6.823 Computer System Architecture CISC ISA – x86jr

http://csg.csail.mit.edu/6.823/

x86 has a CISC-style instruction set with variable-length instructions. In the x86 architecture, each instruction is capable of performing one or more simpler instructions called micro-operations (μ ops). It also supports several complex addressing modes.

We introduce a (very small) subset of the x86 instruction set in the following table. (Interested readers are referred to the <u>Intel's website</u> for full details.)

Instruction	Operation	OF	SF	Length
add R_{DEST} , R_{SRC}	$R_{\text{DEST}} \leftarrow R_{\text{SRC}} + R_{\text{DEST}}$	Μ	Μ	2 bytes
cmp imm32, R _{SRC2}	Temp \leftarrow R _{SRC2} - MEM[imm32]	Μ	Μ	6 bytes
inc R _{DEST}	$R_{\text{DEST}} \leftarrow R_{\text{DEST}} + 1$	Μ	Μ	1 byte
jmp label	jump to the address specified by label			2 bytes
jl label	if (SF≠OF)	Т	Т	2 bytes
	jump to the address specified by label			
xor R _{dest} , R _{src}	$R_{DEST} \leftarrow R_{DEST}$ xor R_{SRC}	0	Μ	2 bytes

Table H2-1: Simple x86 instruction set (x86jr)

Notice that the jump instruction jl (jump if less than) depends on SF and OF, which are status flags. Each instruction affects them in different ways based on the result of its computation: "M" indicates the instruction modifying (writing) the status flag, "T" the instruction testing (reading but not writing) it, and "O" the instruction resetting it. A blank (as in jmp instruction) means that the instruction does not affect the status flag. Some instructions, like the cmp instruction, perform a computation and set status flags, but do not return any result.

The meanings of the status flags are given in the following table:

Name	Purpose	Condition Reported			
OF	Overflow	Result exceeds positive or negative limit of number range			
SF	Sign	Result is negative (less than zero)			
Table H2-2: Status flags					

The following table shows how different values in the operands of cmp influence those status flags in a 32-bit machine:

R _{SRC2}	MEM[imm32]	OF	SF
0x0000001	0x0000000	0	0
0x0000000	0x0000001	0	1
0x7FFFFFF	0xFFFFFFF (-1)	1	0
(positive limit)			
0x8000000	0x00000001	1	1
(negative limit)			

Table H2-3: Operands vs Status flags