6.823 Computer System Architecture RISC ISA – MIPS32

http://csg.csail.mit.edu/6.823/

Here is a brief summary of the MIPS instructions used in this course. All general-purpose registers (GPRs) are assumed to be 32 bits. (R0 is hardwired to zero.) For more information, please check out either Section 2.12 or Appendix C (online) of the Hennessy and Patterson book. Unlike the MIPS64 architecture in the Hennessy & Patterson book, we use 32-bit GPRs instead of 64-bit GPRs throughout this course.

Instruction Formats

ор	rs	rt	imme	diate	
Туре (Ju 3 <u>1 26</u>					
ор		target			
Type (F	leaiste	ər)			
			15 11	10 (3 5
ор	rs	rt	rd		funct
ор	is a 6	S-bit ope	eration co	de	
rs	is a t	is a 5-bit source register specifier			
rt	is a 5 regis	is a 5-bit target (source/destination) register or branch condition		nation)	
		is a 16-bit immediate, branch dis- placement or address displacement			
immediate	place	ment or	address	displac	ement
immediate target	place	ement or	address np target	displac	
	place is a 2	ement or 26bit ju	address	displac addres	s
target	place is a 2 is a 5	ement or 26bit jui 5bit des	address np target	displac addres	s

Load and Store Instructions

Instruction	Format and Description op base rt offset	
Load Word	LW rt,offset(base) Sign-extend 16-bit offset and add to contents of register base to form address. Load contents of addressed word into register rt.	
Store Word	SW rt,offset(base) Sign-extend 16-bit offset and add to contents of register base to form address. Store the contents of register rt at addressed location.	

ALU Instructions

Instruction	Format and Description op rs rt immediate		
ADD Immediate	ADDI rt,rs,immediate Add 16-bit sign-extended immediate to register rs and place the 32-bit result in register rt. Trap on 2's-complement overflow.		
ADD Immediate Unsigned	ADDIU rt,rs,immediate Add 16-bit sign-extended immediate to register rs and place the 32-bit result in register rt. Do not trap on overflow.		
Set on Less Than Immediate	SLTI rt,rs,immediate Compare 16-bit sign-extended immediate with register rs as signed 32-bit integers. Result = 1 if rs is less than immediate; otherwise result = 0. Place result in register rt.		
Set on Less Than Immediate Unsigned	SLTIU rt,rs,immediate Compare 16-bit sign-extended immediate with register rs as unsigned 32-bit integers. Result = 1 if rs is less than immediate; otherwise result = 0. Place result in register rt.		
AND Immediate	ANDI rt,rs,immediate Zero-extend 16-bit immediate, AND with contents of register rs and place the result in register rt.		
OR Immediate	ORI rt,rs,immediate Zero-extend 16-bit immediate, OR with contents of register rs and place the result in register rt.		
Exclusive OR Immediate	XORI rt,rs,immediate Zero-extend 16-bit immediate, exclusive OR with contents of register rs and place the result in register rt.		
Load Upper Immediate	LUI rt,immediate Shift 16-bit immediate left 16 bits. Set least significant 16 bits of word to zeros. Store the result in register rt.		

Instruction	Format and Description op rs rt rd sa function
Add	ADD rd,rs,rt
	Add contents of registers <i>rs</i> and <i>rt</i> and place the 32-bit result in register <i>rd</i> . Trap on 2's-complement overflow.
Add Unsigned	ADDU_rd,rs,rt
	Add contents of registers <i>rs</i> and <i>rt</i> and place the 32-bit result in register <i>rd</i> . Do not trap on overflow.
Subtract	SUB rd,rs,rt
	Subtract contents of registers <i>rt</i> from <i>rs</i> and place the 32-bit result in register <i>rd</i> . Trap on 2's-complement overflow.
Subtract Unsigned	SUBU rd,rs,rt
Subtract Unsigned	Subtract contents of registers <i>rt</i> from <i>rs</i> and place the 32-bit result in register <i>rd</i> . Do not trap on overflow.
Set on Less Than	SLT rd,rs,rt Compare contents of register rt to register rs as signed 32-bit
	integers. Result = 1 if rs is less than rt ; otherwise result = 0.
Set on Less Than	SLTU rd,rs,rt
Unsigned	Compare contents of register <i>rt</i> to register <i>rs</i> as unsigned 32-bit integers. Result = 1 if <i>rs</i> is less than <i>rt</i> ; otherwise result = 0.
AND	AND rd,rs,rt
	Bitwise AND the contents of registers rs and rt, and place the result in register rd.
OR	OR rd,rs,rt
011	Bitwise OR the contents of registers rs and rt, and place the result in register rd.
Exclusive OR	XOR rd,rs,rt
	Bitwise exclusive OR the contents of registers <i>rs</i> and <i>rt</i> , and place the result in register <i>rd</i> .
NOR	NOR rd,rs,rt
NON	Bitwise NOR the contents of registers rs and rt, and place the result in register rd.

Instruction	Format and Description op rs rt rd sa function
Shift Left Logical	SLL rd,rt,sa Shift the contents of register rt left by sa bits, inserting zeros into the low order bits. Place the 32-bit result in register rd.
Shift Right Logical	SRL rd,rt,sa Shift the contents of register rt right by sa bits, inserting zeros into the high order bits. Place the 32-bit result in register rd.
Shift Right Arithmetic	SRA rd,rt,sa Shift the contents of register rt right by sa bits, sign-extending the high order bits. Place the 32-bit result in register rd.
Shift Left Logical Variable	SLLV rd,rt,rs Shift the contents of register rt left. The low order 5 bits of register rs specify the number of bits to shift left; insert zeros into the low order bits of rt and place the 32-bit result in register rd.
Shift Right Logical Variable	SRLV rd,rt,rs Shift the contents of register <i>n</i> right. The low order 5 bits of register <i>rs</i> specify the number of bits to shift right; insert zeros into the high order bits of <i>n</i> and place the 32-bit result in register <i>rd</i> .
Shift Right Arithmetic Variable	SRAV rd,rt,rs Shift the contents of register rt right. The low order 5 bits of register rs specify the number of bits to shift right; sign-extend the high order bits of rt and place the 32-bit result in register rd.

Jump and Branch Instructions

Instruction	Format and Description op target		
Jump	<i>J</i> target Shift the 26-bit target address left two bits, combine with high order four bits of the PC, and jump to the address with a 1-instruction delay.		
Jump And Link	JAL target Shift the 26-bit target address left two bits, combine with high order four bits of the PC, and jump to the address with a 1-instruction delay. Place the address of the instruction following the delay slot in r31 (Link register).		
Instruction	Format and Description op rs rt rd sa function		
Jump Register	JR rs Jump to the address contained in register rs, with a 1-instruction delay.		
Jump And Link Register	JALR rd, rs Jump to the address contained in register rs, with a 1-instruction delay. Place the address of the instruction following the delay slot in register rd.		

Instruction	Format and Description		
Branch on Equal	BEQ rs,rt,offset op rs rt offset		
	Branch to target address if register rs is equal to register rt.		
Branch on Not Equal	BNE rs,rt,offset Branch to target address if register rs is not equal to register rt.		
Branch on Less than or Equal Zero	BLEZ rs,offset Branch to target address if register rs is less than or equal to zero.		
Branch on Greater Than Zero	<i>BGTZ rs,offset</i> Branch to target address if register <i>rs</i> is greater than zero.		
Branch on Less	BLTZ rs,offset REGIMM rs sub offset		
Than Zero	Branch to target address if register rs is less than zero.		
Branch on Greater than or Equal Zero	BGEZ rs,offset Branch to target address if register rs is greater than or equal to zero.		
Branch on Less Than Zero And Link	BLTZAL rs,offset		
	Place address of instruction following the delay slot in register <i>r31</i> (Link register). Branch to target address if register <i>rs</i> is less than zero.		
Branch on Greater than or Equal Zero And Link	BGEZAL rs,offset Place address of instruction following the delay slot in register r31 (Link register). Branch to target address if register rs is greater than or equal to zero.		