
Sanchez & EmerMay 4, 2016

Virtual Machines
and Binary Translation

Nathan Beckmann
(based on slides by David Wentzlaff and Nathan Binkert)

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Sanchez & Emer

What is a “machine”?

• Is ISA sufficient?
• No! Need access to outside world (I/O)
• But applications contend for devices

May 4, 2016 http://www.csg.csail.mit.edu/6.823

L24-2

Application

ISA

Disk NIC

ISA

Application

Sanchez & Emer

Operating system handles I/O

• Operating system abstracts—or virtualizes—
hardware I/O
– E.g., files for disk, sockets for network
– Hides differences between devices (e.g., tape vs disk vs SSD)
– Provides protection & security

May 4, 2016 http://www.csg.csail.mit.edu/6.823

L24-3

Application

Disk NIC
Operating system

Application

ISA

File SocketFile

Sanchez & Emer

ISA+Environment = Virtual machine
• ISA defines available operations

– But insufficient alone to write useful programs

• Operating system (OS) responsible for I/O
– Protection, portability, and abstraction

• ISA communicates with operating system through some
standard mechanism, i.e., syscall instructions
– Example: opening a file

addi r1, r0, 27 # 27 is code for file open

addu r2, r0, rfname # r2 points to filename string

syscall # cause trap into OS

On return from syscall, r1 holds file descriptor

May 4, 2016 http://www.csg.csail.mit.edu/6.823

L24-4

Sanchez & Emer

Application binary interface (ABI)
• Programs distributed in a binary format:

– Instructions
– Initial values (in data segments)

• Virtual machine specified by:
– Which instructions are available (ISA)
– What system calls are possible

(I/O, or the environment)
– What state exists at start of day

• Operating system implements the VM
– (1) loads binary
– (2) creates environment
– (3) begins execution
– (4) handles traps for syscalls, unsupported instructions, etc.

May 4, 2016 http://www.csg.csail.mit.edu/6.823

L24-5

VM
ISASyscalls

Data

Sanchez & Emer

OS can support multiple VMs
• Virtual machine features change over time

– New instructions
– New types of I/O (e.g., asynchronous file I/O)

• Common to provide backwards compatibility
– Linux v4.5 (2016) can run binaries compiled for Linux v1.0 (1994)
– Windows runs MS-DOS binaries
– Windows 10 runs Linux binaries
– Linux runs Windows programs (through Wine)

• If ABI needs instructions not supported by native hardware,
then OS can emulate them in software

May 4, 2016 http://www.csg.csail.mit.edu/6.823

L24-6

Sanchez & Emer

OS can support multiple VMs
• Virtual machine features change over time
• Common to provide backwards compatibility
• If ABI needs instructions not supported by native hardware,

then OS can emulate them in software

May 4, 2016 http://www.csg.csail.mit.edu/6.823

L24-7

Win95 on x86
ISASyscalls

Data

Linux on x86
ISASyscalls

Data

Linux on ARM
ISASyscalls

Data

Operating system (e.g., Windows 10)

Processor (e.g., Intel Xeon)

Sanchez & Emer

Hardware can support multiple OSes

• Can virtualize the environment that an operating system
sees, i.e. an OS-level VM
– Probably what you are familiar with!

• Hypervisor abstracts real hardware resources, letting each
OS VM think it has the full machine
– Popular in early days to allow mainframe to be shared by multiple

groups developing OS code (VM/370)
– Used in modern mainframes to allow multiple versions of OS to be

running simultaneously è OS upgrades with no downtime!
– Example for PCs: VMware allows Windows OS to run on top of Linux (or

vice-versa)

• Requires trap on access to privileged hardware state
– Easier if OS-hardware interface is well defined

May 4, 2016 http://www.csg.csail.mit.edu/6.823

L24-8

Sanchez & Emer

Hardware can support multiple OSes

May 4, 2016 http://www.csg.csail.mit.edu/6.823

L24-9

Win95 on x86
ISASyscalls

Data

Linux on x86
ISASyscalls

Data

OS X on x86
ISASyscalls

Data

Windows 10

Processor (e.g., Intel Xeon)

Hypervisor (e.g., VMWare Workstation)

OS XO
S

-l
ev

el
 V

M

Sanchez & Emer

Nomenclature

From (Machine or ISA we
are attempting to execute)
• Guest
• Client
• Foreign ISA

To (Machine that is doing
the real execution)
• Host
• Target
• Native ISA

May 4, 2016 http://www.csg.csail.mit.edu/6.823

L24-10

Sanchez & Emer

ISA Implementations Partly in Software

Often good idea to implement part of ISA in software:

• Expensive but rarely used instructions can cause trap to OS
emulation routine:
– e.g., decimal arithmetic in µVax implementation of VAX ISA

• Infrequent but difficult operand values can cause trap
– e.g., IEEE floating-point denormals cause traps in almost all

floating-point unit implementations

• Old machine can trap unused opcodes, allows binaries for
new ISA to run on old hardware
– e.g., Sun SPARC v8 added integer multiply instructions, older v7

CPUs trap and emulate

May 4, 2016 http://www.csg.csail.mit.edu/6.823

L24-11

Sanchez & Emer

Supporting Non-Native ISAs
Run programs for one ISA on hardware with different ISA

Binary emulation:
• Hardware

– IBM System 360 had IBM 1401 emulator in microcode
– Intel Itanium converts x86 to native VLIW (two software-visible ISAs)
– ARM cores support 32-bit ARM, 16-bit Thumb, and JVM (three software-visible

ISAs!)

• Software (OS interprets instructions at run-time)
– PowerPC Macs had emulator for 68000 code

Binary translation:
• Static (convert at install time, load time, or offline)

– IBM AS/400 to modified PowerPC cores
– DEC tools for VAX->Alpha and MIPS->Alpha
– Android

• Dynamic (non-native ISA to native ISA at run time)
– Sun’s HotSpot Java JIT (just-in-time) compiler
– Transmeta Crusoe, x86->VLIW code morphing
– PIN!

May 4, 2016 http://www.csg.csail.mit.edu/6.823

L24-12

Sanchez & Emer

Software emulation
• Software instruction set interpreter fetches and decodes one

instruction at a time in emulated VM

May 4, 2016 http://www.csg.csail.mit.edu/6.823

L24-13

Memory image of
guest VM lives in

host emulator data
memory

Emulator Data

Emulator Code

Emulator Stack

fetch-decode loop
while(!stop)
{
inst = Code[PC];
PC += 4;
execute(inst);

}

Guest
ISA

Code

Guest
ISA
Data

Executable
on Disk

Guest
ISA

Code

Guest
ISA
Data

Guest
Stack

Load into
emulator
memory

Sanchez & Emer

Software emulation

• Easy to code, small code footprint

• Slow, approximately 100x slower than native
execution for RISC ISA hosted on RISC ISA

• Software decode is the problem—must:
– fetch instruction from memory
– switch tables to decode opcodes
– extract register specifiers using bit shifts
– access register file data structure
– then execute operation

May 4, 2016 http://www.csg.csail.mit.edu/6.823

L24-14

Sanchez & Emer

Translation
• Each guest ISA instruction translates into some set of host

(or native) ISA instructions

• Instead of dynamically fetching and decoding instructions at
run-time, translate entire binary program and save result as
new host ISA executable

• Removes interpretive fetch-decode overhead

• Can re-optimize translated code
– register allocation
– instruction scheduling
– inline assembly
– remove dead or unreachable code

May 4, 2016 http://www.csg.csail.mit.edu/6.823

L24-15

Sanchez & Emer

Static Binary Translation (SBT), Take 1

May 4, 2016 http://www.csg.csail.mit.edu/6.823

L24-16

Guest
ISA

Code

Guest
ISA
Data

Executable
on Disk

Host
ISA

Code

Guest
ISA
Data

Executable
on Disk

Host
Data

Translate to host
ISA code

Data
unchanged

Host translation might
need extra data

workspace

Sanchez & Emer

SBT Problem: Indirect jumps
Branch and Jump targets

– guest code:
j L1
...

L1: lw r1, (r4)
jr (r1)

– host code

May 4, 2016 http://www.csg.csail.mit.edu/6.823

L24-17

j
translation

lw
translation

jr
translation

Host jump at end of block
jumps to host translation

of lw

Where should the jump register go?

Sanchez & Emer

SBT Solution: PC Mapping Table
• Table gives translated PC for each guest PC

• Indirect jumps translated into code that looks in table to find
where to jump to
– can optimize well-behaved guest code for subroutine call/return by using

host PC in return links

• If can branch to any guest PC, then need one table entry for
every instruction in hosted program è big table

• If can branch to any PC, then either
– limit inter-instruction optimizations
– large code explosion to hold optimizations for each possible entry into

sequential code sequence

• But only minority of guest instructions are indirect jump
targets, want to find these
– Structure ISA to disallow problems (e.g., only subroutine calls)
– Dynamic, feedback-guided translation?

May 4, 2016 http://www.csg.csail.mit.edu/6.823

L24-18

Sanchez & Emer

More SBT problems: Self-modifying code

• Rare in most code, but has to be handled if
allowed by guest ISA

• Usually handled by including interpreter and
marking modified code pages as “interpret only”

• Have to invalidate all host branches into modified
code pages

May 4, 2016 http://www.csg.csail.mit.edu/6.823

L24-19

Sanchez & Emer

Static Binary Translation, Take 2

May 4, 2016 http://www.csg.csail.mit.edu/6.823

L24-20

Guest
ISA

Code

Guest
ISA
Data

Executable
on Disk

Host ISA
Code

Executable
on Disk

PC
Mapping

Table

Guest ISA
Code

Guest ISA
Data

Host
Emulator

Translate to host
ISA code

Keep copy of
code and

data in host
data segment

Emulator used for run-
time modified code,

checks for jumps back
into host code using PC

mapping table

Translation has to check
for modified code pages
then jump to emulator

Mapping table used for
indirect jumps and to
jump from emulator

back into host
translations

Sanchez & Emer

Static Translation Example:
IBM System/38 and AS/400
• System/38 announced 1978, AS/400 is follow-on line
• High-level instruction set interface designed for binary translation
• Memory-memory style instruction set, never directly executed by

hardware
• Translated executable stored on disk

May 4, 2016 http://www.csg.csail.mit.edu/6.823

L24-21

Hardware Machine

Horizontal Microcode

Vertical Microcode

High-Level Architecture
Interface

Languages,
Database,
Utilities

Control
Program
Facility

User Applications

Replaced by modified
PowerPC cores in newer

AS/400 machines
Used 48-bit CISC
engine in earlier

machines

Sanchez & Emer

Dynamic Binary Translation
• Translate code sequences on demand at run-

time, caching the translations

• Can optimize code sequences based on dynamic
information (e.g., branch targets encountered)

• Tradeoff between optimizer run-time and time
saved by optimizations in translated code

• Used in JIT (just-in-time) compilers, PIN,
Transmeta Crusoe for x86 emulation

May 4, 2016 http://www.csg.csail.mit.edu/6.823

L24-22

Sanchez & Emer

Dynamic Translation Example

May 4, 2016 http://www.csg.csail.mit.edu/6.823

L24-23

Data RAM

Disk

x86
Binary

Runtime -- Execution

x86
Binary

Code Cache Code Cache
Tags

Translator

x86 Parser &
High Level
Translator

High Level
Optimization

Low Level
Code Generation

Low Level
Optimization and

Scheduling

Sanchez & Emer

Making DBT efficient: Chaining

May 4, 2016 http://www.csg.csail.mit.edu/6.823

L24-24

Runtime --
Execution

Code Cache Code Cache
Tags

Pre Chained
add %r5, %r6, %r7

li %next_addr_reg, next_addr #load address
#of next block

j dispatch loop

Chained
add %r5, %r6, %r7

j physical location of translated
code for next_block

Sanchez & Emer

Dynamic Translation Example:
Transmeta Crusoe (2000)
• Converts x86 ISA into internal native VLIW format using

software at run-time è “Code Morphing”

• Optimizes across x86 instruction boundaries to improve
performance

• Translations cached to avoid translator overhead on repeated
execution

• Completely invisible to operating system – looks like x86
hardware processor

May 4, 2016 http://www.csg.csail.mit.edu/6.823

L24-25

Sanchez & Emer

Full virtualization vs.
Paravirtualization
• Full virtualization: guest OS is totally unaware of

virtualization
– E.g., IBM 360
– Full binary-level compatibility
– Implemented in either hardware or software
– Can hurt performance

• Paravirtualization: guest OS is aware & cooperates
– E.g., Xen
– Special drivers to “play nice” with other guests, coordinated

thread & memory management
– Necessary for ISAs/devices that are hard to virtualize
– Higher performance, but requires extensive OS modifications

May 4, 2016 http://www.csg.csail.mit.edu/6.823

L24-26

Sanchez & Emer

When is an architecture
virtualizable? [Popek and Goldberg, ‘74]

Two basic requirements:
• Privileged execution mode
• All sensitive instructions must be privileged

– Those that change or depend on environment

To virtualize:
• Run guest OS in userspace
• Privileged instructions will trap
• Then, just emulate them in the kernel

– Memory accesses must go through privileged translation (e.g.,
paging), architectures can provide more support for performance

May 4, 2016 http://www.csg.csail.mit.edu/6.823

L24-27

Sanchez & Emer

Full virtualization in software

May 4, 2016 http://www.csg.csail.mit.edu/6.823

L24-28

Application

Guest OS

Application

Guest OS

Hypervisor

SyscallR
et

ur
n

Userspace
Privileged

SyscallR
et

ur
n

Guess OS runs in user space
Hypervisor checks permissions

Privileged instructions trap
into hypervisor

Sanchez & Emer

What ISAs are virtualizable?

• IBM Power: yes
– Three modes: user, supervisor, hypervisor
– Power5, Power6 always run hypervisor

• Sun Sparc: yes
– Similar to IBM
– Sparc v9 always run hypervisor

• X86: Not quite
– ~17 sensitive but unprivileged instructions
– What to do? è Binary translation! Paravirtualization!

May 4, 2016 http://www.csg.csail.mit.edu/6.823

L24-29

Sanchez & Emer

Hardware virtualization

• Additional privilege mode for hypervisor
– New instructions to enter/exit hypervisor
– Swap registers + address space atomically

• Nested page tables
– Convert guest virtual è guest physical è host physical
– One TLB miss can take 24 memory accesses in x86-64!
– Hardware page table walks

• IOMMU
– Software emulation of I/O expensive – many copies
– Support DMA from device to VM’s address space

May 4, 2016 http://www.csg.csail.mit.edu/6.823

L24-30

Sanchez & Emer

That’s all, folks!

May 4, 2016 http://www.csg.csail.mit.edu/6.823

L24-31

