
http://www.csg.csail.mit.edu/6.823

Daniel Sanchez
Computer Science and Artificial Intelligence Laboratory

M.I.T.

Cache Coherence

 Sanchez & Emer

The Shift to Multicore

• Since 2005, improvements in system performance
mainly due to increasing cores/chip

• Why?

March 30, 2016

[Produced with CPUDB,
cpudb.stanford.edu]

Limited instruction-level parallelism
Technology scaling

L15-2

 Sanchez & Emer

Multicore Performance

Performance

C
os

t
(a

re
a,

 e
ne

rg
y…

)
Cost/perf curve of
possible core designs

High-perf,
expensive
core

Moderate perf,
efficient core

2 cores

4 cores

What factors may limit multicore performance?

Limited application parallelism
Memory accesses and inter-core communication

Programming complexity

March 30, 2016

L15-3

 Sanchez & Emer

Amdahl’s Law

• Speedup= timewithout enhancement / timewith enhancement

• Suppose an enhancement speeds up a fraction f of
a task by a factor of S

 timenew = timeold·((1-f) + f/S)

 Soverall = 1 / ((1-f) + f/S)

f (1 - f)

(1 - f)

timenew

f/S

timeold

Corollary: Make the common case fast
March 30, 2016

L15-4

 Sanchez & Emer

Amdahl’s Law and Parallelism

• Say you write a program that can do 90% of the
work in parallel, but the other 10% is sequential

• What is the maximum speedup you can get by
running on a multicore machine?

Soverall = 1 / ((1-f) + f/S)

f = 0.9, S=∞ Soverall = 10

What f do you need to use a 1000-core machine well?

March 30, 2016

L15-5

 Sanchez & Emer

Communication Models

• Shared memory:
– Single address space

– Implicit communication by reading/writing memory

• Data

• Control (semaphores, locks, barriers, …)
– Low-level programming model: threads

• Message passing:
– Separate address spaces

– Explicit communication by send/rcv messages

• Data & control (blocking msgs, barriers, …)
– Low-level programming model:

processes + inter-process
communication (e.g., MPI)

• Pros/cons of each model?

Mem

Mem Mem Mem

Network

March 30, 2016

L15-6

 Sanchez & Emer

Coherence & Consistency

• Shared memory systems:
– Have multiple private caches for performance reasons

– Need to provide the illusion of a single shared memory

• Intuition: A read should return the most recently
written value
– What is “most recent”?

• Formally:
– Coherence: What values can a read return?

• Concerns reads/writes to a single memory location

– Consistency: When do writes become visible to reads?

• Concerns reads/writes to multiple memory locations

March 30, 2016

L15-7

 Sanchez & Emer

Cache Coherence Avoids Stale Data

• A cache coherence protocol controls cache contents to
avoid stale cache lines

LD 0xA 2
ST 3 0xA

LD 0xA 2 (stale!)

Core 0

Main Memory

Cache

Core 1

Cache

Core 2

Cache

Core 3

Cache
 $[0xA] = 2 $[0xA] = 3

1

3

2

March 30, 2016

L15-8

 Sanchez & Emer

Implementing Cache Coherence

• Coherence protocols must enforce two rules:
– Write propagation: Writes eventually become visible to all processors

– Write serialization: Writes to the same location are serialized (all
processors see them in the same order)

• How to ensure write propagation?
– Write-invalidate protocols: Invalidate all other cached copies before

performing the write

– Write-update protocols: Update all other cached copies after
performing the write

• How to track sharing state of cached data and serialize
requests to the same address?
– Snooping-based protocols: All caches observe each other’s actions

through a shared bus

– Directory-based protocols: A coherence directory tracks contents of
private caches and serializes requests

March 30, 2016

L15-9

 Sanchez & Emer

Snooping-Based Coherence
[Goodman 1983]

 Caches watch (snoop on) bus to keep all
processors’ view of memory coherent

P1

P2

P3

Snoopy
 Cache

DMA

Physical
 Memory

Shared
 Bus

Snoopy
 Cache

Snoopy
 Cache

 DISKS

March 30, 2016

L15-10

 Sanchez & Emer

Snooping-Based Coherence

• Bus provides serialization point
– Broadcast, totally ordered

– Each cache controller “snoops” all bus transactions

– Controller updates state of cache in response to processor and snoop
events and generates bus transactions

• Snoopy protocol (FSM)
– State-transition diagram

– Actions

• Handling writes:
– Write-invalidate

– Write-update

Processor
ld/st

Snoop (observed bus transaction)

State Tag Data

. . .

Cache

March 30, 2016

L15-11

 Sanchez & Emer

A Simple Protocol: Valid/Invalid (VI)

• Assume write-
through caches PrWr / BusWr

Valid

BusWr

Invalid

PrWr / BusWr

PrRd / BusRd

PrRd / --

Actions

Processor Read (PrRd)

Processor Write (PrWr)

Bus Read (BusRd)

Bus Write (BusWr)

March 30, 2016

L15-12

 Sanchez & Emer

Valid/Invalid Example

LD 0xA

Core 0

Main Memory

Cache

Core 1

Cache

1

Tag State Data Tag State Data Tag State Data

0xA V 2

BusRd 0xA

March 30, 2016

L15-13

 Sanchez & Emer

Valid/Invalid Example

LD 0xA
LD 0xA

Core 0

Main Memory

Cache

Core 1

Cache

1

2

Tag State Data Tag State Data Tag State Data

0xA V 2

BusRd 0xA

Tag State Data

0xA V 2

Additional loads satisfied locally, without BusRd

March 30, 2016

L15-14

 Sanchez & Emer

Valid/Invalid Example

LD 0xA
LD 0xA

ST 0xA

Core 0

Main Memory

Cache

Core 1

Cache

1

3

2

Tag State Data Tag State Data Tag State Data

0xA V 2

Tag State Data

0xA V 2

BusWr 0xA, 3

Tag State Data

0xA I 2

Tag State Data

0xA V 3

March 30, 2016

L15-15

 Sanchez & Emer

Valid/Invalid Example

LD 0xA
LD 0xA

ST 0xA

Core 0

Main Memory

Cache

Core 1

Cache

1

3

2

Tag State Data Tag State Data

0xA I 2

BusRd 0xA

Tag State Data

0xA V 3

Tag State Data

0xA V 3

LD 0xA 4

VI Problems?
Every write updates main memory
Every write requires broadcast & snoop

March 30, 2016

L15-16

 Sanchez & Emer

Modified/Shared/Invalid (MSI)
Protocol

• Allows writeback caches + satisfying writes locally

PrRd /--

M

BusRdX
/ BusWB PrWr /

BusRdX

S

I

PrWr / --

BusRd /
BusWB PrWr /

BusRdX

PrRd /
BusRd BusRdX / --

PrRd / --
BusRd / --

Actions

Processor Read (PrRd)

Processor Write (PrWr)

Bus Read (BusRd)

Bus Read Exclusive
(BusRdX)

Bus Writeback (BusWB)

Processor-initiated transitions
Bus-initiated transitions

March 30, 2016

L15-17

 Sanchez & Emer

MSI Example

LD 0xA

Core 0

Main Memory

Cache

Core 1

Cache

1

Tag State Data Tag State Data Tag State Data

0xA S 2

BusRd 0xA

March 30, 2016

L15-18

 Sanchez & Emer

MSI Example

LD 0xA
LD 0xA

Core 0

Main Memory

Cache

Core 1

Cache

1

2

Tag State Data Tag State Data Tag State Data

0xA S 2

BusRd 0xA

Tag State Data

0xA S 2

Additional loads satisfied locally, without BusRd
(like in VI)

March 30, 2016

L15-19

 Sanchez & Emer

MSI Example

LD 0xA
LD 0xA

ST 0xA

Core 0

Main Memory

Cache

Core 1

Cache

1

3

2

Tag State Data Tag State Data Tag State Data

0xA S 2

Tag State Data

0xA S 2

BusRdX 0xA

Tag State Data

0xA I 2

Tag State Data

0xA M 3

Additional loads and stores from core 0 satisfied locally,
without bus transactions (unlike in VI)

March 30, 2016

L15-20

 Sanchez & Emer

MSI Example

LD 0xA
LD 0xA

ST 0xA

Core 0

Main Memory

Cache

Core 1

Cache

1

3

2

Tag State Data Tag State Data

0xA I 2

BusRdX 0xA

Tag State Data

0xA M 10

Tag State Data

0xA M 3

ST 0xA 4

BusWB 0xA, 3

Tag State Data

0xA I 3

March 30, 2016

L15-21

 Sanchez & Emer

Cache interventions

• MSI allows caches to serve writes without updating
memory, so main memory can have stale data
– Core 0’s cache needs to supply data

– But main memory may also respond!

• Cache must override response from main memory

Core 0

Main Memory

Cache

Core 1

Cache

Tag State Data Tag State Data

0xA I 2

BusRdX 0xA

Tag State Data

0xA M 10

Tag State Data

0xA M 3

BusWB 0xA, 3

Tag State Data

0xA I 3

March 30, 2016

L15-22

 Sanchez & Emer

MSI Example

LD 0xA
LD 0xA

ST 0xA

Core 0

Main Memory

Cache

Core 1

Cache

1

3

2

Tag State Data Tag State Data

0xA M 10

BusWB 0xA, 10

Tag State Data

0xA S 10

Tag State Data

0xA I 3

ST 0xA 4

BusRd 0xA

Tag State Data

0xA S 10

LD 0xA 5

March 30, 2016

L15-23

 Sanchez & Emer

MSI Optimizations: Exclusive State

• Observation: Doing read-modify-write sequences
on private data is common
– What’s the problem with MSI?

• Solution: E state (exclusive, clean)
– If no other sharers, a read acquires line in E instead of S

– Writes silently cause EM (exclusive, dirty)

March 30, 2016

L15-24

 Sanchez & Emer

MESI: An Enhanced MSI protocol
 increased performance for private read-write data

M: Modified Exclusive
E: Exclusive, unmodified
S: Shared
 I: Invalid

Each cache line has a tag

Address tag

state
 bits

M E

S I

BusRdX
/ --

BusRdX / --

PrWr / --

PrRd / --

BusRd /
BusWB

PrRd / --
PrWr / --
PrRd /--

PrWr/
BusRdX

BusRd / --
PrRd / BusRd

if other sharers

PrRd / BusRd
if no other

sharers

March 30, 2016

L15-25

 Sanchez & Emer

MSI Optimizations: Owner State

• Observation: On MS transitions, must write back
line!
– What happens with frequent read-write sharing?

– Can we defer the write after S?

• Solution: O state (Owner)
– O = S + responsibility to write back

– On MS transition, one sharer (typically the one who had the
line in M) retains the line in O instead of S

– On eviction, O writes back line (or another sharer does SO)

• MSI, MESI, MOSI, MOESI…
– Typically E if private read-write >> shared read-only (common)

– Typically O only if writebacks are expensive (main mem vs L3)

March 30, 2016

L15-26

 Sanchez & Emer

Split-Transaction and Pipelined
Buses

• Supports multiple simultaneous transactions
– Higher throughput

– Responses may arrive out of order

• Often implemented as multiple buses (req+resp)

Req
Delay

Response

Atomic Transaction Bus

Req2 Req1

Resp1

Req3

Resp3

Split-Transaction Bus

Simple, but low throughput! Time

March 30, 2016

L15-27

 Sanchez & Emer

Non-Atomicity Transient States

PrRd / --
BusRd / --

PrRd /--

M

BusRdX
/ BusWB

I

PrWr / --

BusRd /
BusWB

PrRd /
BusReq

BusRdX / --

SM

S

IS

IM

PrWr /
BusReq

BusGnt /
BusRd

BusGnt /
BusRdX

PrWr /
BusReq

BusGnt /
BusInv

Actions

Bus Request
(BusReq)

Bus Grant
(BusGnt)

• Protocol must handle
lack of atomicity

• Two types of states
– Stable (e.g. MSI)
– Transient

• Split + race
transitions

• Higher complexity

March 30, 2016

L15-28

 Sanchez & Emer

Scaling Cache Coherence

• Can implement ordered interconnects that scale
better than buses…

• … but broadcast is fundamentally unscalable
– Bandwidth, energy of transactions with 100s of cache snoops?

Starfire E10000 (drawn with only eight processors for clarity).
A coherence request is unicast up to the root, where it is
serialized, before being broadcast down to all processors

March 30, 2016

L15-29

 Sanchez & Emer

Directory-Based Coherence

• Route all coherence transactions through a directory
– Tracks contents of private caches No broadcasts

– Serves as ordering point for conflicting requests Unordered

networks

 (more on next lecture)

March 30, 2016

L15-30

 Sanchez & Emer

CC and False Sharing
Performance Issue - 1

state blk addr data0 data1 ... dataN

A cache block contains more than one word and
cache coherence is done at the block-level and
not word-level

Suppose P1 writes wordi and P2 writes wordk and
both words have the same block address.

What can happen? The block may be invalidated

(ping-pong) many times
unnecessarily because addresses
are in the same block.

March 30, 2016

L15-31

 Sanchez & Emer

CC and Synchronization
 Performance Issue - 2

Cache coherence protocols will cause mutex to ping-pong
between P1’s and P2’s caches.

Ping-ponging can be reduced by first reading the mutex
location (non-atomically) and executing a swap only if it is
found to be zero (test&test&set).

cache

Processor 1
 R 1

L: swap (mutex), R;
 if <R> then goto L;
 <critical section>
 M[mutex] 0;

Processor 2
 R 1

L: swap (mutex), R;
 if <R> then goto L;
 <critical section>
 M[mutex] 0;

Processor 3
 R 1

L: swap (mutex), R;
 if <R> then goto L;
 <critical section>
 M[mutex] 0;

 CPU-Memory Bus

mutex=1 cache cache

March 30, 2016

L15-32

 Sanchez & Emer

CC and Bus Occupancy
Performance Issue - 3

In general, an atomic read-modify-write
instruction requires two memory (bus) operations
without intervening memory operations by other
processors

In a multiprocessor setting, bus needs to be
locked for the entire duration of the atomic read
and write operation expensive for simple buses very expensive for split-transaction buses

modern processors use
 load-reserve
 store-conditional

March 30, 2016

L15-33

 Sanchez & Emer

Load-reserve & Store-conditional

If the snooper sees a store transaction to the address
in the reserve register, the reserve bit is set to 0

• Several processors may reserve ‘a’ simultaneously
• These instructions are like ordinary loads and stores
 with respect to the bus traffic

Special register(s) to hold reservation flag and
address, and the outcome of store-conditional

Load-reserve R, (a):
<flag, adr> <1, a>;
R M[a];

Store-conditional (a), R:
if <flag, adr> == <1, a>
then cancel other procs’
 reservation on a;

 M[a] <R>;
 status succeed;

else status fail;

March 30, 2016

L15-34

 Sanchez & Emer

Performance:
Load-reserve & Store-conditional

The total number of memory (bus) transactions
is not necessarily reduced, but splitting an
atomic instruction into load-reserve & store-
conditional:

• increases bus utilization (and reduces
 processor stall time), especially in split-
 transaction buses

• reduces cache ping-pong effect because
 processors trying to acquire a mutex do
 not have to perform stores each time

March 30, 2016

L15-35

