2/17/2017

6.823
Pin Optimizations

TA: Mark Jeffrey

Adapted from: Prior 6.823 offerings, and
Intel’s Tutorial at CGO 2010

6.823 Spring 2017

Course Admin

* Please subscribe to the course mailing list:
6823-all@lists.csail.mit.edu

— Link to subscribe:
https://lists.csail.mit.edu/mailman/listinfo/6823-all

e Piazza Link:
https://piazza.com/mit/spring2017/6823

* ssh <athenausername>@vlsifarm-0X.mit.edu
— | will update permissions lists after recitation

2/17/2017 6.823 Spring 2017

From the last tutorial...
What is Instrumentation?

* [nstrumentationis a technique that inserts
extra code into a program to collect runtime
information

* PIN doesinstrumentation

Runtime No need to
re-compile
or re-link

»

. <
Instrumentation: Instruction Count/

Analysis routine

~

Instrumentation routine
S

Let’s increment
counter by one
before every instruction!

counter++;
sub $0xff, %edx
counter++;
cmp %Jesi, %edx

counter++;

jle <L1>
counter++;

mov S$0x1l, %edi
counter++;

add $0x10, %eax

2/17/2017 6.823 Spring 2017 4

o

-/é

Instrumentation vs. Analysis

* Instrumentation routines define where
instrumentation is inserted

— < Occurs immediately before an instruction is executed
for the first time.

* Analysis routines define what to do when
instrumentation is activated

— < Occurs every time an instruction is executed

2/17/2017 6.823 Spring 2017 5

How to Write Efficient Pintools

2/17/2017 6.823 Spring 2017

N

/
Reducing Instrumentation Overhead ‘/4

Total Overhead = Pin’s Overhead + Pintool’s Overhead

e The job of Pin developers to minimize this
o ~5% for SPECfp and ~20% for/ SPECint

e Pintool writers can help minimize this!

2/17/2017 6.823 Spring 2017 7

Reducing Pintool’s Overhead

Pintool's Overhead

A
- R

Instrumentation Routines Overhead -@is Routines Overhead

A
- N

@cy of calling an Analysis@x Work required in the Analysis Routine

2/17/2017 6.823 Spring 2017 8

-/4

Instrumentation Granularity

* |nstrumentation with Pin can be done at 3 different
granularities:
— Instruction
— Basic block

* Asequence of instructionsterminatedata (conditional or
unconditional) control-flow changinginstruction

* Single entrance, single exit

— Trace

* Asequence of basicblocks terminated at an unconditional control-flow
changinginstruction

* Single entrance, multiple exits

N

Instrumentation Granularity 7/

* |nstrumentation with Pin can be done at 3 different

granularities:
— Instruction $0xff, Y%oedx
— Basic block _ %esi, Yoedx

* Asequence of instruc <L1>

unconditional) contro

* Single entrance, single $OX1, %edi

—_ Trace $OX10, O/oeaX

* Asequence of basicbl <L2> W
changinginstruction

* Single entrance, multiple exits

2/17/2017 6.823 Spring 2017 10

N

Instrumentation Granularity 7/

* |nstrumentation with Pin can be done at 3 different

granularities: 6 insts
— Instruction $0xff, Y%oedx
— Basic block %esi, Yoedx

* Asequence of instruc <L1>

unconditional) contro

* Single entrance, single $OX1, %edi

—_ Trace $OX10, O/oeaX

* Asequence of basicbl <L2> W
changinginstruction

* Single entrance, multiple exits

2/17/2017 6.823 Spring 2017 11

N

Instrumentation Granularity 7/
* |nstrumentation with Pin can be done at 3 different

granularities: 6 insts, 2 basic blocks
— Instruction sub $0xff, Y%edx
— Basic b|0ck Cmp 0/OeSi, O/oedX

e Asequence of instruc Jle <L1>

unconditional) contro

 Single entrance, single MoV $OX1, %edi
— Trace add $OX10, O/oeaX

* Asequence of basicbl Jmp <L2> W

changinginstruction

* Single entrance, multiple exits

2/17/2017 6.823 Spring 2017 12

N

Instrumentation Granularity 7/
* |nstrumentation with Pin can be done at 3 different

granularities: 6 insts, 2 basic blocks, 1 trace
— Instruction sub $0xff, Y%edx
— Basic b|0ck Cmp 0/OeSi, O/oedX

* Asequence of instruc] Jle <L1>

unconditional) contro

 Single entrance, single MoV $OX1, %edi
— Trace add $OX10, O/oeaX

* Asequence of basicbl Jmp <L2> W

changinginstruction

* Single entrance, multiple exits

2/17/2017 6.823 Spring 2017 13

Recap of Pintool: Instruction Count

2/17/2017

counter++;

sub $0xff, %edx
counter++;

cmp %esi, %edx
counter++;

jle <L1>
counter++;

mov S$O0x1, %edi

counter++;
add $0x10, %eax

6.823 Spring 2017

14

>

Recap of Pintool: Instruction Count '/4

counter++;
sub S$O0xff, %edx

 Straightforward, but the counting can be more efficient

counter++;
mov S$O0x1, %edi

counter++;
add $0x10, %eax

2/17/2017 6.823 Spring 2017 15

2/17/2017

Faster Instruction Count

counter +=3

$edx

$edx

sub $Oxff,
cmp %esi,
jle <L1>
counter += 2
mov $0x1,

add $0x10,

$edi

$eax

6.823 Spring 2017

N

-/é

N

basic blocks (bbl)

e

16

RS
#include <stdio.h> /
#include "pin.H“ 4
UINT64 icount = 0; /
void docount (INT32 c) { icount += c; } analysis routine
void Trace (TRACE trace, void *v) {
for (BBL bbl = TRACE BblHead (trace) ;
BBL Valid(bbl); bbl = BBL Next(bbl)) {
BBL InsertCall(bbl, IPOINT BEFORE, (AFUNPTR)docount,
IARG UINT32, BBL NumlIns (bbl), IARG END) ;

| instrumentation routine

void Fini (INT32 code, void *v) {
fprintf (stderr, "Count %11ld\n", icount);
}
int main(int argc, char * argv[]) {
PIN Init(argc, argv);
TRACE AddInstrumentFunction (Trace, 0);
PIN AddFiniFunction(Fini, 0);
PIN StartProgram() ;

return 0O;

Reducing Frequency of Calling '/4

Analysis Routines

* Key:
— Instrument at the largest granularity whenever
possible:

* Trace > Basic Block > Instruction

N

Reducing Pintool’s Overhead /'4

Pintool's Overhead

e N
= N
Instrumentation Routines Overhead @is Routines Overhead
A
= R

Frequency of calling an Analysis Routine @required in the Analysis I@

2/17/2017 6.823 Spring 2017 19

Reducing Pintool’s Overhead /'4

Pintool's Overhead

/\
a8 N
Instrumentation Routines Overhead @is Routines Over@
A
- N

Frequency of calling an Analysis Routine @required in the Analysis Routine

N
a4 2

Work required for transiting to Analysis Routine +@e inside Analysis Routine

2/17/2017 6.823 Spring 2017 20

Example:

2/17/2017

N

<

Counting Control Flow Edges/

Ll1:

L2:

L3:

L4

jne , <L2> l

jmp @ <L3>

call <L4>
jne K <L1>

.l

How often is
each branch
taken?

ret

6.823 Spring 2017

4

Example: Counting Control Flow Edges/

@ o
)

100

How often is
each branch
taken?

2/17/2017 6.823 Spring 2017

Edge Counting: a Slower Version

void Instruction (INS ins, void *v) {

if (INS_IsBranchOrCall(ins)) {

INS InsertCall(ins
IARG_INST PTR

IPOINT BEFORE, (AFUNPTR) docount2,

ARG BRANCH TARGET ADD

IARG_BRANCH TAKEN,

} 1 if taken, O if not taken

2/17/2017 6.823 Spring 2017 23

o

./(

Inefficiency in Program

About every 5th instruction executed in a typical
applicationis a branch.

Edge lookup will be called whenever these
instruction are executed

— significant application slowdown

Direct vs. Indirect Branches

— Branch Address in instruction vs. Branch Address in
Register

— Static vs. Dynamic

Edge Counting: a Faster Version d

void docount (COUNTER* pedge, INT32 taken) ({
pedg->count += taken;

}

void docount2 (ADDRINT src, ADDRINT dst, INT32 taken) {
COUNTER *pedg = Lookup(src, dst);
pedg->count += taken;

}

void Instruction (INS ins, void *v) {
if (INS_ IsDirectBranchOrCall(ins)) {

COUNTER *pedg = Lookup(INS Address (ins),
INS DirectBranchOrCallTargetAddress (ins)) ;

INS InsertCall(ins, IPOINT BEFORE, (AFUNPTR)
IARG ADDRINT, pedg,) IARG BRANCH TAKEN, IARG _END) ;
} else if (INS IsBranchOrCall (ins))
INS InsertCall(ins, IPOINT BEFORE, (AFUNPTR) docount2,
IARG _INST PTR, IARG BRANCH TARGET ADDR,
IARG_BRANCH TAKEN, IARG _END) ;

Eliminating Control Flow

2/17/2017 6.823 Spring 2017

N

Reducing Work Done in Analysis '/4
Routines
* Key:

— Shifting computation from Analysis Routines to
Instrumentation Routines whenever possible

-J
/

Some other optimizations...

* Reduce the number of arguments to analysis
routine.

— For example, instead of passing TRUE/FALSE, create 2
analysis functions.

* |f an instrumentation can be inserted anywhere
in a basic block:

— Let Pin know via IPOINT _ANYWHERE (used in
BBL_InsertCall())

— Pin will find the best point to insert the
instrumentation to minimize register spilling

-/4

Takeaways..

 Reduce frequency of calling analysis routines by
instrumenting at the largest granularity whenever
possible

 Reduce the amount of work done in analysis routines
by shifting computation from Analysis Routines to
Instrumentation Routines whenever possible

2/17/2017 6.823 Spring 2017 29

