
http://www.csg.csail.mit.edu/6.823 

Joel Emer 
Computer Science & Artificial Intelligence Lab 

M.I.T. 

Multithreading Architectures 



Sanchez & Emer March 28, 2016 http://www.csg.csail.mit.edu/6.823  

Pipeline Hazards 

• Each instruction may depend on 
the next 

LW r1, 0(r2) 

LW r5, 12(r1) 

ADDI r5, r5, #12 

SW 12(r1), r5 

F D X M W 

t0 t1 t2 t3 t4 t5 t6 t7 t8 

F D X M W D D D 

F D X M W D D D F F F 

F D D D D F F F 

t9 t10 t11 t12 t13 t14 

What can be done to cope with this? 

• Even bypassing, speculation and finding 
something else to do (via O-O-O) does not 
eliminate all delays 

L14-2 



Sanchez & Emer March 28, 2016 http://www.csg.csail.mit.edu/6.823  

Multithreading 

How can we guarantee no dependencies 
between instructions in a pipeline? 

F D X M W 

t0 t1 t2 t3 t4 t5 t6 t7 t8 

T1: LW r1, 0(r2) 

T2: ADD r7, r1, r4 

T3: XORI r5, r4, #12 

T4: SW 0(r7),  r5 

T1: LW r5, 12(r1) 

t9 

F D X M W 

F D X M W 

F D X M W 

F D X M W 

Interleave 4 threads, T1-T4, on non-bypassed 5-stage pipe 

Prior instruction in 
a thread always 
completes write-
back before next 
instruction in 
same thread reads 
register file 

Take instructions from 
different programs 

L14-3 



Sanchez & Emer March 28, 2016 http://www.csg.csail.mit.edu/6.823  

CDC 6600 Peripheral Processors 
(Cray, 1964) 

• First commercial multithreaded hardware 
• 10 “virtual” I/O processors 
• Fixed interleave on simple pipeline 
• Pipeline has 100ns cycle time 
• Each virtual processor executes one instruction every 1000ns 

L14-4 



Sanchez & Emer March 28, 2016 http://www.csg.csail.mit.edu/6.823  

Simple Multithreaded Pipeline 

Have to carry thread select down pipeline 
to ensure correct state bits read/written 
at each pipe stage 

+1 

2 Thread 

select 

PC 

1 
PC 

1 
PC 

1 
PC 

1 

I$ IR 
GPR1 GPR1 GPR1 GPR1 

X 

Y 

2 

D$ 

L14-5 



Sanchez & Emer March 28, 2016 http://www.csg.csail.mit.edu/6.823  

Multithreading Costs 

• Each thread needs its own user architectural state 

–  PC 

–  GPRs (CDC6600 PPUs – accumulator-based architecture) 

 

• Also, needs its own system architectural state 
– virtual memory page table base register 

– exception handling registers 

 

• Other costs? 
 

• Appears to software (including OS) as multiple, 
albeit slower, CPUs 

L14-6 



Sanchez & Emer March 28, 2016 http://www.csg.csail.mit.edu/6.823  

Thread Scheduling Policies 

• Fixed interleave (CDC 6600 PPUs, 1965) 
– each of N threads executes one instruction every N cycles 
– if thread not ready to go in its slot, insert pipeline bubble 

 
 

• Software-controlled interleave (TI ASC PPUs, 1971) 
– OS allocates S pipeline slots amongst N threads 
– hardware performs fixed interleave over S slots, executing 

whichever thread is in that slot 
 
 

• Hardware-controlled thread scheduling (HEP, 1982) 
– hardware keeps track of which threads are ready to go 
– picks next thread to execute based on hardware priority 

scheme 
 

L14-7 



Sanchez & Emer March 28, 2016 http://www.csg.csail.mit.edu/6.823  

Denelcor HEP 
(Burton Smith, 1982) 

First commercial machine to use hardware threading in main CPU 

– 120 threads per processor 

– 10 MHz clock rate 

– Up to 8 processors 

– precursor to Tera MTA (Multithreaded Architecture) 

L14-8 



Sanchez & Emer March 28, 2016 http://www.csg.csail.mit.edu/6.823  

Tera MTA (1990-97) 

• Up to 256 processors 
• Up to 128 active threads per processor 
• Processors and memory modules populate a sparse 

3D torus interconnection fabric 
• Flat, shared main memory 

–  No data cache 
–  Sustains one main memory access per cycle per processor 

• GaAs logic in prototype, 1KW/processor @ 260MHz 
–  CMOS version, MTA-2, 50W/processor 

L14-9 



Sanchez & Emer March 28, 2016 http://www.csg.csail.mit.edu/6.823  

MTA Architecture 

• Each processor supports 128 active hardware threads 
–  1 x 128 = 128 stream status word (SSW) registers,  
–  8 x 128 = 1024 branch-target registers,  
– 32 x 128 = 4096 general-purpose registers 

 

• Three operations packed into 64-bit instruction (short VLIW) 
– One memory operation, 
– One arithmetic operation, plus 
– One arithmetic or branch operation 

 

• Thread creation and termination instructions 
 

• Explicit 3-bit “lookahead” field in instruction gives number of 
subsequent instructions (0-7) that are independent of this 
one 
– c.f. instruction grouping in VLIW 
– allows fewer threads to fill machine pipeline 
– used for variable-sized branch delay slots 

L14-10 



Sanchez & Emer March 28, 2016 http://www.csg.csail.mit.edu/6.823  

MTA Pipeline 

A 

W 

C 

W 

M 

Inst Fetch 

M
e

m
o

ry
 P

o
o

l 

Retry Pool 

Interconnection Network 

W
ri

te
 P

o
o

l 

W 

Memory pipeline 

Issue Pool • Every cycle, one 
instruction from one 
active thread is 
launched into pipeline 

• Instruction pipeline 
is 21 cycles long 

• Memory operations 
incur ~150 cycles of 
latency 

Assuming a single thread issues one 
instruction every 21 cycles, and clock 
rate is 260 MHz… 

What is single thread performance?  

Effective single thread issue rate 
is 260/21 = 12.4 MIPS 

L14-11 



Sanchez & Emer March 28, 2016 http://www.csg.csail.mit.edu/6.823  

Coarse-Grain Multithreading 

Tera MTA designed for supercomputing 
applications with large data sets and low 
locality 

– No data cache 

– Many parallel threads needed to hide large 
memory latency 

 

Other applications are more cache friendly 

– Few pipeline bubbles when cache getting hits 

– Just add a few threads to hide occasional 
cache miss latencies 

– Swap threads on cache misses 

 

L14-12 



Sanchez & Emer March 28, 2016 http://www.csg.csail.mit.edu/6.823  

Multithreading Design Choices 

• Fine-grained multithreading 
– Context switch among threads every cycle 

• Coarse-grained multithreading 
– Context switch among threads every few cycles, e.g., on: 

• Function unit data hazard, 

• L1 miss,  

• L2 miss… 
 

• Why choose one style over another? 
 

• Choice depends on 
– Context-switch overhead 

– Number of threads supported (due to per-thread state) 

– Expected application-level parallelism… 

L14-13 



Sanchez & Emer 

TX-2: Multi-sequence computer 
(Wes Clark, Lincoln Labs, 1956) 

• Start-Over  

• In-out alarms 

• Arithmetic alarms (overflows, etc.) 

• Magnetic tape units (multiple) 

• High-speed printer 

• Analog-to-digital converter 

• Paper tape readers (multiple) 

• Light pen 

• Display (multiple) 

• Memory Test Computer 

• TX-O 

• Digital-to-analog converter 

• Paper tape punch 

• Flexowriters (multiple) 

• *Main sequences (three) 

March 28, 2016 http://www.csg.csail.mit.edu/6.823  

L14-14 

32 Instruction sequences (threads) with 

• a fixed priority order among the threads, and 

• executes many instructions in a thread - switches mediated by: 

– Instruction “break”/”dismiss” bits 

– Attention request from I/O 

 



Sanchez & Emer March 28, 2016 http://www.csg.csail.mit.edu/6.823  

MIT Alewife (1990) 

 

• Modified SPARC chips 
– register windows hold different 

thread contexts 

• Up to four threads per node 

• Thread switch on local cache 
miss 

L14-15 



Sanchez & Emer March 28, 2016 http://www.csg.csail.mit.edu/6.823  

IBM PowerPC RS64-IV (2000) 

• Commercial coarse-grain 
multithreading CPU 

• Based on PowerPC with quad-issue in-
order five-stage pipeline 

• Each physical CPU supports two virtual 
CPUs 

• On L2 cache miss, pipeline is flushed 
and execution switches to second 
thread 

– short pipeline minimizes flush penalty (4 
cycles), small compared to memory access 
latency 

– flush pipeline to simplify exception 
handling 

 

L14-16 



Sanchez & Emer March 28, 2016 http://www.csg.csail.mit.edu/6.823  

Superscalar Machine Efficiency 

• Why horizontal waste? 
• Why vertical waste? 

Issue width 

Time 

Completely idle cycle 

(vertical waste) 

Instruction 

issue 

Partially filled cycle, 

i.e., IPC < 4 

(horizontal waste) 

L14-17 



Sanchez & Emer March 28, 2016 http://www.csg.csail.mit.edu/6.823  

Vertical Multithreading 

• What is the effect of cycle-by-cycle interleaving? 
– removes vertical waste, but leaves some horizontal waste 

Issue width 

Time 

Second thread interleaved 

cycle-by-cycle 

Instruction 

issue 

Partially filled cycle, 

i.e., IPC < 4 

(horizontal waste) 

L14-18 



Sanchez & Emer March 28, 2016 http://www.csg.csail.mit.edu/6.823  

Chip Multiprocessing 

• What is the effect of splitting into multiple processors? 
– eliminates horizontal waste,  

– leaves some vertical waste, and  

– caps peak throughput of each thread. 

Issue width 

Time 

L14-19 



Sanchez & Emer March 28, 2016 http://www.csg.csail.mit.edu/6.823  

Ideal Superscalar Multithreading  
[Tullsen, Eggers, Levy, UW, 1995] 

• Interleave multiple threads to multiple issue 
slots with no restrictions 

Issue width 

Time 

L14-20 



Sanchez & Emer March 28, 2016 http://www.csg.csail.mit.edu/6.823  

O-o-O Simultaneous Multithreading 
[Tullsen, Eggers, Emer, Levy, Stamm, Lo, DEC/UW, 1996] 
 

• Add multiple contexts and fetch engines and 
allow instructions fetched from different 
threads to issue simultaneously 

 

• Utilize wide out-of-order superscalar processor 
issue queue to find instructions to issue from 
multiple threads 

 

• OOO instruction window already has most of 
the circuitry required to schedule from 
multiple threads 

 

• Any single thread can utilize whole machine 

L14-21 



Sanchez & Emer March 28, 2016 http://www.csg.csail.mit.edu/6.823  

Basic Out-of-order Pipeline 

Fetch Decode
/Map 

Queue Reg 
Read 

Execute Dcache
/Store 
Buffer 

Reg 
Write 

Retire 

PC 

Icache 

Register 

Map 

Dcache 
Regs Regs 

Thread-

blind 

[ EV8 – Microprocessor Forum, Oct 1999] 

L14-22 



Sanchez & Emer March 28, 2016 http://www.csg.csail.mit.edu/6.823  

SMT Pipeline 

Fetch Decode
/Map 

Queue Reg 
Read 

Execute Dcache
/Store 
Buffer 

Reg 
Write 

Retire 

Icache 

Dcache 

PC 

Register 

Map 

Regs Regs 

[ EV8 – Microprocessor Forum, Oct 1999] 

L14-23 



Sanchez & Emer March 28, 2016 http://www.csg.csail.mit.edu/6.823  

Icount Choosing Policy 

Why does this enhance throughput? 

Fetch from thread with the least instructions in flight. 

L14-24 



Sanchez & Emer March 28, 2016 http://www.csg.csail.mit.edu/6.823  

Why Does Icount Make Sense? 

                      N 

T    =   -------- 

               L 

                       N/4 

Ti/4    =   -------- 

                  L 

Assuming latency (L) is unchanged with the addition of threading. 
For each thread i with original throughput Ti: 

L14-25 



Sanchez & Emer March 28, 2016 http://www.csg.csail.mit.edu/6.823  

SMT Fetch Policies (Locks) 

• Problem: 
 Spin looping thread consumes resources 
 

• Solution: 
 Provide quiescing operation that allows a 
 thread to sleep until a memory location 
 changes 

 

loop: 

 ARM r1, 0(r2) 

 BEQ r1, got_it 

 QUIESCE 

 BR loop 

got_it: 

Load and start 
watching 0(r2) 

Inhibit scheduling of 
thread until activity 
observed on 0(r2) 

L14-26 



Sanchez & Emer March 28, 2016 http://www.csg.csail.mit.edu/6.823  

Adaptation to parallelism type  

For regions with high thread 
level parallelism (TLP) entire 
machine width is shared by all 
threads 

Issue width 

Time 

Issue width 

Time 

For regions with low thread level 
parallelism (TLP) entire machine 
width is available for instruction 
level parallelism (ILP) 

L14-27 



Sanchez & Emer March 28, 2016 http://www.csg.csail.mit.edu/6.823  

Pentium-4 Hyperthreading 
(2002) 

• First commercial SMT design (2-way SMT) 
– Hyperthreading == SMT 

• Logical processors share nearly all resources of 
the physical processor 
– Caches, execution units, branch predictors 

• Die area overhead of hyperthreading  ~ 5% 

• When one logical processor is stalled, the other 
can make progress 
– No logical processor can use all entries in queues when two 

threads are active 

• Processor running only one active software 
thread runs at approximately same speed with 
or without hyperthreading 

L14-28 



Sanchez & Emer March 28, 2016 http://www.csg.csail.mit.edu/6.823  

Pentium-4 Hyperthreading 
Front End 

[ Intel Technology Journal, Q1 2002 ] 

Resource divided 

between logical CPUs 

Resource shared 

between logical CPUs 

L14-29 



Sanchez & Emer March 28, 2016 http://www.csg.csail.mit.edu/6.823  

Pentium-4 Branch Predictor 

• Separate return address stacks per thread 

  Why? 

 

 

• Separate first-level global branch history table 

  Why? 

 
 

• Shared second-level branch history table, 
tagged with logical processor IDs 

L14-30 



Sanchez & Emer March 28, 2016 http://www.csg.csail.mit.edu/6.823  

Pentium-4 Hyperthreading 
Execution Pipeline 

[ Intel Technology Journal, Q1 2002 ] 

L14-31 



http://www.csg.csail.mit.edu/6.823 

Thank you ! 


