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What is a “machine”?

• Is ISA sufficient?
• No! Need access to outside world (I/O)
• But applications contend for devices
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Operating system handles I/O

• Operating system abstracts—or virtualizes—
hardware I/O
– E.g., files for disk, sockets for network
– Hides differences between devices (e.g., tape vs disk vs SSD)
– Provides protection & security
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ISA+Environment = Virtual machine
• ISA defines available operations

– But insufficient alone to write useful programs

• Operating system (OS) responsible for I/O
– Protection, portability, and abstraction

• ISA communicates with operating system through some 
standard mechanism, i.e., syscall instructions
– Example: opening a file

addi r1, r0, 27 # 27 is code for file open

addu r2, r0, rfname # r2 points to filename string

syscall # cause trap into OS

# On return from syscall, r1 holds file descriptor
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Application binary interface (ABI)
• Programs distributed in a binary format:

– Instructions
– Initial values (in data segments)

• Virtual machine specified by:
– Which instructions are available (ISA)
– What system calls are possible

(I/O, or the environment)
– What state exists at start of day

• Operating system implements the VM
– (1) loads binary
– (2) creates environment
– (3) begins execution
– (4) handles traps for syscalls, unsupported instructions, etc.

May 4, 2016 http://www.csg.csail.mit.edu/6.823 

L24-5

VM
ISASyscalls

Data



Sanchez & Emer

OS can support multiple VMs
• Virtual machine features change over time

– New instructions
– New types of I/O (e.g., asynchronous file I/O)

• Common to provide backwards compatibility
– Linux v4.5 (2016) can run binaries compiled for Linux v1.0 (1994)
– Windows runs MS-DOS binaries
– Windows 10 runs Linux binaries
– Linux runs Windows programs (through Wine)

• If ABI needs instructions not supported by native hardware, 
then OS can emulate them in software
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OS can support multiple VMs
• Virtual machine features change over time
• Common to provide backwards compatibility
• If ABI needs instructions not supported by native hardware, 

then OS can emulate them in software
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Hardware can support multiple OSes

• Can virtualize the environment that an operating system 
sees, i.e. an OS-level VM
– Probably what you are familiar with!

• Hypervisor abstracts real hardware resources, letting each 
OS VM think it has the full machine
– Popular in early days to allow mainframe to be shared by multiple 

groups developing OS code (VM/370)
– Used in modern mainframes to allow multiple versions of OS to be 

running simultaneously è OS upgrades with no downtime!
– Example for PCs: VMware allows Windows OS to run on top of Linux (or 

vice-versa)

• Requires trap on access to privileged hardware state 
– Easier if OS-hardware interface is well defined
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Hardware can support multiple OSes
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Nomenclature

From (Machine or ISA we 
are attempting to execute)
• Guest
• Client
• Foreign ISA

To (Machine that is doing 
the real execution)
• Host
• Target
• Native ISA
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ISA Implementations Partly in Software

Often good idea to implement part of ISA in software:

• Expensive but rarely used instructions can cause trap to OS 
emulation routine:
– e.g., decimal arithmetic in µVax implementation of VAX ISA

• Infrequent but difficult operand values can cause trap
– e.g., IEEE floating-point denormals cause traps in almost all 

floating-point unit implementations

• Old machine can trap unused opcodes, allows binaries for 
new ISA to run on old hardware
– e.g., Sun SPARC v8 added integer multiply instructions, older v7 

CPUs trap and emulate
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Supporting Non-Native ISAs
Run programs for one ISA on hardware with different ISA

Binary emulation:
• Hardware

– IBM System 360 had IBM 1401 emulator in microcode
– Intel Itanium converts x86 to native VLIW (two software-visible ISAs)
– ARM cores support 32-bit ARM, 16-bit Thumb, and JVM (three software-visible 

ISAs!)

• Software (OS interprets instructions at run-time)
– PowerPC Macs had emulator for 68000 code

Binary translation:
• Static (convert at install time, load time, or offline)

– IBM AS/400 to modified PowerPC cores
– DEC tools for VAX->Alpha and MIPS->Alpha 
– Android

• Dynamic (non-native ISA to native ISA at run time)
– Sun’s HotSpot Java JIT (just-in-time) compiler
– Transmeta Crusoe, x86->VLIW code morphing
– PIN!
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Software emulation
• Software instruction set interpreter fetches and decodes one 

instruction at a time in emulated VM
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Software emulation

• Easy to code, small code footprint

• Slow, approximately 100x slower than native 
execution for RISC ISA hosted on RISC ISA

• Software decode is the problem—must:
– fetch instruction from memory
– switch tables to decode opcodes
– extract register specifiers using bit shifts
– access register file data structure
– then execute operation
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Translation
• Each guest ISA instruction translates into some set of host 

(or native) ISA instructions

• Instead of dynamically fetching and decoding instructions at 
run-time, translate entire binary program and save result as 
new host ISA executable

• Removes interpretive fetch-decode overhead

• Can re-optimize translated code
– register allocation
– instruction scheduling
– inline assembly
– remove dead or unreachable code
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Static Binary Translation (SBT), Take 1
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SBT Problem: Indirect jumps
Branch and Jump targets

– guest code:
j L1
...

L1: lw r1, (r4)
jr (r1)

– host code
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SBT Solution: PC Mapping Table
• Table gives translated PC for each guest PC

• Indirect jumps translated into code that looks in table to find 
where to jump to
– can optimize well-behaved guest code for subroutine call/return by using 

host PC in return links

• If can branch to any guest PC, then need one table entry for 
every instruction in hosted program è big table

• If can branch to any PC, then either
– limit inter-instruction optimizations
– large code explosion to hold optimizations for each possible entry into 

sequential code sequence

• But only minority of guest instructions are indirect jump 
targets, want to find these
– Structure ISA to disallow problems (e.g., only subroutine calls)
– Dynamic, feedback-guided translation?
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More SBT problems: Self-modifying code

• Rare in most code, but has to be handled if 
allowed by guest ISA

• Usually handled by including interpreter and 
marking modified code pages as “interpret only”

• Have to invalidate all host branches into modified 
code pages
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Static Binary Translation, Take 2
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Static Translation Example:
IBM System/38 and AS/400
• System/38 announced 1978, AS/400 is follow-on line
• High-level instruction set interface designed for binary translation
• Memory-memory style instruction set, never directly executed by 

hardware
• Translated executable stored on disk
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Dynamic Binary Translation
• Translate code sequences on demand at run-

time, caching the translations

• Can optimize code sequences based on dynamic 
information (e.g., branch targets encountered)

• Tradeoff between optimizer run-time and time 
saved by optimizations in translated code

• Used in JIT (just-in-time) compilers, PIN, 
Transmeta Crusoe for x86 emulation
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Dynamic Translation Example
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Making DBT efficient: Chaining
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Dynamic Translation Example:
Transmeta Crusoe (2000)
• Converts x86 ISA into internal native VLIW format using 

software at run-time è “Code Morphing”

• Optimizes across x86 instruction boundaries to improve 
performance

• Translations cached to avoid translator overhead on repeated 
execution

• Completely invisible to operating system – looks like x86 
hardware processor
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Full virtualization vs. 
Paravirtualization
• Full virtualization: guest OS is totally unaware of 

virtualization
– E.g., IBM 360
– Full binary-level compatibility
– Implemented in either hardware or software
– Can hurt performance

• Paravirtualization: guest OS is aware & cooperates
– E.g., Xen
– Special drivers to “play nice” with other guests, coordinated 

thread & memory management
– Necessary for ISAs/devices that are hard to virtualize
– Higher performance, but requires extensive OS modifications
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When is an architecture 
virtualizable? [Popek and Goldberg, ‘74]

Two basic requirements:
• Privileged execution mode
• All sensitive instructions must be privileged

– Those that change or depend on environment

To virtualize:
• Run guest OS in userspace
• Privileged instructions will trap
• Then, just emulate them in the kernel

– Memory accesses must go through privileged translation (e.g., 
paging), architectures can provide more support for performance
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Full virtualization in software
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What ISAs are virtualizable?

• IBM Power: yes
– Three modes: user, supervisor, hypervisor
– Power5, Power6 always run hypervisor

• Sun Sparc: yes
– Similar to IBM
– Sparc v9 always run hypervisor

• X86: Not quite
– ~17 sensitive but unprivileged instructions
– What to do? è Binary translation! Paravirtualization!
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Hardware virtualization

• Additional privilege mode for hypervisor
– New instructions to enter/exit hypervisor
– Swap registers + address space atomically

• Nested page tables
– Convert guest virtual è guest physical è host physical
– One TLB miss can take 24 memory accesses in x86-64!
– Hardware page table walks

• IOMMU
– Software emulation of I/O expensive – many copies
– Support DMA from device to VM’s address space
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That’s all, folks!
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