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Warning: This lab will likely take substantially longer to complete than Lab 0. Do not put it off 

until the last minute. The simulations alone will take a few hours to run.  
 

 

Summary 
The memory bottleneck is one of the paramount design concerns in modern 

processors. As we saw in lecture, while processor speeds have increased exponentially 

over the last 30 years, main memory speeds have only increased linearly since memories 

have been optimized for capacity rather than latency. Since memories are slow relative to 

the processor and memory accesses are frequent (one per loaded instruction!), a major 

area of architectural research is improving the perceived latency of the memory.      

In order to improve the perceived latency of memory accesses, we, as architects, 

must first understand the nature of memory accesses. It has been the experience of 

architects that software memory accesses exhibit high temporal and spatial locality. 

Temporal locality means that the accessed memory location is likely to be accessed again 

in the near future. Spatial locality means that memory locations near the address of the 

accessed memory location are likely to be accessed in the near future.  

In this lab, we will explore the concept of memory caching which is a common 

and highly effective mechanism for improving memory latency. A cache is a fast, but 

necessarily small memory that contains recently accessed areas of memory. The cache 

has a much lower access and update latency than the main memory; thus, if the memory 

locations that the process requires are present in the cache, the processor can obtain the 

data in a small number of cycles (as opposed to the many hundreds of cycles it would 

take to access the main memory), thereby improving processor performance. Since we 

ultimately measure the performance of the cache by its usefulness, which is the 

percentage of time that it is able to satisfy processor requests, statistics like write hit 

percentage and read hit percentage are often used to evaluate caches. 

In this lab, we will evaluate the behavior of various cache organizations using Pin 

and the SPEC benchmarks.  

As always, this lab is to be completed individually. You are encouraged to discuss 

lab concepts with fellow classmates. 

 

 

 

 

 



 

Setting up 
 

First, as for Lab 0, set up your environment for Pin. You'll need to do this each 

time you log in to work on the labs. 

 

     % add 6.823 

     % source /mit/6.823/Spring16/setup.csh (or setup.sh) 

 

To obtain the materials for lab 1, use the following commands, assuming that 

you start in your individual repository (cd $USER) from the previous lab: 

 

          % svn export $LAB1ROOT 

          % svn add lab1handout 

          % svn commit -m "Lab 1 Initial Check-in" 

 

 In the lab1handount directory that just got created, you should find a make file, 

some sample source code, and a test script. Type the following at the command prompt: 

   

   % cd lab1handout 

  % make 

 

 Make will build the caches Pin tool. The caches Pin tool can be invoked from the 

command line in the following manner: 

 

  % pin -t caches – [target_executable] 

 

 We have provided a test perl script lab1test.pl. The perl script will invoke Pin 

using the caches Pintool on multiple SPEC binaries. To invoke the perl script, type: 

 

  % ./lab1test.pl  

 

 Although we provide a script that will test your Pin tool, the script will not verify 

your Pin tool, and we will not release the expected results of the test cases (which is what 

would happen in industry if you were designing the next-generation microarchitecture). 

Further, we reserve the right to run test cases not included in the released test script. You 

are encouraged to compare your results with your classmates. 

 

Lab Task 
 

The purpose of this lab is to generate a set of parametric cache models that will 

help us analyze the behavior of various cache configurations. A cache can be described in 

terms of a relatively small number of parameters. We can view a cache as a data array 

containing R rows (or sets), each of which contains A (the set associativity or ways) data 

blocks of size B and some metadata (tag, valid bit) about B. When the data array is 



 

presented an address, it outputs the associated block data. The address can be broken 

down as <tag><index or row><block offset>. 

The index bits are used to access a particular row of the cache. Each cache also 

defines a replacement policy that determines which existing block in a row to evict on a 

cache fill. Commonly used replacement policies include random replacement, least-

recently-used, and not most-recently-used. The following diagram depicts cache 

organization in terms of these parameters.   

The behavior and implementation of the cache will also depend on some system-

wide parameters. The caches that use virtual addresses must know the size of a memory 

page in the system; depending on the hardware the size of virtually indexed cache may be 

constrained by this parameter (Why?). Although the size of the physical memory does not 

affect cache organization, it will affect cache performance as pages are swapped in and 

out of the physical memory.                

In the lab, you will design a set of parameterized L1 data cache models based on 

the diagram. It should be pointed out the in the diagram that the input memory addresses 

accessed could be either virtual or physical. We have covered the distinction between 

virtual and physical addresses in class. We will experiment with both styles of cache in 

this lab.  

 
With all of the above background, we can discuss the starter code, which is 

located in caches.cpp. All the caches that you will implement will inherit the CacheModel 

base class. Notice that the base class implements some of the cache metadata for you, 

although you will have to add some metadata of your own. The following is a description 

of the CacheModel functions. You are expected to implement the bold faced functions for 

each cache.   

readReq: This function is a read request from the processor to the cache.  

The processor will present a virtual address. You will then update the 

appropriate cache metadata, according to the cache type.  



 

writeReq: This function is a write request from the processor to the cache.  

The processor will present a virtual address. You will then update the 

appropriate cache metadata, according to the cache type.   

dumpResults: This function will print out the cache statistics that readReq 

and writeReq have been tracking. We will call this function at the end of 

the Pin run from the code that we have provided you. Don't modify this 

code or you'll break our testbenches, which will be tragic for the 

correctness portion of your lab grade. 

 

 The lab assumes 32-bit Virtual Addresses, and logPhysicalMemSize-bit Physical 

Addresses. The following global function will be used to translate between virtual and 

physical addresses:  

getPhysicalPageNumber: This function translates virtual page numbers 

from Pin into 'physical' page numbers, akin to the translation look-aside 

buffer and page table. It produces physical page numbers of size 

(logPhysicalMemSize- logPageSize).You should note that different virtual 

addresses may map to the same physical address (aliasing). You do not 

need to worry about solving this in your implementation.  

 

 In this lab you will implement the above two functions which will track the cache 

metadata, thereby simulating the behavior of a real cache.  The metadata that you will 

track includes the cache valid bits, the cache tags, and information for the least recently 

used (LRU) replacement policy. Recall that least recently used replacement means that 

when a cache block needs to be evicted, the block that was read or written farthest in the 

past will be chosen for eviction. Notice that the CacheModel base class has a number of 

constructor parameters, such as associativityParam, logNumRowsParam, and 

logBlockSizeParam. You will use these parameters to implement your functions in such a 

way that multiple cache sizes and associativities can be tested rapidly. We use the 

logVariable naming convention to denote that the parameter is given as a base 2 

logarithm of the actual size, thus if logBlockSizeParam is 4 then the block size is 2^4 = 

16 bytes. Notice that our instantiations of the cache classes that you will implement use 

Pin command line parameters to obtain parameters. Thus, you can test your caches with 

many configurations, even though our public testbench will only examine a trivial 

configuration. The baseline caches that you will be implementing will use the appropriate 

number of low order bits of either the virtual or physical index as the hash function for 

accessing the rows of the ways. You should use the scheme in the above diagram to 

organize your cache.  

You will implement three cache models, one that is virtually indexed and virtually 

tagged, one that is virtually indexed and physically tagged, and one that is physically 

indexed and physically tagged. Each cache will be an extension of the base CacheModel 

class.  Each cache model will track a variety of statistics. You will track the total number 

of read accesses, the total number of write accesses, the number of read hits, and the 

number of write hits. Your labs will be evaluated for accuracy based on these statistics.   

As we have observed in class and in lab 1, x86 is a rather quirky architecture. 

Recall that MIPS and other more modern architectures allow only aligned memory 

accesses.  Aligned memory accesses means that the bottom bits of the address of the 



 

requested data must be zero. Thus, the address of a four-byte access must always end in 

2'b00. X86, however, allows unaligned memory accesses, which will introduce some 

potential inaccuracy into our cache models. We will ignore handling unaligned memory 

accesses by assuming that the appropriate bottom bits of the access address are zeroed out. 

This implies that all accesses to the cache will fall within the same cache block. 

Although your solution will not be graded on its performance in terms of wall 

clock time, you should note that your Teaching Assistants are impatient people. The TA 

solution runs the sample testbench in less than one hour on the class machines (with 

nominal load). For grading purposes, we will allow your pin tool to run for an order of 

magnitude more time than ours requires (around 10 hours). After ten hours, we will kill it 

and assign a grade based on progress to that point. Do not write horrendously inefficient 

code: it makes kittens sad. 

We have provided you an additional script to enable you to run all the SPEC 

binaries for different cache configurations from command line. 

 

% ./lab1test_param.pl -b <logBlockSize> -r <logNumRows> -a <associativity> 

 

When you have completed the lab to your satisfaction, submit your changes to the 

svn repository. The deadline for submission is 23:59:59 EDT 26 February 2016. We'll 

grade whatever code you have checked in by the deadline. No Late Submissions will be 

accepted! Seriously. 

 

Lab Questions 
 

 Your response to the lab questions should be typed in lab1questions.pdf (or 

lab1questions.doc) in the lab1handout directory. Some questions may require coding, and 

as such should not be put off until the last minute. 

 

1. Hit and miss. Using your physically indexed, physically tagged cache model, 

starting from a base configuration (Rows = 512, Block Size = 4 bytes, 

Associativity = 1), vary the number of rows, block size, associativity, and capacity 

of your cache models. Can you explain any general trends in hit and miss rate that 

you observe (show graphs). Are there significant differences between the three 

cache models? Why?  

 

2. SPEC interrogation. Using your physically indexed, physically tagged cache 

model, determine the size of the working set (lookup what it means) for the 

SPEC2000 benchmarks, justifying your answer with a graph. Are the working sets 

of the SPEC benchmarks intended to fit in a processor cache (lookup the typical 

sizes of L1 these days)? Why or why not? Do you notice a difference between the 

SPECINT and SPECFP programs in terms of hit and miss rates? Explain why this 

difference occurs. Would you choose different cache configurations (block size, 

associativity and number of rows) given the same cache size, for floating point 

programs and integer programs? Which configuration(s) would you choose and 

why? (Remember that an associative cache takes more chip area and power than a 

direct mapped cache of the same capacity). 



 

 

3. Make the common case fast. We asked you to implement three cache models.  

A potential fourth cache model is a physically indexed, virtually tagged cache.     

Does this cache configuration make sense? Explain why or why not. Take timing 

issues in to account.     

 

4. Make the uncommon case correct. Ignore the aliasing problem for this 

question. Although our baseline test bench only behaves as if the simulated 

machine has a single process running, real machines almost always have more 

than one process at a time (Hmm... I wonder if the TA will test this case? Hmm...). 

Uh-oh, it seems like one of the cache models may not work in the presence of 

multiple processes. Which one, and why? Given a page size of 256 bytes and a 

cache size of 512 bytes write down the cache configurations (block size, index, 

associativity etc.) that will work for each cache model. Explain what 

modifications are necessary to make each cache model work in the presence of 

multiple processes. 

 

5. You assume too much.  We assumed that all memory accesses were aligned.  

Design a simple experiment to determine how many unaligned memory accesses 

occur in the SPEC benchmarks. Does our assumption make sense? Can you 

explain the frequency of unaligned accesses? 

 

When you have answered these questions to your satisfaction, put them in a file 

called lab1questions.pdf (or lab1questions.doc) in your lab1handout directory, then run 

the following to add them and commit them. 

 

% svn add lab1questions.pdf 

% svn commit -m "Lab 1 Questions Check-In" 

 

As with the lab code, we'll grade whatever you have checked in by the deadline. 
 

Lab Grading 
 

10%: Submission compiles 

20%: Submission passes public test bench 

20%: Submission passes private test bench 

50%: Quality of lab question responses 

 

Advice on Mine Sweeping 
 

 There may be bugs in either our code or infrastructure. If you notice any 

`interesting' or `unexpected' behavior it could be a problem in the code or infrastructure 

that we provided. Report these bugs immediately to the TA, preferably in an email with 

the subject 6.823 Bug Report. This will help to ensure prompt fixing of any issues that 

may arise. 


