
 6.823
Computer System Architecture

 Lab 2
Assigned Mar. 7, 2016 Worth 5% of Course Grade Due Mar. 18, 2016

http://csg.csail.mit.edu/6.823/

Warning: This lab is competitive and open-ended. Do not wait until the last minute to attempt
to complete the lab.

Summary

Branches create instruction hazards in a pipelined processor. When an instruction
is loaded the processor must decide which instruction to fetch next. Most of the time,
the subsequent instruction in x86 is located in the bytes immediately following the
current instruction address. Thus just fetching the next bytes for execution is a reasonable
strategy. For branch instructions the next instruction may lie elsewhere in memory. In
this case loading the next instruction will likely be incorrect, and the pipeline will stall as
the processor fetches the correct next instruction.

Incorrectly fetching the next instruction following a branch instruction can be
extremely detrimental to performance, since branch instructions account for 1/6 the total
number of instructions. The mechanism that architects use to deal with instruction
hazards is branch prediction. At the high level, branch prediction is somewhat simple to
describe a branch predictor interface: the branch predictor accepts an address from the
processor and returns a branch direction. The actual address is predicted by another
structure such as a BTB. Notice that a trivial branch predictor implementation always
returns a ‘not taken’ result, i.e., step to the next sequential instruction. In this lab, you will
research predictors and implement a branch predictor model.

Setting up

First, set up your environment for Pin. You'll need to do this each time you log in to work
on the labs.

 % add 6.823
 % source /mit/6.823/Spring16/setup.csh (setup.sh)

To obtain the materials for lab 2, use the following commands, assuming that you start in
your individual repository (cd $USER) from the previous lab:

 % svn export $LAB2ROOT
 % svn add lab2handout
 % svn commit -m "Lab 2 Initial Check-in"

Assigned Mar. 7, 2016 6.823 Lab 2 Due Mar. 18, 2016

 In the lab2handount directory that just got created, you should find a make file,
some sample source code, and a test script. Type the following at the command prompt:

 % cd lab2handout
 % make

 Make will build the bpredictor Pin tool. Attempting to run the Pin tool will result
in a failure message, stating that no Pin tool has been implemented. The caches Pin tool
can be invoked from the command line in the following manner:

 % pin -t bpredictor – [target_executable]

 We have provided a test perl script lab2test.pl. The perl script will invoke Pin
using the bpredictor Pintool on multiple SPEC binaries. To invoke the perl script, type:

 % ./lab2test.pl

Although we provide a script that will test your Pin tool, the script will not verify your
Pin tool. Since the lab is open-ended in the first place, your results may differ
substantially from your classmates. Further, we reserve the right to run test cases not
included in the released test script. You are encouraged to compare your results with your
classmates.

Lab Task

The purpose of this lab is to explore branch predictor architectures. To
implement you will extend the BranchPredictor class to implement your own branch
predictor. Logically, this branch predictor will hang off of the processor core and accept
branch address queries from the processor. Given a branch address, the branch predictor
will respond with a bit denoting whether the branch is taken or not taken. The Branch
Predictor class consists of the following functions:

makePrediction: This function will accept the address of a branch
instruction. The function will return true if the branch is predicted to be
taken and false otherwise.
updatePrediction: This function is a feedback from the processor core.
It will take parameters the branch address, your original prediction, the
actual direction of the branch. You will use this information to update
your internal branch predictor state as you see fit.

In the pin tool that we have implemented, when we encounter a branch instruction,

we will call makePrediction to get your prediction. We will then determine the correct
prediction and call your updatePrediction function.

Notice that your branch predictor will only need to predict whether the branch is
taken or not. You will not have to present a potential branch target. Your branch
predictor is allowed to use no more than 33 Kilobits of persistent storage. Using more

Assigned Mar. 7, 2016 6.823 Lab 2 Due Mar. 18, 2016

than 33 Kilobits will disqualify your branch predictor from the competition portion of the
assignment. Needless to say, this would be extremely detrimental to your grade. You
may these bits in any manner you see fit, and you may use any amount of computation
that your branch predictor requires. At the end of the execution, we will dump statistics
about the performance of your branch predictor, which we will track in our code.

As a side note, the sub-field of computer architecture related to branch prediction
is rather rich and contains many important ideas. Although implementing the branch
predictors proposed in class will likely obtain half of the correctness credit, if you hope to
beat the TA’s reference branch predictor, you will probably have to do some research on
your own.

Although your solution will not be graded on its performance in terms of wall
clock time, you should note that your Teaching Assistants are impatient people. The TA
solution runs the sample testbench in less than one hour on the class machines (with
nominal load). For grading purposes, we will allow your pin tool to run for an order of
magnitude more time than ours requires (around ten hours). After ten hours, we will kill
your submission and assign a grade based on progress to that point. Do not write
horrendously inefficient code: it makes kittens sad.

When you have completed the lab to your satisfaction, submit your changes to the
svn repository. The deadline for submission is 23:59:59 EDT 18 March 2016. We'll grade
whatever code you have checked in by the deadline. No Late Submissions will be
accepted! Seriously.

Lab Questions

Your response to the lab questions should be typed in lab2questions.pdf (or
lab2questions.doc) in the lab2handout directory. The course material necessary to answer
some of the questions will be covered after the distribution of this handout, so if some of
the material looks foreign, it probably just hasn't been covered yet. Some questions may
require coding, and as such should not be put off until the last minute.

1. It’s absolutely pitiful to code like that. Your TAs have written the lab handout in
a slightly suboptimal way, in terms of simulation speed. Figure out the
inefficiency and fix it. Explain your change. Does it make a big difference in
speed?

2. Hardware? Don’t talk about hardware. Explain the operation of your
implementation. Detail the general algorithm that you used and explain why you
chose it. Why does the algorithm that you finally chose outperform the other
algorithms you tested and those discussed in class? Describe how you allocated
the storage bits of your branch predictor. Don’t forget to cite your sources.

3. Are you kidding me? Hardware? We gave you unlimited computation to
develop your branch predictor. Could your implementation be built into a
processor? Why or why not. Discuss which elements of your algorithm would
cause problems if implemented in silicon.

Assigned Mar. 7, 2016 6.823 Lab 2 Due Mar. 18, 2016

4. I’m just hoping we can implement a software model. The branch predictor you
implemented is likely to be missing several of the elements of a real branch
predictor. For example, in a real machine several predictions might be made
before an update occurs. Why might that happen? Explain the consequences of
this on your predictor in terms of impact on prediction and hardware changes that
might be added to address that impact. Don’t neglect the impact on mispeculation
recovery.

When you have answered these questions to your satisfaction, put them in a file

called lab2questions.pdf (or lab2questions.doc) in your lab2handout directory, then run
the following to add them and commit them.

% svn add lab2questions.pdf
% svn commit -m "Lab 2 Questions Check-In"

As with the lab code, we'll grade whatever you have checked in by the deadline.

Lab Grading

10%: Submission compiles
60% - Competitive grade based on the following break-down based on aggregate
performance on the public and private benchmarks

20% - below 80% accuracy
30% - Any implementation achieving greater than 80% accuracy
40% - Any implementation achieving 90% accuracy on the benchmarks
50% - Any implementation achieving 95% accuracy on the benchmarks
60% - Any implementation achieving 98% accuracy on the benchmarks

30% - Quality of lab question responses.

Advice on Mine Sweeping

There may be bugs in either our code or infrastructure. If you notice any `interesting' or
`unexpected' behavior it could be a problem in the code or infrastructure that we
provided. Report these bugs immediately to the TA, preferably in an email with the
subject 6.823 Bug Report. This will help to ensure prompt fixing of any issues that may
arise.

Guides for the perplexed

http://www.pintool.org/ - Pin home page
http://tig.csail.mit.edu/twiki/bin/view/TIG/UsingSubversionAtCSAIL – an SVN tutorial

