
http://www.csg.csail.mit.edu/6.823

L02-1

Daniel Sanchez
Computer Science & Artificial Intelligence Lab

M.I.T.

Instruction Set Architecture &

Hardwired, Non-pipelined ISA

Implementation

Sanchez & Emer

The IBM 650 (1953-4)

[From 650 Manual, © IBM]

Magnetic Drum

(1,000 or 2,000

10-digit decimal

words)

20-digit

accumulator

Active instruction

(including next

program counter)

Digit-serial

ALU

February 8, 2016

L02-2

Sanchez & Emer

Programmer’s view of a machine:
IBM 650

A drum machine with 44 instructions

Instruction: 60 1234 1009

• “Load the contents of location 1234 into the
distribution; put it also into the upper accumulator;
set lower accumulator to zero; and then go to
location 1009 for the next instruction.”

• Programmer’s view of the machine was

inseparable from the actual hardware
implementation

• Good programmers optimized the
placement of instructions on the drum to
reduce latency!

February 8, 2016

L02-3

Sanchez & Emer

Compatibility Problem at IBM

By early 60’s, IBM had 4 incompatible lines of
computers!

701 7094
650 7074
702 7080
1401 7010

Each system had its own
• Instruction set
• I/O system and Secondary Storage:
 magnetic tapes, drums and disks
• assemblers, compilers, libraries,...
• market niche
 business, scientific, real time, ...

 IBM 360

February 8, 2016

L02-4

Sanchez & Emer

IBM 360: Design Premises
Amdahl, Blaauw and Brooks, 1964

The design must lend itself to growth and
successor machines

• General method for connecting I/O devices

• Total performance - answers per month rather than bits
per microsecond programming aids

• Machine must be capable of supervising itself without
manual intervention

• Built-in hardware fault checking and locating aids to
reduce down time

• Simple to assemble systems with redundant I/O devices,
memories etc. for fault tolerance

• Some problems required floating point words larger than
36 bits

February 8, 2016

L02-5

Sanchez & Emer

Processor State and Data Types

• If the processing of an instruction can be interrupted
then the hardware must save and restore the state in
a transparent manner

The information held in the processor at the end of
an instruction to provide the processing context for
the next instruction.

Program Counter, Accumulator, . . .

Programmer’s machine model is a contract
between the hardware and software

• The information held in the processor will be
interpreted as having data types manipulated by the
instructions.

February 8, 2016

L02-6

Sanchez & Emer

Instruction set

Some things an ISA must specify:
• A way to reference registers and memory
• The computational operations available
• How to control the sequence of instructions

• A binary representation for all of the above

The control for changing the information held in the
processor are specified by the instructions available
in the instruction set architecture or ISA.

ISA must satisfy the needs of the software:
 - assembler, compiler, OS, VM

February 8, 2016

L02-7

Sanchez & Emer

IBM 360: A General-Purpose
Register (GPR) Machine

• Processor State

– 16 General-Purpose 32-bit Registers

– 4 Floating Point 64-bit Registers

– A Program Status Word (PSW)

• PC, Condition codes, Control flags

• Data Formats
– 8-bit bytes, 16-bit half-words, 32-bit words, 64-bit

double-words

– 24-bit addresses

• A 32-bit machine with 24-bit addresses

– No instruction contains a 24-bit address!

• Precise interrupts

February 8, 2016

L02-8

Sanchez & Emer

IBM 360: Initial Implementations (1964)

 Model 30 . . . Model 70

Memory Capacity 8K - 64 KB 256K - 512 KB

Memory Cycle 2.0µs ... 1.0µs

Datapath 8-bit 64-bit

Circuit Delay 30 nsec/level 5 nsec/level

Registers in Main Store in Transistor

Control Store Read only 1sec Dedicated circuits

• Six implementations (Models, 30, 40, 50, 60, 62, 70)

• 50x performance difference across models

• ISA completely hid the underlying technological
differences between various models

 With minor modifications, IBM 360 ISA is still in use

February 8, 2016

L02-9

Sanchez & Emer

IBM 360: Forty-Six years later…
zEnterprise196 Microprocessor
• 1.4 billion transistors, Quad core design

• Up to 96 cores (80 visible to OS) in one
multichip module

• 5.2 GHz, IBM 45nm SOI CMOS technology

• 64-bit virtual addressing
– original 360 was 24-bit; 370 was a 31-bit

extension

• Superscalar, out-of-order
– Up to 72 instructions in flight

• Variable length instruction pipeline: 15-17
stages

• Each core has 2 integer units, 2 load-store
units and 2 floating point units

• 8K-entry Branch Target Buffer
– Very large buffer to support commercial workloads

• Four Levels of caches:
– 64KB L1 I-cache, 128KB L1 D-cache

– 1.5MB L2 cache per core

– 24MB shared on-chip L3 cache

– 192MB shared off-chip L4 cache

[September 2010]

February 8, 2016

L02-10

Sanchez & Emer

Instruction Set Architecture
(ISA) versus Implementation

• ISA is the hardware/software interface
– Defines set of programmer visible state

– Defines data types

– Defines instruction semantics (operations, sequencing)

– Defines instruction format (bit encoding)

– Examples: MIPS, Alpha, x86, IBM 360, VAX, ARM, JVM

• Many possible implementations of one ISA
– 360 implementations: model 30 (c. 1964),

zEnterprise196 (c. 2010)

– x86 implementations: 8086 (c. 1978), 80186, 286,
386, 486, Pentium, Pentium Pro, Pentium-4, Core i7,
AMD Athlon, AMD Opteron, Transmeta Crusoe, SoftPC

– MIPS implementations: R2000, R4000, R10000, ...

– JVM: HotSpot, PicoJava, ARM Jazelle, ...

February 8, 2016

L02-11

Sanchez & Emer

Processor Performance

Microarchitecture CPI cycle time

Microcoded >1 short

Single-cycle unpipelined 1 long

Pipelined 1 short

 Time = Instructions Cycles Time
 Program Program * Instruction * Cycle

– Instructions per program depends on source code, compiler
technology and ISA

– Cycles per instructions (CPI) depends upon the ISA and the
microarchitecture

– Time per cycle depends upon the microarchitecture and the
base technology

rest of
this lecture

February 8, 2016

L02-12

Sanchez & Emer

Hardware Elements

• Combinational circuits
– Mux, Demux, Decoder, ALU, ...

• Synchronous state elements
– Flipflop, Register, Register file, SRAM, DRAM

Edge-triggered: Data is sampled at the rising edge

Clk

D

Q

En
ff

Q

D

Clk

En

OpSelect
 - Add, Sub, ...

 - And, Or, Xor, Not, ...
 - GT, LT, EQ, Zero, ...

Result

Comp?

A

B

ALU

Sel

O

A0

A1

An-1

Mux . . .

lg(n)

Sel

O0

O1

On-1

A

D
e
m

u
x

. . .

lg(n)

A

D
e
c
o
d
e
r

. . .

O0

O1

On-1

lg(n)

February 8, 2016

L02-13

Sanchez & Emer

Register Files

No timing issues in reading a selected register

ReadData1 ReadSel1

ReadSel2

 WriteSel

Register
file

2R+1W

ReadData2

 WriteData

WE Clock

rd1 rs1

rs2

ws

wd

rd2

we

ff

Q0

D0

Clk

En
ff

Q1

D1

ff

Q2

D2

ff

Qn-1

Dn-1

...

...

...

register

February 8, 2016

L02-14

Sanchez & Emer

Register File Implementation

• Register files with a large number of
ports are difficult to design
– Area scales with ports2

– Almost all Alpha instructions have exactly 2
register source operands

– Intel’s Itanium GPR File has 128 registers with 8
read ports and 4 write ports!!!

reg 31

ws clk

reg 1

wd

we

rs1
rd1 rd2

reg 0

…

32

…

5
32 32

…

rs2 5

5

1

February 8, 2016

L02-15

Sanchez & Emer

A Simple Memory Model

• Reads and writes are always completed in
one cycle
– A Read can be done any time (i.e., combinational)

– If enabled, a Write is performed at the rising clock edge

 (the write address and data must be stable at the
clock edge)

MAGIC
 RAM

ReadData

WriteData

Address

WriteEnable

Clock

Later in the course we will present a more realistic
model of memory

February 8, 2016

L02-16

http://www.csg.csail.mit.edu/6.823

L02-17

Implementing MIPS:
 Single-cycle per instruction

datapath & control logic

Sanchez & Emer

The MIPS ISA

Processor State
32 32-bit GPRs, R0 always contains a 0
32 single precision FPRs, may also be viewed as

16 double precision FPRs
FP status register, used for FP compares & exceptions
PC, the program counter
Some other special registers

Data types
8-bit byte, 16-bit half word
32-bit word for integers
32-bit word for single precision floating point
64-bit word for double precision floating point

Load/Store style instruction set
Data addressing modes: immediate & indexed
Branch addressing modes: PC relative & register indirect
Byte-addressable memory, big-endian mode

 All instructions are 32 bits
February 8, 2016

L02-18

Sanchez & Emer

Instruction Execution

Execution of an instruction involves

1. Instruction fetch
2. Decode
3. Register fetch
4. ALU operation
5. Memory operation (optional)
6. Write back

And computing the address of the
next instruction (next PC)

February 8, 2016

L02-19

Sanchez & Emer

Datapath: Reg-Reg ALU
Instructions

RegWrite Timing?
 6 5 5 5 5 6
 0 rs rt rd 0 func rd (rs) func (rt)

31 26 25 21 20 16 15 11 5 0

0x4

Add

clk

addr
inst

Inst.

Memory

PC

inst<25:21>
inst<20:16>

inst<15:11>

inst<5:0>

OpCode

z
ALU

ALU

Control

RegWrite

clk

rd1

GPRs

rs1
rs2

ws
wd rd2

we

February 8, 2016

L02-20

Sanchez & Emer

Datapath: Reg-Imm ALU
Instructions

 6 5 5 16
opcode rs rt immediate rt (rs) op immediate

31 26 25 2120 16 15 0

Imm
Ext

ExtSel

inst<15:0>

OpCode

0x4

Add

clk

addr
inst

Inst.

Memory

PC

z
ALU

RegWrite

clk

rd1

GPRs

rs1
rs2

ws
wd rd2

we inst<25:21>

inst<20:16>

inst<31:26> ALU
Control

February 8, 2016

L02-21

Sanchez & Emer

Conflicts in Merging Datapath

Imm
Ext

ExtSel OpCode

0x4

Add

clk

addr
inst

Inst.

Memory

PC

z
ALU

RegWrite

clk

rd1

GPRs

rs1
rs2

ws
wd rd2

we inst<25:21>

inst<20:16>

inst<15:0>

inst<31:26> ALU
Control

inst<15:11>

inst<5:0>

opcode rs rt immediate rt (rs) op immediate

 6 5 5 5 5 6
 0 rs rt rd 0 func rd (rs) func (rt)

Introduce
muxes

February 8, 2016

L02-22

Sanchez & Emer

Datapath for ALU Instructions

<31:26>, <5:0>

opcode rs rt immediate rt (rs) op immediate

 6 5 5 5 5 6
 0 rs rt rd 0 func rd (rs) func (rt)

BSrc

Reg / Imm
RegDst

rt / rd

Imm
Ext

ExtSel OpCode

0x4

Add

clk

addr
inst

Inst.

Memory

PC

z
ALU

RegWrite

clk

rd1

GPRs

rs1
rs2

ws
wd rd2

we <25:21>

<20:16>

<15:0>

OpSel

ALU
Control

<15:11>

February 8, 2016

L02-23

Sanchez & Emer

Datapath for Memory
Instructions

Should program and data memory be separate?

Harvard style: separate (Aiken and Mark 1 influence)
- read-only program memory
- read/write data memory

- Note:
There must be a way to load the program memory

Princeton style: the same (von Neumann’s influence)

- single read/write memory for program and data

- Note:
Executing a Load or Store instruction requires accessing
the memory more than once

February 8, 2016

L02-24

Sanchez & Emer

Load/Store Instructions
Harvard Datapath

WBSrc

ALU / Mem

rs is the base register
rt is the destination of a Load or the source for a Store

 6 5 5 16 addressing mode
opcode rs rt displacement (rs) + displacement

31 26 25 21 20 16 15 0

RegDst BSrc

“base”

disp

ExtSel OpCode OpSel

ALU
Control

z
ALU

0x4

Add

clk

addr
inst

Inst.

Memory

PC

RegWrite

clk

rd1

GPRs

rs1
rs2

ws
wd rd2

we

Imm
Ext

clk

MemWrite

addr

wdata

rdata
Data

Memory

we

February 8, 2016

L02-25

Sanchez & Emer

MIPS Control Instructions

Conditional (on GPR) PC-relative branch

Unconditional register-indirect jumps

Unconditional absolute jumps

• PC-relative branches add offset4 to PC+4 to calculate the

target address (offset is in words): 128 KB range
• Absolute jumps append target4 to PC<31:28> to calculate

the target address: 256 MB range
• Jump-&-link stores PC+4 into the link register (R31)
• Control transfers are not delayed

we will worry about the branch delay slot later

 6 5 5 16
opcode rs offset BEQZ, BNEZ

 6 26
opcode target J, JAL

 6 5 5 16
opcode rs JR, JALR

February 8, 2016

L02-26

Sanchez & Emer

Conditional Branches (BEQZ, BNEZ)

0x4

Add

PCSrc

clk

WBSrc MemWrite

addr

wdata

rdata
Data

Memory

we

RegDst BSrc ExtSel OpCode

z

OpSel

clk

zero?

clk

addr
inst

Inst.

Memory

PC rd1

GPRs

rs1
rs2

ws
wd rd2

we

Imm

Ext

ALU

ALU
Control

Add

br

pc+4

RegWrite

February 8, 2016

L02-27

Sanchez & Emer

Register-Indirect Jumps (JR)

0x4

RegWrite

Add

Add

clk

WBSrc MemWrite

addr

wdata

rdata
Data

Memory

we

RegDst BSrc ExtSel OpCode

z

OpSel

clk

zero?

clk

addr
inst

Inst.

Memory

PC rd1

GPRs

rs1
rs2

ws
wd rd2

we

Imm

Ext

ALU

ALU
Control

PCSrc

br

pc+4

rind

February 8, 2016

L02-28

Sanchez & Emer

Register-Indirect Jump-&-Link
(JALR)

0x4

RegWrite

Add

Add

clk

WBSrc MemWrite

addr

wdata

rdata
Data

Memory

we

RegDst BSrc ExtSel OpCode

z

OpSel

clk

zero?

clk

addr
inst

Inst.

Memory

PC rd1

GPRs

rs1
rs2

ws
wd rd2

we

Imm

Ext

ALU

ALU
Control

31

PCSrc

br

pc+4

rind

February 8, 2016

L02-29

Sanchez & Emer

Absolute Jumps (J, JAL)

0x4

RegWrite

Add

Add

clk

WBSrc MemWrite

addr

wdata

rdata
Data

Memory

we

RegDst BSrc ExtSel OpCode

z

OpSel

clk

zero?

clk

addr
inst

Inst.

Memory

PC rd1

GPRs

rs1
rs2

ws
wd rd2

we

Imm

Ext

ALU

ALU
Control

31

PCSrc

br

pc+4

rind
jabs

February 8, 2016

L02-30

Sanchez & Emer

Harvard-Style Datapath for
MIPS

0x4

RegWrite

Add

Add

clk

WBSrc MemWrite

addr

wdata

rdata
Data

Memory

we

RegDst BSrc ExtSel OpCode

z

OpSel

clk

zero?

clk

addr
inst

Inst.

Memory

PC rd1

GPRs

rs1
rs2

ws
wd rd2

we

Imm

Ext

ALU

ALU
Control

31

PCSrc

br

rind
jabs

pc+4

February 8, 2016

L02-31

Sanchez & Emer

Hardwired Control is pure
Combinational Logic

combinational
logic

op code

zero?

ExtSel

BSrc

OpSel

MemWrite

WBSrc

RegDst

RegWrite

PCSrc

February 8, 2016

L02-32

Sanchez & Emer

ALU Control & Immediate
Extension

Inst<31:26> (Opcode)

Decode Map

Inst<5:0> (Func)

ALUop

0?

+

OpSel

(Func, Op, +, 0?)

ExtSel

(sExt16, uExt16,
 High16)

February 8, 2016

L02-33

Sanchez & Emer

Hardwired Control Table

Opcode ExtSel BSrc OpSel MemW RegW WBSrc RegDst PCSrc

ALU

ALUi

ALUiu

LW

SW

BEQZz=0

BEQZz=1

J

JAL

JR

JALR

BSrc = Reg / Imm WBSrc = ALU / Mem / PC

RegDst = rt / rd / R31 PCSrc = pc+4 / br / rind / jabs

* * * no yes rind PC R31

rind * * * no no * *

jabs * * * no yes PC R31

jabs * * * no no * *

pc+4 sExt16 * 0? no no * *

br sExt16 * 0? no no * *

pc+4 sExt16 Imm + yes no * *

pc+4 Imm Op no yes ALU rt

pc+4 * Reg Func no yes ALU rd

sExt16 Imm Op pc+4 no yes ALU rt

pc+4 sExt16 Imm + no yes Mem rt

uExt16

February 8, 2016

L02-34

Sanchez & Emer

Single-Cycle Hardwired Control:
Harvard architecture

 We will assume
• clock period is sufficiently long for all of
 the following steps to be “completed”:

1. instruction fetch
2. decode and register fetch
3. ALU operation
4. data fetch if required
5. register write-back setup time
 tC > tIFetch + tRFetch + tALU+ tDMem+ tRWB

• At the rising edge of the following clock, the PC,
 the register file and the memory are updated

February 8, 2016

L02-35

Sanchez & Emer

Princeton challenge

At least the instruction fetch and a
Load (or Store) cannot be executed
in the same cycle

• What problem arises if
instructions and data reside
in the same memory?

Structural hazard

February 8, 2016

L02-36

Sanchez & Emer

Princeton Microarchitecture
Datapath & Control

IR

0x4

clk

RegDst

PCSrc
RegWrite

BSrc zero?

WBSrc

31

ExtSel OpCode

Add

rd1

GPRs

rs1
rs2

ws
wd rd2

we

Imm
Ext

addr

wdata

rdata
Data
Memory

z

ALU

Add

OpSel

ALU
Control

clk

we

MemWrite

clk

PC

PCen

IRen AddrSrc

clk

Fetch phase

on

off
off off

= PC

February 8, 2016

L02-37

Sanchez & Emer

Two-State Controller:
Princeton Architecture

fetch phase

execute phase
AddrSrc=ALU

IRen=off
PCen=on
Wen=on

AddrSrc=PC
IRen=on
PCen=off
Wen=off

A flipflop can be used to remember the phase

February 8, 2016

L02-38

Sanchez & Emer

Hardwired Controller:
Princeton Architecture

old
combinational

logic
(Harvard)

op code

zero?

ExtSel, BSrc, OpSel,
WBSrc, RegDest,
PCsrc1, PCsrc2

MemWrite

IR

new
combinational

logic

PCen
IRen
AddrSrc

S

1-bit Toggle FF
I-fetch / Execute

RegWrite

.

.

.

Wen

February 8, 2016

L02-39

Sanchez & Emer

Clock Rate vs CPI

Is it possible to design a controller for the
Princeton architecture with CPI < 2 ?

CPI = Clock cycles Per Instruction

Suppose tM >> tRF+ tALU + tWB

 tC-Princeton = 0.5 * tC-Harvard

 CPIPrinceton = 2
 CPIHarvard = 1

 No difference in performance!

Stay tuned!
February 8, 2016

 tC-Princeton > max {tM , tRF+ tALU+ tM + tWB}
 tC-Princeton > tRF+ tALU+ tM + tWB

tC-Harvard > tM + tRF + tALU+ tM+ tWB

L02-40

