Cache Coherence

Daniel Sanchez
Computer Science and Artificial Intelligence Laboratory

M.L.T.

http://www.csg.csail.mit.edu/6.823

L15-2

The Shift to Multicore

107 p T T

i Transistors (thousands) : :]
106 — Relative core performance |-------- S RLRREERIEREE T :

; Frequency (MHz) :]
105 ... R Power (W) ,.
10*
103
102 F
101
109 -: :

1985 1990 1995 2000 2005 2010

Year [Produced with CPUDB,
cpudb.stanford.edu]

e Since 2005, improvements in system performance
mainly due to increasing cores/chip

e Why? Limited instruction-level parallelism
Technology scaling

March 30, 2016 Sanchez & Emer

L15-3

Multicore Performance

~ High-perf,
A .
> expensive ? Cost/perf curve of
E;) core possible core designs
Q
© /
q) /
| - /
o K
e -
)]
@)
@) >

Performance

What factors may limit multicore performance?

Limited application parallelism
Memory accesses and inter-core communication
Programming complexity

March 30, 2016 Sanchez & Emer

L15-4

Amdahl’s Law

o Speedup: til'T]ewithout enhancement/ tirﬂewith enhancement

e Suppose an enhancement speeds up a fraction f of
a task by a factor of S

time,., = time 4 ((1-f) + f/S)
SoveraII =1 / ((1'f) + f/S)

time,4
(1-f) f
time, .., :
(1-f) f/S

Corollary: Make the common case fast

March 30, 2016 Sanchez & Emer

L15-5

Amdahl’s Law and Parallelism

e Say you write a program that can do 90% of the
work in parallel, but the other 10% is sequential

e What is the maximum speedup you can get by
running on a multicore machine?

Soveran = 1/ ((1-f) + /S)
f=0.9 5=0 2 S, eran = 10

What f do you need to use a 1000-core machine well?

March 30, 2016 Sanchez & Emer

L15-6

Communication Models

e Shared memory:
— Single address space
— Implicit communication by reading/writing memory
e Data
e Control (semaphores, locks, barriers, ...)
- Low-level programming model: threads

e Message passing:
— Separate address spaces
— Explicit communication by send/rcv messages
e Data & control (blocking msgs, barriers, ..

- Low-level programming model:
processes + inter-process
communication (e.g., MPI)

o

NS

?
o
?

March 30, 2016 Sanchez & Emer

?
"
?

e Pros/cons of each model?

L15-7

Coherence & Consistency

e Shared memory systems:
- Have multiple private caches for performance reasons
— Need to provide the illusion of a single shared memory

e Intuition: A read should return the most recently
written value
- What is "most recent”?

e Formally:
— Coherence: What values can a read return?
e Concerns reads/writes to a single memory location
— Consistency: When do writes become visible to reads?
e Concerns reads/writes to multiple memory locations

March 30, 2016 Sanchez & Emer

L15-8

Cache Coherence Avoids Stale Data

IIIIIIIIIIIIIIIIII|HHHHIHH%HHHIHIIIIIIIIIIIIIIIIIII

Cache Cache Cache Cache
S0 2 oer

©® LD OxA D 2

©ST 3 > 0xA
© LD OxA > 2 (stale!)

e A cache coherence protocol controls cache contents to
avoid stale cache lines

March 30, 2016 Sanchez & Emer

L15-9

Implementing Cache Coherence

e Coherence protocols must enforce two rules:

- Write propagation: Writes eventually become visible to all processors
— Write serialization: Writes to the same location are serialized (all
processors see them in the same order)
e How to ensure write propagation?

- Write-invalidate protocols: Invalidate all other cached copies before
performing the write

— Write-update protocols: Update all other cached copies after
performing the write
e How to track sharing state of cached data and serialize
requests to the same address?

— Snooping-based protocols: All caches observe each other’s actions
through a shared bus

— Directory-based protocols: A coherence directory tracks contents of
private caches and serializes requests

March 30, 2016 Sanchez & Emer

Snooping-Based Coherence
[Goodman 1983]

L15-10

Snoopy
Cache

Snoopy
Cache

P

Snoopy
Cache

Shared
Bus

A

@

Y

Physical
Memory

@

DMA

DISKS

Caches watch (snoop on) bus to keep all
processors’ view of memory coherent

March 30, 2016

Sanchez & Emer

Snooping-Based Coherence

L15-11

e Bus provides serialization point

- Broadcast, totally ordered

— Each cache controller “snoops” all bus transactions

— Controller updates state of cache in response to processor and snoop
events and generates bus transactions

e Snoopy protocol (FSM)
— State-transition diagram
— Actions

e Handling writes:
- Write-invalidate
— Write-update

March 30, 2016

Processor
Cache
Id/st > - <
State [Tag | Data
\ %

Snoop (observed bus transaction)

Sanchez & Emer

L15-12

A Simple Protocol: Valid/Invalid (VI)

e Assume write-
PrWr / BusWr through caches

PrRd / BusRd

|
/
/

L Processor Read (PrRd)
" Processor Write (PrWr)
Bus Read (BusRd)
PrWr / BusWr Bus Write (BusWr)

March 30, 2016 Sanchez & Emer

L15-13

Valid/Invalid Example

Main Memory

BusRd OxA |

>

__Tag | state | Data _

O LD oxA

March 30, 2016 Sanchez & Emer

L15-14

Valid/Invalid Example

BusRd OxA

=

__Tag | state | Data _ | Tag | State | Data
OxA Vv 2 OxA Vv 2

@ LD 0OxA

O LD oxA

Additional loads satisfied locally, without BusRd

March 30, 2016 Sanchez & Emer

L15-15

Valid/Invalid Example

BusWr OxA, 3 ig

< >

" Tag | State | Data _
OxA V 3 OxA I 2
O LD oxA
@ LD 0OxA
9 ST OxA

March 30, 2016 Sanchez & Emer

L15-16

Valid/Invalid Example

BusRd OxA

< >

| Tag | state | Data _ | Tag | state | Data _

OxA Vv 3 OxA \" 3

O LD oxA
@ LD 0OxA

ST OXA
© ST ox OLD 0xA

VI Problems? EVEry write updates main memory
- Every write requires broadcast & snoop

March 30, 2016 Sanchez & Emer

L15-17

Modified/Shared/Invalid (MSI)

Protocol

e Allows writeback caches + satisfying writes locally

PrRd /——O Prwr / --
—> Processor-initiated transitions

\
\‘ BusRd /
| ByswB
\
.-\ BusRdX
N ' / BusWB
|

\
\BusRdX / --

/ /
\\ PrRd / --

-7 BusRd / --

March 30, 2016

Bus-initiated transitions

Processor Read (PrRd)
Processor Write (PrWr)
Bus Read (BusRd)

Bus Read Exclusive
(BusRdX)

Bus Writeback (BusWB)

Sanchez & Emer

L15-18

MSI Example

Main Memory

BusRd OxA |

>

__Tag | state | Data _

O LD oxA

March 30, 2016 Sanchez & Emer

L15-19

MSI Example

BusRd OxA

=

| Tag | State | Data | | Tag | State | Data |
OxA S 2 OxA S 2

@ LD 0OxA

O LD oxA

Additional loads satisfied locally, without BusRd
(like in VI)

March 30, 2016 Sanchez & Emer

L15-20

MSI Example

BusRdX OxA | N

=

| Tag | State | Data | Tag | State | Data
OxA M 3 OxA I 2
O LD oxA
@ LD 0xA
9 ST OxA

Additional loads and stores from core 0 satisfied locally,
without bus transactions (unlike in VI)

March 30, 2016 Sanchez & Emer

L15-21

MSI Example

_BusWB OxA, 3 | BusRdX OxA

—

| Tag | state | Data__ | Tag | state | Data _

OxA I 3 OxA M 10

O LD oxA
@ LD 0xA

T OxA
© ST ox OST OxA

March 30, 2016 Sanchez & Emer

L15-22

Cache interventions

Main Memory

BusWB OxA, 3 | BusRdX OxA _

=

| Tag | State | Data |
OxA

OxA 3 M 10

i)

e MSI allows caches to serve writes without updating

memory, SO main Mmemory can have stale data
— Core 0’s cache needs to supply data
— But main memory may also respond!

e Cache must override response from main memory

March 30, 2016 Sanchez & Emer

L15-23

MSI Example

_BusRd 0xA ! BusWB OxA, 10 _

—

| Tag | state | Data__ | Tag | state | Data__

OxA S 10 OxA S 10

e LD OxA

@ LD OxA

9 ST OxA
O ST 0xA

© LD 0xA

March 30, 2016 Sanchez & Emer

L15-24

MSI Optimizations: Exclusive State

e Observation: Doing read-modify-write sequences

on private data is common
— What's the problem with MSI?

e Solution: E state (exclusive, clean)
— If no other sharers, a read acquires line in E instead of S
— Writes silently cause E->M (exclusive, dirty)

March 30, 2016 Sanchez & Emer

L15-25

MESI: An Enhanced MSI protocol

increased performance for private read-write data

Each cache line has a tag M: Modified Exclusive
E: Exclusive, unmodified

Address tag S: Shared
Slgatte I: Invalid
its
PrWr / -- PrRd / --
Prwr / -- E
Per /__ PR
3\ T
V. - BusRdX 4 ;
- PrR BusR
BusRd /| b A / | if no other
el : sharers
7 |
Sy, A -
BusRdx / - 8 @
PrRd / -- PrRd / BusRd
BusRd / - if other sharers

March 30, 2016 Sanchez & Emer

L15-26

MSI Optimizations: Owner State

e Observation: On M-S transitions, must write back
line!
- What happens with frequent read-write sharing?
— Can we defer the write after S?

e Solution: O state (Owner)
- O = S + responsibility to write back

— On M-S transition, one sharer (typically the one who had the
line in M) retains the line in O instead of S

— On eviction, O writes back line (or another sharer does S>0)

e MSI, MESI, MOSI, MOESI...

— Typically E if private read-write >> shared read-only (common)
— Typically O only if writebacks are expensive (main mem vs L3)

March 30, 2016 Sanchez & Emer

L15-27

Split-Transaction and Pipelined
Buses

Atomic Transaction Bus

Delay

Simple, but low throughput! Time

Sﬁlit—Transaction Bus
[Resp3 |

e Supports multiple simultaneous transactions
— Higher throughput
— Responses may arrive out of order

e Often implemented as multiple buses (reg+resp)

March 30, 2016 Sanchez & Emer

L15-28

Non-Atomicity - Transient States

e Protocol must handle
lack of atomicity BusGnt /
BusRd

e Two types of states

~ Stable (e.g. MSI) @
- Transient -
_ BusGnt / -~
e Split + race S
transitions pusiny PN
e Higher complexity PrWr / gﬂg&%ﬁ \\
FVVI /

BusReq Y \\ BusRdX
__ Actions | </ 1/ BuswB
Bus Request N\ ;'
(BusReq) \‘,Bu/stl,RdX / --
Bus Grant \/\4
(BusGnt) Iy
-7 PrRd / --
BusRd / --

March 30, 2016 Sanchez & Emer

L15-29

Scaling Cache Coherence

e Can implement ordered interconnects that scale
better than buses...

Starfire E10000 (drawn with only eight processors for clarity).
A coherence request is unicast up to the root, where it is
serialized, before being broadcast down to all processors

e ... but broadcast is fundamentally unscalable
— Bandwidth, energy of transactions with 100s of cache snoops?

March 30, 2016 Sanchez & Emer

Directory-Based Coherence

L15-30

Processor
+ cache

Processor
+ cache

Processor
+ cache

Processor
+ cache

Memory I— 1/0 Memory I— 110 Memory I— /0 Memory '— 110
[Interconnection network j
Memory I— /0 Memory I— le} Memory I— le} Memory I_ 110

Processor
+ cache

Processor
+ cache

Processor
+ cache

Processor
+ cache

e Route all coherence transactions through a directory

— Tracks contents of private caches - No broadcasts
- Serves as ordering point for conflicting requests > Unordered

networks

March 30, 2016

(more on next lecture)

Sanchez & Emer

L15-31

CC and False Sharing

Performance Issue - 1

state |blk addr |dataO | datal dataN

A cache block contains more than one word and

cache coherence is done at the block-level and
not word-level

Suppose P, writes word; and P, writes word, and
both words have the same block address.

What can happen? The block may be invalidated
(ping-pong) many times
unnecessarily because addresses
are in the same block.

March 30, 2016 Sanchez & Emer

CC and Synchronization

Performance Issue - 2

L15-32

Processor 1

Processor 2

R« 1
L: swap (mutex), R;
if <R> then goto L;
<critical section>
M[mutex] « O;

R« 1
L: swap (mutex), R;
if <R> then goto L;
<critical section>
M[mutex] « O;

Processor 3

R« 1
L: swap (mutex), R;
if <R> then goto L;
<critical section>
M[mutex] « O;

cache

Cache coherence protocols will cause mutex to ping-pong
between P1’s and P2’s caches.

Ping-ponging can be reduced by first reading the mutex
location (non-atomically) and executing a swap only if it is
found to be zero (test&test&set).

March 30, 2016

Sanchez & Emer

L15-33

CC and Bus Occupancy

Performance Issue - 3

In general, an atomic read-modify-write
instruction requires two memory (bus) operations
without intervening memory operations by other
Processors

In a multiprocessor setting, bus needs to be
locked for the entire duration of the atomic read
and write operation

— expensive for simple buses

= very expensive for split-transaction buses

modern processors use
load-reserve
store-conditional

March 30, 2016 Sanchez & Emer

L15-34

Load-reserve & Store-conditional

Special register(s) to hold reservation flag and
address, and the outcome of store-conditional

Load-reserve R, (a): Store-conditional (a), R:
<flag, adr> « <1, a>; if <flag, adr> == <1, a>
R « M[a],; then cancel other procs’

reservation on a;

M[a] < <R>;

status « succeed;
else status <« fail;

If the snooper sees a store transaction to the address

in the reserve register, the reserve bit is set to O
e Several processors may reserve ‘a’ simultaneously
e These instructions are like ordinary loads and stores
with respect to the bus traffic

March 30, 2016 Sanchez & Emer

L15-35

Performance:
Load-reserve & Store-conditional

The total number of memory (bus) transactions
Is not necessarily reduced, but splitting an

atomic instruction into load-reserve & store-
conditional:

e jncreases bus utilization (and reduces

processor stall time), especially in split-
transaction buses

e reduces cache ping-pong effect because
processors trying to acquire a mutex do
not have to perform stores each time

March 30, 2016 Sanchez & Emer

