
 6.823
Computer System Architecture

 Lab 3
Assigned Apr. 5, 2016 Worth 5% of Course Grade Due Apr. 15, 2016

http://csg.csail.mit.edu/6.823/

Summary

Many modern multi-core computer systems support shared memory in hardware.
In a shared memory system, each of the processor cores may read and write to a single
shared address space. Cache coherence protocols, that manage the read and write
permissions of data in various caches, are an important component in ensuring the correct
operation of shared caches in a multi-core system.

Cache coherence protocols are challenging to design, in particular due to the
multitude of races and corner cases. Verifying their correctness is a necessary, but very
difficult aspect of the process. Sophisticated protocols have been developed and verified.
However, this remains an active research area. In this assignment, we will design and
verify a cache coherence protocol for a multi-core system.

To verify our coherence protocol, we will use Murphi, a formal verification tool.
Murphi employs model checking to verify the correctness of the specified coherence
protocol. Model checking is an automated technique, that given a finite-state model of a
system and a set of formal properties, checks if the properties hold for all valid states of
the system, in that model. More concretely, we will describe the finite-state machine
corresponding to the coherence protocol in the Murphi description language, and
enumerate a set of desired properties or invariants. The Murphi verifier will
systematically enumerate the entire state space, and check that the specified invariants are
not violated.

Murphi may be downloaded from the following web page:
http://formalverification.cs.utah.edu/software/murphi/. However, we have provided you
the necessary materials in the lab repository. As always, this lab is to be completed
individually. You are encouraged to discuss lab concepts with fellow classmates.

Setting up

To obtain the materials for lab 3, use the following commands, assuming that you start in
your individual repository (cd $USER) from the previous lab:

 % svn export $LAB3ROOT
 % svn add lab3handout
 % svn commit -m "Lab 3 Initial Check-in"

Assigned Apr. 5, 2016 6.823 Lab 3 Due Apr. 15, 2016

 In the lab3handount directory that just got created, you should find the Murphi
source code and a protocol sub-folder, which contains some examples and the framework
code to get you started. Type the following at the command prompt:

 % cd lab3handout

 First, we will build the Murphi compiler.

% cd Murphi/src
% make mu
% make install
% ln -s ../bin/mu.x86_64 ../bin/mu

 Let us test a simple model. Run the following commands (assuming you start
from lab3handout):
 % cd protocol
 % ../Murphi/bin/mu pingpong.m

pingpong.m contains a simple example written in the Murphi description
language. Running it through the Murphi compiler should generate pingpong.C file.
 % make pingpong

This builds the final verifier, which you can run as:
 % ./pingpong -v

 You can find other examples in the Murphi source code directory
(…/Murphi/ex). The Murphi user manual is a useful resource to understand the
language constructs. It is available within the Murphi source code directory
(…/Murphi/doc/User.Manual).

Lab Task

You will design and verify an invalidation-based cache coherence protocol. The protocol
you develop will have a number of characteristics:

1. It uses an interconnect network that supports only point-to-point communication.
All communication is done by sending and receiving messages. The interconnect
network may reorder messages arbitrarily. It may delay messages, but it will
always deliver messages eventually. Messages are never lost, corrupted or
replicated. Message delivery cannot be assumed to be in the same order as they
were sent, even for the same sender and receiver pair.

2. At the receiving side of the interconnect system, messages are delivered to a
receive port. Once a message has been delivered to the receive port, it will block
all subsequent messages to this port until the message is read. Consider this
behavior equivalent to that of a mail-box with room for only one letter: you have
to remove the letter from the mailbox before you can receive the next one. On the

Assigned Apr. 5, 2016 6.823 Lab 3 Due Apr. 15, 2016

sending side, there is no such restriction: you can always send messages. The
interconnect system has enough buffer space to queue messages.

3. For the purpose of this assignment, you may assume that there is no limit on the
buffer space in the interconnect system. However, your protocol will be
considered broken if there is a way to generate an infinite number of undelivered
messages. Besides, you will not be able to verify your protocol in this case.

4. You may assume that the interconnect network supports multiple lanes (i.e.,
virtual channels). For each lane, you have a separate set of send- and receive-ports
for each unit. Traffic on one lane is independent of traffic on the other lanes.
Messages will never switch lanes. Note that using fewer lanes is better.

5. Each processor has a dedicated cache that is not shared with any other processor.
All caches must be kept coherent by your cache coherence protocol. Processors
may issue load and store operations only. Because this assignment only deals with
cache coherence and not with consistency issues, you will be concerned with only
one storage location (address). However, you need to model cache conflicts. To
do this, you need to model a third operation besides load and store: a cache write-
back. Write-backs normally arise from a cache conflict if the old line is dirty.
Write-back operations may occur at any time between any pair of load/store
operations. If the cache is in a clean state, you may simply set it to be invalid or
take the appropriate action according to your coherence protocol. Cache
replacements of dirty lines must obviously write the line back to memory.

6. You should assume that the coherence unit is equal to one word and that all loads
and stores read or write the entire word.

7. Besides processors with their caches, there is one memory unit in your system.
The memory unit has a directory-based cache-consistency controller which
ensures that only one processor can write to the memory block at a time
(exclusive-ownership style protocol). The directory representation is unimportant
for this assignment. You should assume that you have a full directory (bit vector)
that can keep track of all sharers.

8. The interconnect system can send messages from any unit to any other unit. It is
OK if your protocol requires that a cache controller has to send a message to
another cache controller.

For this assignment, your cache coherence protocol should not worry about consistency
issues. Because of that, you may assume that the memory of this machine has only one
word. Your protocol has to make sure that loads from up to three (3) processors always
return the value of the most recent stores. In this context, this means that loads and stores
issued by one processor are seen by that processor in program order.

The baseline protocol shall deliver data always in the state needed by the requesting
processor. In other words, do not bother with speculating on supplying data in an
exclusive state for a normal load. Exclusivity is always a consequence of a store.
Therefore, in this case you only have 3 cache states: I = invalid, S = shared (read-only)
and M = modified (exclusive and dirty). The memory unit could be regarded as a home-
node without a processor, so it will never do anything on its own. For example, it will
never issue an unsolicited recall-request.

Assigned Apr. 5, 2016 6.823 Lab 3 Due Apr. 15, 2016

3-hop vs 4-hop protocol:

A simple incarnation of the MSI protocol is the 4-hop protocol, where the directory is
responsible for satisfying all data requests from the processors. Here, all requests for data
are satisfied with at most 4 hops (one such 4-hop transaction is show in Figure 1).

P1 D P2

1:	ShReq 2:	Downgrade

DirectoryProcessor	1 Processor	2

3:	Data4:	Data

Figure	1:	4-hop	transaction.	Assume	P2	originally	has	the	address	in	M	state.	
When	P1	issues	a	ShReq,	the	directory	D	issues	a	downgrade	request	to	P2,	
which	writes	back	the	data	to	the	directory,	which	then	forwards	it	to	the	
requestor	P1.	

An optimization to reduce the latency of requests, is to allow P2 to respond to P1 directly
with the data in the above scenario. The resulting transaction is shown in Figure 2.
Allowing such forwarding of requests transforms the protocol to a 3-hop protocol.

P1 D P2

1:	ShReq 2:	FwdReadReq

DirectoryProcessor	1 Processor	2

Data

3:	Data

Figure	2:	3-hop	transaction.	P2	originally	has	the	address	in	M	state.	When	P1	
issues	a	ShReq,	the	directory	instead	of	issuing	just	a	downgrade	request,	sends	a	
FwdReadReq	which	contains	the	id	of	the	requestor.	P2	then	sends	the	data	to	
both	the	directory	and	P1,	and	also	downgrades	to	the	S	state.	

Assigned Apr. 5, 2016 6.823 Lab 3 Due Apr. 15, 2016

Your task is to write a 3-hop directory-based cache-coherence protocol based on
the MSI protocol discussed in the lecture.

To help you get started we have provided you a framework code in
protocol/msi.m. In addition, we have also provided a 4-hop Valid-Invalid (VI)
protocol in protocol/twostate.m. along with some guidelines on how you may
proceed in developing your MSI protocol. While the 3-hop MSI protocol is slightly more
complex, it may help to get started with the 4-hop MSI protocol, and then enable the
forwarding optimization. We will grant partial credit for turning in a correct 4-hop MSI
protocol.

Although your solution will not be graded on its performance in terms of wall
clock time, you should note that your Teaching Assistants are impatient people. The TA
solution runs in around 2 seconds on the class machines. For grading purposes, we will
allow your tool to run for upto half an hour. After half an hour, we will kill your
submission and assign a grade accordingly.

When you have completed the lab to your satisfaction, submit your changes to the

svn repository. The deadline for submission is 23:59:59 EDT 15 April 2016. We'll grade
whatever code you have checked in by the deadline. No Late Submissions will be
accepted! Seriously.

Lab Deliverables

Your final deliverable will be a 3-hop MSI protocol, specified and verified using the
Murphi language. You should also turn in the following:

(1) A description of your protocol.
(2) State transition diagram(s) documenting the complete state machine for your

protocol.
(3) The output from Murphi showing the no errors were found, the number of states

explored and running time.

When you have answered these questions to your satisfaction, put them in a file
called lab3questions.pdf (or lab3questions.doc) in your lab3handout directory, then run
the following to add them and commit them.

% svn add lab3questions.pdf
% svn commit -m "Lab 3 Questions Check-In"

 As with the lab code, we'll grade whatever you have checked in by the deadline.

Assigned Apr. 5, 2016 6.823 Lab 3 Due Apr. 15, 2016

Lab Grading

10%: Submission compiles
50%: Correct 4-hop MSI protocol
20%: Correct 3-hop MSI protocol
30%: Quality of lab response

Advice on Mine Sweeping

There may be bugs in either our code or infrastructure. If you notice any `interesting' or
`unexpected' behavior it could be a problem in the code or infrastructure that we
provided. Report these bugs immediately to the TA, preferably in an email with the
subject 6.823 Bug Report. This will help to ensure prompt fixing of any issues that may
arise.

Guides for the perplexed

http://formalverification.cs.utah.edu/software/murphi/ - Murphi home page
http://tig.csail.mit.edu/twiki/bin/view/TIG/UsingSubversionAtCSAIL – an SVN tutorial

Acknowledgements

Brian T. Gold, Carnegie Mellon University

