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The Shift to Multicore 

• Since 2005, improvements in system performance 
mainly due to increasing cores/chip 

• Why? 
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Limited instruction-level parallelism 
Technology scaling 
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Multicore Performance 
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Cost/perf curve of 
possible core designs 

High-perf, 
expensive 
core 

Moderate perf, 
efficient core 

2 cores 

4 cores 

What factors may limit multicore performance?  

Limited application parallelism 
Memory accesses and inter-core communication 

Programming complexity 
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Amdahl’s Law 

• Speedup= timewithout enhancement / timewith enhancement 

• Suppose an enhancement speeds up a fraction f of 
a task by a factor of S 

  timenew = timeold·( (1-f) + f/S ) 

  Soverall = 1 / ( (1-f) + f/S ) 

 

f (1 - f) 

(1 - f) 

timenew 

f/S 

timeold 

Corollary: Make the common case fast 
March 30, 2016 
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Amdahl’s Law and Parallelism 

• Say you write a program that can do 90% of the 
work in parallel, but the other 10% is sequential 

• What is the maximum speedup you can get by 
running on a multicore machine? 

Soverall = 1 / ( (1-f) + f/S ) 

f = 0.9, S=∞  Soverall = 10 

What f do you need to use a 1000-core machine well? 
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Communication Models 

• Shared memory: 
– Single address space 

– Implicit communication by reading/writing memory 

• Data 

• Control (semaphores, locks, barriers, …) 
– Low-level programming model: threads 

• Message passing: 
– Separate address spaces 

– Explicit communication by send/rcv messages 

• Data & control (blocking msgs, barriers, …) 
– Low-level programming model: 

processes + inter-process 
communication (e.g., MPI) 

 

• Pros/cons of each model? 

Mem 

Mem Mem Mem 

Network 
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Coherence & Consistency 

• Shared memory systems: 
– Have multiple private caches for performance reasons 

– Need to provide the illusion of a single shared memory 

 

• Intuition: A read should return the most recently 
written value 
– What is “most recent”? 

 

• Formally: 
– Coherence: What values can a read return? 

• Concerns reads/writes to a single memory location 

– Consistency: When do writes become visible to reads? 

• Concerns reads/writes to multiple memory locations 
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Cache Coherence Avoids Stale Data 

• A cache coherence protocol controls cache contents to 
avoid stale cache lines 

LD 0xA  2 
ST 3  0xA 

LD 0xA  2 (stale!) 

Core 0 

Main Memory 

Cache 
 

Core 1 

Cache 
 

Core 2 

Cache 
 

Core 3 

Cache 
 $[0xA] = 2 $[0xA] = 3 

1 

3 

2 
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Implementing Cache Coherence 

• Coherence protocols must enforce two rules: 
– Write propagation: Writes eventually become visible to all processors 

– Write serialization: Writes to the same location are serialized (all 
processors see them in the same order) 

• How to ensure write propagation? 
– Write-invalidate protocols: Invalidate all other cached copies before 

performing the write 

– Write-update protocols: Update all other cached copies after 
performing the write 

• How to track sharing state of cached data and serialize 
requests to the same address? 
– Snooping-based protocols: All caches observe each other’s actions 

through a shared bus 

– Directory-based protocols: A coherence directory tracks contents of 
private caches and serializes requests 
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Snooping-Based Coherence 
[Goodman 1983] 

  Caches watch (snoop on) bus to keep all 
processors’ view of memory coherent 

P1 

P2 

P3 

Snoopy 
 Cache 

DMA 

Physical 
 Memory 

Shared 
   Bus 

Snoopy 
 Cache 

Snoopy 
 Cache 

 DISKS 
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Snooping-Based Coherence 

• Bus provides serialization point 
– Broadcast, totally ordered 

– Each cache controller “snoops” all bus transactions 

– Controller updates state of cache in response to processor and snoop 
events and generates bus transactions 

• Snoopy protocol (FSM) 
– State-transition diagram 

– Actions 

• Handling writes: 
– Write-invalidate 

– Write-update 

Processor 
ld/st 

Snoop (observed bus transaction) 

State Tag Data 

. . . 

Cache 
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A Simple Protocol: Valid/Invalid (VI)  

• Assume write-
through caches PrWr / BusWr 

Valid 

BusWr 

Invalid 

PrWr / BusWr 

PrRd / BusRd 

PrRd / -- 

Actions 

Processor Read (PrRd) 

Processor Write (PrWr) 

Bus Read (BusRd) 

Bus Write (BusWr) 

March 30, 2016 
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Valid/Invalid Example 

LD 0xA 

Core 0 

Main Memory 

Cache 
 
 

Core 1 

Cache 
 
 

1 

Tag State Data Tag State Data Tag State Data 

0xA V 2 

BusRd 0xA 
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Valid/Invalid Example 

LD 0xA 
LD 0xA 

Core 0 

Main Memory 

Cache 
 
 

Core 1 

Cache 
 
 

1 

2 

Tag State Data Tag State Data Tag State Data 

0xA V 2 

BusRd 0xA 

Tag State Data 

0xA V 2 

Additional loads satisfied locally, without BusRd 
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Valid/Invalid Example 

LD 0xA 
LD 0xA 

ST 0xA 

Core 0 

Main Memory 

Cache 
 
 

Core 1 

Cache 
 
 

1 

3 

2 

Tag State Data Tag State Data Tag State Data 

0xA V 2 

Tag State Data 

0xA V 2 

BusWr 0xA, 3 

Tag State Data 

0xA I 2 

Tag State Data 

0xA V 3 
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Valid/Invalid Example 

LD 0xA 
LD 0xA 

ST 0xA 

Core 0 

Main Memory 

Cache 
 
 

Core 1 

Cache 
 
 

1 

3 

2 

Tag State Data Tag State Data 

0xA I 2 

BusRd 0xA 

Tag State Data 

0xA V 3 

Tag State Data 

0xA V 3 

LD 0xA 4 

VI Problems? 
Every write updates main memory 
Every write requires broadcast & snoop 

March 30, 2016 

L15-16 



 Sanchez & Emer 
 

Modified/Shared/Invalid (MSI) 
Protocol 

• Allows writeback caches + satisfying writes locally  

PrRd /-- 

M 

BusRdX 
/ BusWB PrWr / 

BusRdX 

S 

I 

PrWr / -- 

BusRd / 
BusWB PrWr / 

BusRdX 

PrRd / 
BusRd BusRdX / -- 

PrRd / -- 
BusRd / -- 

Actions 

Processor Read (PrRd) 

Processor Write (PrWr) 

Bus Read (BusRd) 

Bus Read Exclusive 
(BusRdX) 

Bus Writeback (BusWB) 

Processor-initiated transitions 
Bus-initiated transitions 
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MSI Example 

LD 0xA 

Core 0 

Main Memory 

Cache 
 
 

Core 1 

Cache 
 
 

1 

Tag State Data Tag State Data Tag State Data 

0xA S 2 

BusRd 0xA 
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MSI Example 

LD 0xA 
LD 0xA 

Core 0 

Main Memory 

Cache 
 
 

Core 1 

Cache 
 
 

1 

2 

Tag State Data Tag State Data Tag State Data 

0xA S 2 

BusRd 0xA 

Tag State Data 

0xA S 2 

Additional loads satisfied locally, without BusRd 
(like in VI) 
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MSI Example 

LD 0xA 
LD 0xA 

ST 0xA 

Core 0 

Main Memory 

Cache 
 
 

Core 1 

Cache 
 
 

1 

3 

2 

Tag State Data Tag State Data Tag State Data 

0xA S 2 

Tag State Data 

0xA S 2 

BusRdX 0xA 

Tag State Data 

0xA I 2 

Tag State Data 

0xA M 3 

Additional loads and stores from core 0 satisfied locally, 
without bus transactions (unlike in VI) 
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MSI Example 

LD 0xA 
LD 0xA 

ST 0xA 

Core 0 

Main Memory 

Cache 
 
 

Core 1 

Cache 
 
 

1 

3 

2 

Tag State Data Tag State Data 

0xA I 2 

BusRdX 0xA 

Tag State Data 

0xA M 10 

Tag State Data 

0xA M 3 

ST 0xA 4 

BusWB 0xA, 3 

Tag State Data 

0xA I 3 
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Cache interventions 

• MSI allows caches to serve writes without updating 
memory, so main memory can have stale data 
– Core 0’s cache needs to supply data 

– But main memory may also respond! 

• Cache must override response from main memory 

 

Core 0 

Main Memory 

Cache 
 
 

Core 1 

Cache 
 
 

Tag State Data Tag State Data 

0xA I 2 

BusRdX 0xA 

Tag State Data 

0xA M 10 

Tag State Data 

0xA M 3 

BusWB 0xA, 3 

Tag State Data 

0xA I 3 
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MSI Example 

LD 0xA 
LD 0xA 

ST 0xA 

Core 0 

Main Memory 

Cache 
 
 

Core 1 

Cache 
 
 

1 

3 

2 

Tag State Data Tag State Data 

0xA M 10 

BusWB 0xA, 10 

Tag State Data 

0xA S 10 

Tag State Data 

0xA I 3 

ST 0xA 4 

BusRd 0xA 

Tag State Data 

0xA S 10 

LD 0xA 5 
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MSI Optimizations: Exclusive State 

• Observation: Doing read-modify-write sequences 
on private data is common 
– What’s the problem with MSI? 

 

• Solution: E state (exclusive, clean) 
– If no other sharers, a read acquires line in E instead of S 

– Writes silently cause EM (exclusive, dirty) 
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MESI: An Enhanced MSI protocol 
 increased performance for private read-write data 

M: Modified Exclusive 
E: Exclusive, unmodified 
S: Shared  
 I: Invalid 

Each cache line has a tag 

Address tag 

state 
 bits 

M E 

S I 

BusRdX 
/ -- 

BusRdX / -- 

PrWr / -- 

PrRd / -- 

BusRd / 
BusWB 

PrRd / -- 
PrWr / -- 
PrRd /-- 

PrWr/ 
BusRdX 

BusRd / -- 
PrRd / BusRd 

if other sharers 

PrRd / BusRd 
if no other 

sharers 
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MSI Optimizations: Owner State 

• Observation: On MS transitions, must write back 
line! 
– What happens with frequent read-write sharing? 

– Can we defer the write after S? 

 

• Solution: O state (Owner) 
– O = S + responsibility to write back 

– On MS transition, one sharer (typically the one who had the 
line in M) retains the line in O instead of S 

– On eviction, O writes back line (or another sharer does SO) 

 

• MSI, MESI, MOSI, MOESI… 
– Typically E if private read-write >> shared read-only (common) 

– Typically O only if writebacks are expensive (main mem vs L3) 
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L15-26 



 Sanchez & Emer 
 

Split-Transaction and Pipelined 
Buses 

• Supports multiple simultaneous transactions 
– Higher throughput 

– Responses may arrive out of order 

• Often implemented as multiple buses (req+resp) 

Req 
Delay 

Response 

Atomic Transaction Bus 

Req2 Req1 

Resp1 

Req3 

Resp3 

Split-Transaction Bus 

Simple, but low throughput! Time 
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Non-Atomicity  Transient States 

PrRd / -- 
BusRd / -- 

PrRd /-- 

M 

BusRdX 
/ BusWB 

I 

PrWr / -- 

BusRd / 
BusWB 

PrRd /  
BusReq 

BusRdX / -- 

SM 

S 

IS 

IM 

PrWr / 
BusReq 

BusGnt /  
BusRd 

BusGnt /  
BusRdX 

PrWr / 
BusReq 

BusGnt /  
BusInv 

Actions 

Bus Request 
(BusReq) 

Bus Grant 
(BusGnt) 

• Protocol must handle 
lack of atomicity 

• Two types of states 
– Stable (e.g. MSI) 
– Transient 

• Split + race 
transitions 

• Higher complexity 
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Scaling Cache Coherence 

• Can implement ordered interconnects that scale 
better than buses…  
 

 

 

 

 

 

 

 

• … but broadcast is fundamentally unscalable 
– Bandwidth, energy of transactions with 100s of cache snoops? 

Starfire E10000 (drawn with only eight processors for clarity). 
A coherence request is unicast up to the root, where it is 
serialized, before being broadcast down to all processors 
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Directory-Based Coherence 

• Route all coherence transactions through a directory 
– Tracks contents of private caches  No broadcasts 

– Serves as ordering point for conflicting requests  Unordered 

networks 

 (more on next lecture) 
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CC and False Sharing 
Performance Issue - 1 

state   blk addr  data0 data1        ...     dataN 

A cache block contains more than one word and 
cache coherence is done at the block-level and 
not word-level 
 
Suppose P1 writes wordi and P2 writes wordk and 
both words have the same block address. 
 
What can happen? The block may be invalidated 

(ping-pong) many times 
unnecessarily because addresses 
are in the same block. 
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CC and Synchronization 
 Performance Issue - 2  

Cache coherence protocols will cause mutex to ping-pong 
between P1’s and P2’s caches. 
 
Ping-ponging can be reduced by first reading the mutex 
location (non-atomically) and executing a swap only if it is 
found to be zero (test&test&set).  

cache 

Processor 1 
    R  1 

L: swap (mutex), R; 
    if  <R> then goto L;  
      <critical section> 
    M[mutex]  0; 

Processor 2 
    R  1 

L: swap (mutex), R; 
    if  <R> then goto L;  
      <critical section> 
    M[mutex]  0; 

Processor 3 
    R  1 

L: swap (mutex), R; 
    if  <R> then goto L;  
      <critical section> 
    M[mutex]  0; 

          CPU-Memory Bus 

mutex=1 cache cache 
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CC and Bus Occupancy 
Performance Issue - 3 

In general, an atomic read-modify-write 
instruction requires two memory (bus) operations 
without intervening memory operations by other 
processors 
 
In a multiprocessor setting, bus needs to be 
locked for the entire duration of the atomic read 
and write operation expensive for simple buses very expensive for split-transaction buses 
 
modern processors use 
  load-reserve  
  store-conditional 
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Load-reserve & Store-conditional 

If the snooper sees a store transaction to the address 
in the reserve register, the reserve bit is set to 0 

• Several processors may reserve ‘a’ simultaneously 
• These instructions are like ordinary loads and stores 
  with respect to the bus traffic 

Special register(s) to hold reservation flag and 
address, and the outcome of store-conditional 

Load-reserve R, (a): 
<flag, adr>  <1, a>;  
R M[a]; 

Store-conditional (a), R: 
if <flag, adr> == <1, a>  
then  cancel other procs’  
    reservation on a; 

   M[a] <R>;   
   status succeed; 

else  status fail; 
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Performance:  
Load-reserve & Store-conditional 

The total number of memory (bus) transactions 
is not necessarily reduced, but splitting an 
atomic instruction into load-reserve & store-
conditional: 
 

• increases bus utilization (and reduces 
  processor stall time), especially in split- 
  transaction  buses 
 
• reduces cache ping-pong effect because  
  processors trying to acquire a mutex do 
  not have to perform stores each time 
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