
6.823
Pin Optimizations

TA:	Mark	Jeffrey

Adapted	from:	Prior	6.823	offerings,	and	
Intel’s	Tutorial	at	CGO	2010

2/17/2017 6.823 Spring 2017 1

Course	Admin

• Please	subscribe	to	the	course	mailing	list:	
6823-all@lists.csail.mit.edu
– Link	to	subscribe:	
https://lists.csail.mit.edu/mailman/listinfo/6823-all

• Piazza	Link:	
https://piazza.com/mit/spring2017/6823

• ssh <athenausername>@vlsifarm-0X.mit.edu
– I	will	update	permissions	lists	after	recitation

2/17/2017 6.823 Spring 2017 2

What	is	Instrumentation?

• Instrumentation	is	a	technique	that	inserts	
extra	code	into	a	program	to	collect	runtime	
information

• PIN	does	dynamic		binary		instrumentation

2/17/2017 6.823 Spring 2017 3

Runtime No need to
re-compile
or re-link

From	the	last	tutorial…

Let’s	count	the
number	of	instructions!

Instrumentation:	Instruction	Count

sub $0xff, %edx

cmp %esi, %edx

jle <L1>

mov $0x1, %edi

add $0x10, %eax

counter++;

counter++;

counter++;

counter++;

counter++;

Let’s	increment	
counter	by	one	

before	every	instruction!

Analysis	routine

Instrumentation	routine

2/17/2017 6.823 Spring 2017 4

Instrumentation	vs.	Analysis

• Instrumentation routines define	where	
instrumentation	is inserted
– C Occurs	immediately	before	an	instruction	is	executed	
for	the	first	time.

• Analysis	routines define	what	to	do	when	
instrumentation	is	activated
– C Occurs	every	time an	instruction	is	executed

2/17/2017 6.823 Spring 2017 5

How to Write Efficient Pintools

62/17/2017 6.823 Spring 2017

Reducing	Instrumentation	Overhead

Total Overhead = Pin’s Overhead + Pintool’s Overhead

• The job of Pin developers to minimize this
• ~5% for SPECfp and ~20% for SPECint

• Pintool writers can help minimize this!

2/17/2017 6.823 Spring 2017 7

Reducing	Pintool’s Overhead

Instrumentation Routines Overhead + Analysis Routines Overhead

Pintool’s Overhead

Frequency of calling an Analysis Routine x Work required in the Analysis Routine

2/17/2017 6.823 Spring 2017 8

Instrumentation	Granularity
• Instrumentation	with	Pin	can	be	done	at	3	different	
granularities:
– Instruction
– Basic	block

• A	sequence	of	instructions	terminated	at	a	(conditional	or	
unconditional)	control-flow	changing	instruction

• Single	entrance,	single	exit

– Trace
• A	sequence	of	basic	blocks	terminated	at	an	unconditional control-flow	
changing	instruction

• Single	entrance,	multiple	exits

2/17/2017 6.823 Spring 2017 9

Instrumentation	Granularity
• Instrumentation	with	Pin	can	be	done	at	3	different	
granularities:
– Instruction
– Basic	block

• A	sequence	of	instructions	terminated	at	a	(conditional	or	
unconditional)	control-flow	changing	instruction

• Single	entrance,	single	exit

– Trace
• A	sequence	of	basic	blocks	terminated	at	an	unconditional	control-flow	
changing	instruction

• Single	entrance,	multiple	exits

sub $0xff, %edx
cmp %esi, %edx
jle <L1>

mov $0x1, %edi
add $0x10, %eax
jmp <L2>

2/17/2017 6.823 Spring 2017 10

Instrumentation	Granularity
• Instrumentation	with	Pin	can	be	done	at	3	different	
granularities:
– Instruction
– Basic	block

• A	sequence	of	instructions	terminated	at	a	(conditional	or	
unconditional)	control-flow	changing	instruction

• Single	entrance,	single	exit

– Trace
• A	sequence	of	basic	blocks	terminated	at	an	unconditional	control-flow	
changing	instruction

• Single	entrance,	multiple	exits

sub $0xff, %edx
cmp %esi, %edx
jle <L1>

mov $0x1, %edi
add $0x10, %eax
jmp <L2>

6 insts

2/17/2017 6.823 Spring 2017 11

Instrumentation	Granularity
• Instrumentation	with	Pin	can	be	done	at	3	different	
granularities:
– Instruction
– Basic	block

• A	sequence	of	instructions	terminated	at	a	(conditional	or	
unconditional)	control-flow	changing	instruction

• Single	entrance,	single	exit

– Trace
• A	sequence	of	basic	blocks	terminated	at	an	unconditional	control-flow	
changing	instruction

• Single	entrance,	multiple	exits

sub $0xff, %edx
cmp %esi, %edx
jle <L1>

mov $0x1, %edi
add $0x10, %eax
jmp <L2>

6 insts, 2 basic blocks

2/17/2017 6.823 Spring 2017 12

Instrumentation	Granularity
• Instrumentation	with	Pin	can	be	done	at	3	different	
granularities:
– Instruction
– Basic	block

• A	sequence	of	instructions	terminated	at	a	(conditional	or	
unconditional)	control-flow	changing	instruction

• Single	entrance,	single	exit

– Trace
• A	sequence	of	basic	blocks	terminated	at	an	unconditional	control-flow	
changing	instruction

• Single	entrance,	multiple	exits

sub $0xff, %edx
cmp %esi, %edx
jle <L1>

mov $0x1, %edi
add $0x10, %eax
jmp <L2>

6 insts, 2 basic blocks, 1 trace

2/17/2017 6.823 Spring 2017 13

Recap	of	Pintool:	Instruction	Count

sub $0xff, %edx

cmp %esi, %edx

jle <L1>

mov $0x1, %edi

add $0x10, %eax

counter++;

counter++;

counter++;

counter++;

counter++;

2/17/2017 6.823 Spring 2017 14

sub $0xff, %edx

cmp %esi, %edx

jle <L1>

mov $0x1, %edi

add $0x10, %eax

counter++;

counter++;

counter++;

counter++;

counter++;

• Straightforward, but the counting can be more efficient

2/17/2017 6.823 Spring 2017 15

Recap	of	Pintool:	Instruction	Count

Faster	Instruction	Count

sub $0xff, %edx

cmp %esi, %edx

jle <L1>

mov $0x1, %edi

add $0x10, %eax

counter += 3

counter += 2
basic blocks (bbl)

2/17/2017 6.823 Spring 2017 16

#include <stdio.h>

#include "pin.H“

UINT64 icount = 0;

void docount(INT32 c) { icount += c; }

void Trace(TRACE trace, void *v) {

for (BBL bbl = TRACE_BblHead(trace);

BBL_Valid(bbl); bbl = BBL_Next(bbl)) {

BBL_InsertCall(bbl, IPOINT_BEFORE, (AFUNPTR)docount,

IARG_UINT32, BBL_NumIns(bbl), IARG_END);

}

}

void Fini(INT32 code, void *v) {

fprintf(stderr, "Count %lld\n", icount);

}

int main(int argc, char * argv[]) {

PIN_Init(argc, argv);

TRACE_AddInstrumentFunction(Trace, 0);

PIN_AddFiniFunction(Fini, 0);

PIN_StartProgram();

return 0;

}

analysis routine

instrumentation routine

172/17/2017 6.823 Spring 2017

Reducing	Frequency	of	Calling	
Analysis	Routines

• Key:
– Instrument	at	the	largest	granularity	whenever	
possible:
• Trace	>	Basic	Block	>	Instruction

2/17/2017 6.823 Spring 2017 18

Reducing	Pintool’s Overhead

Instrumentation Routines Overhead + Analysis Routines Overhead

Pintool’s Overhead

Frequency of calling an Analysis Routine x Work required in the Analysis Routine

2/17/2017 6.823 Spring 2017 19

Reducing	Pintool’s Overhead

Instrumentation Routines Overhead + Analysis Routines Overhead

Pintool’s Overhead

Frequency of calling an Analysis Routine x Work required in the Analysis Routine

2/17/2017 6.823 Spring 2017 20

Work required for transiting to Analysis Routine + Work done inside Analysis Routine

L1: jne <L2>
...
jmp <L3>

L2: call <L4>
...

L3: jne <L1>
...

L4: ...
ret

2/17/2017 6.823 Spring 2017 21

How	often	is	
each	branch	

taken?

Example:	Counting	Control	Flow	Edges

100
60

40

60

40

40

1

Example:	Counting	Control	Flow	Edges

2/17/2017 6.823 Spring 2017 22

call

jne

ret

jne

jmp

How	often	is	
each	branch	

taken?

…

void docount2(ADDRINT src, ADDRINT dst, INT32 taken)

{

COUNTER *pedg = Lookup(src, dst);

pedg->count += taken;

}

void Instruction(INS ins, void *v) {

if (INS_IsBranchOrCall(ins)){

INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR) docount2,

IARG_INST_PTR, IARG_BRANCH_TARGET_ADDR,

IARG_BRANCH_TAKEN, IARG_END);

}

}

…

Edge	Counting:	a	Slower	Version

2/17/2017 6.823 Spring 2017 23

1 if taken, 0 if not taken

Inefficiency	in	Program

• About	every	5th	instruction	executed	in	a	typical	
application	is	a	branch.

• Edge	lookup	will	be	called	whenever	these	
instruction	are	executed
– significant	application	slowdown

• Direct	vs.	Indirect	Branches
– Branch	Address	in	instruction	vs.	Branch	Address	in	
Register

– Static	vs.	Dynamic

2/17/2017 6.823 Spring 2017 24

Edge	Counting:	a	Faster	Version
void docount(COUNTER* pedge, INT32 taken) {

pedg->count += taken;

}

void docount2(ADDRINT src, ADDRINT dst, INT32 taken) {

COUNTER *pedg = Lookup(src, dst);

pedg->count += taken;

}

void Instruction(INS ins, void *v) {

if (INS_IsDirectBranchOrCall(ins)) {

COUNTER *pedg = Lookup(INS_Address(ins),
INS_DirectBranchOrCallTargetAddress(ins));

INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR) docount,

IARG_ADDRINT, pedg, IARG_BRANCH_TAKEN, IARG_END);

} else if (INS_IsBranchOrCall(ins))

INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR) docount2,

IARG_INST_PTR, IARG_BRANCH_TARGET_ADDR,

IARG_BRANCH_TAKEN, IARG_END);

}

…
252/17/2017 6.823 Spring 2017

Eliminating	Control	Flow
void docount(COUNTER* pedge, INT32 taken)

{

if (!taken)

return;

pedg->count++;

}

void docount(COUNTER* pedge, INT32 taken)

{

pedg->count += taken;

}

2/17/2017 6.823 Spring 2017 26

vs.

Can be inlined by Pin

Reducing	Work	Done	in	Analysis	
Routines

• Key:
– Shifting	computation	from	Analysis	Routines	to	
Instrumentation	Routines	whenever	possible

2/17/2017 6.823 Spring 2017 27

Some	other	optimizations…
• Reduce	the	number	of	arguments	to	analysis	
routine.
– For	example,	instead	of	passing	TRUE/FALSE,	create	2	
analysis	functions.

• If	an	instrumentation	can	be	inserted	anywhere	
in	a	basic	block:
– Let	Pin	know	via	IPOINT_ANYWHERE	(used	in	
BBL_InsertCall())

– Pin	will	find	the	best	point	to	insert	the	
instrumentation	to	minimize	register	spilling

2/17/2017 6.823 Spring 2017 28

Takeaways..
• Reduce	frequency	of	calling	analysis	routines	by	
instrumenting	at	the	largest	granularity whenever	
possible	

• Reduce	the	amount	of	work	done	in	analysis	routines	
by	shifting	computation from	Analysis	Routines	to	
Instrumentation	Routines	whenever	possible

2/17/2017 6.823 Spring 2017 29

