Typically, 

architectural simulators give cycle-accurate timing estimates.  The penalty for this level 

of detail is simulation speed: the more detailed a software simulator is, the slower it can 

execute programs; advanced software simulators can simulate at rates of tens of KIPS 

(kilo instructions per second). A second option is code instrumentation. Code 

instrumentation collects information about program characteristics. In general, code 

instrumentation is less detailed than simulation, but code instrumentation is faster to 

implement and enjoys faster program execution. Thus code instrumentation which can be 

very useful in guiding architectural decisions early in the development process, before 

detailed simulators are available. The simplest form of code instrumentation, terminal 

display statements (e.g. printf), is used by almost every programmer, computer architect 

or otherwise. Clearly such manual instrumentation is time-consuming, both in terms of 

writing code and collecting execution results. A better choice is to use a meta language to 

describe the code instrumentation and develop a tool that will efficiently instrument the 

target program at compile or runtime.    

 

 Pin is a free (though not open), industrial grade binary instrumentation tool 

produced by Intel and used widely in industry and academia. Pin accepts as inputs a 

compiled Pin tool and a generic binary executable. A Pin tool is a C++ program that 

makes a series of calls to an instrumentation API and provides code for Pin to execute at 

instrumented locations. The executable itself is just-in-time compiled by Pin and the 

instruments are inserted. The code is then executed natively on the host machine.  A 

major advantage of Pin is that it can instrument programs without requiring 

recompilation.  Thus, even legacy binaries can be analyzed. Since Pin executes large 

portions of the target program natively, it can be very fast, however, this constrains the 

programs analyzed to the host architecture, namely x86. Yet, Pin is surprisingly versatile: 

new instructions can be emulated by hijacking unused x86 opcodes.         



 If you would like, you may install Pin on your home machine. Pin can be 

downloaded from http://www.pintool.org/ and run on any Linux or Windows platform.  

Please note that Pin is under active development. Thus, it is frequently updated. If you 

install your own version of Pin, take care to update it periodically.  

 

 As always, this lab is to be completed individually.  You are encouraged to 

discuss lab concepts with fellow classmates.  

 

Setting up: 

 Although you can develop Pin tools on your home machine or any Athena 

computer, we will have eight dedicated machines for class use. These machines are  

 

vlsifarm-01.mit.edu 

vlsifarm-02.mit.edu 

… 

… 

vlsifarm-08.mit.edu 

 

The course machines use Athena passwords, but only class members may log into 

them. If you have trouble logging in to the course machines, you may not have an 

account. In this case, email the TA to obtain an account. If you choose to use your own 

machine or an Athena environment other than the lab machines, you are responsible to set 

up your environment.    

 

 We will be using Subversion for starter code distribution and lab submission. If 

you are not familiar with Subversion source control, svn help is a good command to 

remember. In general we will provide skeleton code that you will edit and check in before 

the submission deadline. As specified in the syllabus, no late hand-ins will be accepted, 

so submit early and often.   

 

 The lab handout repositories and your individual repositories are located on 

Athena afs. Therefore, you need afs permissions to access them. [The TA will send out 

an email once the permissions are set]. If you are unable to checkout your repository or 

the lab materials, please contact your TA so that permissions can be set up for you. 

 

 To obtain the materials for lab 0, use the following commands: 

 

     % add 6.823 

     % source /mit/6.823/Spring16/setup.sh 

     % svn co $SVNROOT 

          % cd $USER 

          % svn export $LAB0ROOT 

          % svn add lab0handout 

          % svn commit -m "Lab 0 Initial Check-in" 

 

    



  The svn co will create a local directory with your user name. The svn export will 

create a lab0handout directory in your individual repository. In the lab0handout directory 

that just got created, you should find two sub-directories part1 and part2. 

 

Part 1: Instruction Count 

In the first part of this lab, you will develop a simple Pin tool to count the number 

of instructions executed by an application binary. In sub-directory part1, you should find 

a make file, some sample source code, and a test script. Type the following at the 

command prompt: 

   

   % cd lab0handout 

  % cd part1 

  % chmod a+x part1test.pl 

  % make 

 

  You will notice that make fails to compile due to a parse error. While your TA is 

an expert in Verilog, his C is not so good. Fix his silly parse error and run the perl script. 

The perl script will invoke Pin using the inscount0 Pin tool on multiple SPEC binaries. 

Pin can be invoked from the command line in the following manner: 

 

  % pin -t toolname -- target_executable  

 

 We have provided a test perl script part1test.pl. The perl script will invoke Pin 

using the inscount0 Pin tool on multiple SPEC binaries. To invoke the perl script, type: 

 

  % ./part1test.pl  

 

Executing the script will produce a results directory which contains a set of files 

each of which is named in the following manner: 

 

  ExecName_Arg1_Arg2_..._.out 

   

As you might imagine, the naming scheme is based on the executable and 

arguments that are instrumented and analyzed by Pin tool. Since the inscount0 Pin tool 

counts the number of instructions in the instrumented program, these output files will 

contain the number of instructions executed. If you are interested in the inner workings of 

a real Pin tool, examine inscount0.cpp. We will cover this tool in detail in recitation. 

 

Part 2: Instruction Dependency Distance  

  For the second part, you will develop a Pintool that generates a histogram of the 

distances between instruction dependencies in a set of benchmarks. We define instruction 

dependency distance to be the number of instructions between when a register is written 

by instruction and when the register is read by a subsequent instruction. In the following 

toy example written in MIPS-like assembly (with the modified register in the leftmost 

position), r1 has dependency distances of one and three. 

 



 
 

 Dependency distance distributions provide useful insights to computer architects 

that inform design choices. For example, it captures the tradeoffs in stalling vs data-

forwarding for handling pipeline hazards, which we will cover in lecture shortly.    

  

To get started, go to the part2 sub-directory. You should find a makefile, sample 

source code and a test script. The code that we have provided you does most of the 

heavy-lifting. It instruments every instruction, and captures the registers read and written. 

You will have to edit the updateDependencyDistanceInfo() function suitably. The code 

also provides a dependency histogram array, dependencySpacing and a Fini function 

which dumps the dependency histogram data into a file. The dependency histogram 

should be updated each time a dependency is detected. The index into the histogram array 

represents the dependency distance minus one, which is equivalent to the number of other 

instructions “skipped over" by the dependency. For r1 above, dependencySpacing[0] and 

dependencySpacing[2] would be updated, although these would not be the only updates 

to the histogram in this code. For initialization purposes, assume that all machine 

registers have been modified at time 0. The Fini function will be called at the end of 

program execution and will produce an output file for easy importation into a spreadsheet 

program. Do not modify the Fini function, or you will not pass our test benches. 

 

 To build your pin tool, do: 

% make 

 

Make will build the regDeps Pin tool. The regDeps Pin tool can be invoked from 

the command line in the following manner: 

 

     % pin -t regDeps [-o outputFile -s maxSpace] -- <target_executable> 

 

We have provided a test perl script part2test.pl. The perl script will invoke Pin 

using the regDeps Pintool on multiple SPEC binaries. To invoke the perl script, type: 

 

     % ./part2test.pl 

 

 Although we will release a script that will test the lab Pin tools, these scripts will 

not verify your Pin tools, and we will not release the expected results of the test cases.  

Further, we reserve the right to run test cases not included in the released test script.  

You are encouraged to compare your results with your lab mates.       

  

 



Lab Questions: 

Your response to the lab questions should be typed in lab0questions.pdf (or 

lab0questions.doc) in the lab0handout directory. The course material necessary to answer 

some of the questions will be covered after the distribution of this handout, so if some of 

the material looks foreign, it probably just hasn't been covered yet. Some questions may 

require coding, and as such should not be put off until the last minute. 

 

1. Plot the dependency distance histogram (Number of dependences vs dependency 

distance) for the applications. 

 

2. You should notice that the dependency histograms have fairly long tails. Which 

registers account for most of the weight in the tail? How can this behavior be 

explained? Suggest some architectural changes that we might make to take 

advantage of the difference in lifetime lengths of the architectural registers. 

 

 

3. The following register dependency histograms were obtained by running a 

benchmark on two machines. The same compiler (gcc 3.4) was used to compile 

both of the benchmarks. Based on the instruction dependency graphs below, can 

you tell which machine has more general purpose registers? Explain your choice. 

 
 



 
 

When you have completed the lab to your satisfaction, submit your changes (not 

results) to the svn repository by running 

 

         % svn commit -m "Lab 0 Final Check-in" 

 

The deadline for submission is 23:59:59 EST 12 February 2016. No late submissions will 

be accepted! 

 

Advice on Mine Sweeping: 

 These labs are quite new. There will probably be bugs in either our code or 

infrastructure.  You can help us give our lab infrastructure a shakedown.  If you notice 

any 'interesting' or 'unexpected' behavior it could be a problem in the code or 

infrastructure that we have reported.  Report these bugs immediately to the TA, 

preferably in an email with header 6.823 Bug Report.  This header will help to ensure 

prompt fixing of any issues that may arise. 

 

Guides for the perplexed: 

http://www.pintool.org/ - Pin home page 

http://tig.csail.mit.edu/twiki/bin/view/TIG/UsingSubversionAtCSAIL – an SVN tutorial 

http://www.pintool.org/
http://tig.csail.mit.edu/twiki/bin/view/TIG/UsingSubversionAtCSAIL

