
Last updated: 
2/24/2017 

 Page 1 of 42 

Problem M1.1: Self Modifying Code on the EDSACjr 
 
This problem gives us a flavor of EDSAC-style programming and its limitations. Please read 
Handout #1 (EDSACjr) and Lecture 2 before answering the following questions (You may find 
local labels in Handout #1 useful for writing self-modifying code.) 
 
 
Problem M1.1.A Writing Macros For Indirection 

 
With only absolute addressing instructions provided by the EDSACjr, writing self-modifying 
code becomes unavoidable for almost all non-trivial applications. It would be a disaster, for both 
you and us, if you put everything in a single program. As a starting point, therefore, you are 
expected to write macros using the EDSACjr instructions given in Table H1-1 (in Handout #1) 
to emulate indirect addressing instructions described in Table M1.1-1. Using macros may 
increase the total number of instructions that need to be executed because certain instruction 
level optimizations cannot be fully exploited. However, the code size on paper can be reduced 
dramatically when macros are appropriately used. This makes programming and debugging 
much easier.  
 
Please use following global variables in your macros.  
 
_orig_accum: CLEAR  ; temp. storage for accum 
_store_op: STORE 0  ; STORE template 
_bge_op:  BGE 0  ; BGE template 
_blt_op:  BLT 0  ; BLT template 
_add_op:  ADD 0  ; ADD template 
 
These global variables are located somewhere in main memory and can be accessed using their 
labels.  The _orig_accum location will be used to temporarily store the accumulator’s value.  
The other locations will be used as “templates” for generating instructions.   
 

Opcode Description 
ADDind  n Accum ← Accum + M[M[n]] 
STOREind  n M[M[n]] ← Accum 
BGEind  n If  Accum ≥ 0  then  PC ← M[n] 
BLTind  n If  Accum < 0  then  PC ← M[n] 

 
Table M1.1-1:  Indirection Instructions 
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Problem M1.1.B Subroutine Calling Conventions 
 
A possible subroutine calling convention for the EDSACjr is to place the arguments right after 
the subroutine call and pass the return address in the accumulator. The subroutine can then get its 
arguments by offset to the return address.   
 
Describe how you would implement this calling convention for the special case of one argument 
and one return value using the EDSACjr instruction set. What do you need to do to the 
subroutine for your convention to work? What do you have to do around the calling point? How 
is your result returned? You may assume that your subroutines are in set places in memory and 
that subroutines cannot call other subroutines. You are allowed to use the original EDSACjr 
instruction set shown in Handout #1 (Table H1-1), as well as the indirection instructions listed in 
Table M1.1-1. 
 
To illustrate your implementation of this convention, write a program for the EDSACjr to 
iteratively compute fib(n), where n is a non-negative integer. fib(n) returns the nth 
Fibonacci number (fib(0)=0, fib(1)=1, fib(2)=1, fib(3)=2…). Make fib a 
subroutine. (The C code is given below.) In few sentences, explain how could your convention 
be generalized for subroutines with an arbitrary number of arguments and return values? 
 
The following program defines the iterative subroutine fib in C. 
 

int fib(int n) { 
  int i, x, y, z; 
  x=0, y=1; 
  if(n<2) 
    return n; 
  else{ 
    for(i=0; i<n-1; i++){ 
      z=x+y; 
      x=y; 
      y=z; 
    } 
    return z; 
  } 
} 
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Problem M1.1.C Subroutine Calling Other Subroutines 
 
The following program defines a recursive version of the subroutine fib in C. 
 

int fib_recursive (int n){ 
  if(n<2) 
    return n; 
  else{ 
    return(fib(n-1) + fib(n-2)); 
  } 
} 

 
In a few sentences, explain what happens if the subroutine calling convention you implemented 
in Problem M1.1.B is used for fib_recursive.  
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Problem M1.2: CISC and RISC: Comparing ISAs 
 
This problem requires the knowledge of Handout #2 (CISC ISA—x86jr), Handout #3 (RISC 
ISA—MIPS32), and Lectures 1 and 2. Please read these materials before answering the 
following questions. 
  
 
Problem M1.2.A CISC 

 
Let us begin by considering the following C code. 
 
int b;  //a global variable 
 
void multiplyByB(int a){ 
  int i, result; 
  for(i = 0; i<b; i++){ 
    result=result+a; 
  } 
} 
 
Using gcc and objdump on a Pentium III, we see that the above loop compiles to the following 
x86 instruction sequence. (On entry to this code, register %ecx contains i, register %edx contains 
result and register %eax contains a. b is stored in memory at location 0x08047580.) A brief 
explanation of each instruction in the code is given in Handout #2. 
 

xor    %edx,%edx 
xor    %ecx,%ecx 

 loop:      cmp    0x08047580,%ecx 
   jl     L1  
   jmp    done  
 L1:  add    %eax,%edx 
   inc    %ecx 
   jmp    loop  
 done:    ... 
 
 
How many bytes is the program? For the above x86 assembly code, how many bytes of 
instructions need to be fetched if b = 10? Assuming 32-bit data values, how many bytes of data 
memory need to be fetched? Stored? 
 
 
Problem M1.2.B RISC 

 
Translate each of the x86 instructions in the following table into one or more MIPS32 
instructions in Handout #3. Place the L1 and loop labels where appropriate. You should use the 
minimum number of instructions needed. Assume that upon entry R2 contains a and R3 contains 
i. R1 should be loaded with the value of b from memory location 0x08047580, while R4 should 
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receive result. If needed, use R5 to hold the condition value and R6, R7, etc., for temporaries. 
You should not need to use any floating point registers or instructions in your code. 
 
x86 instruction label MIPS32 instruction sequence 
xor    %edx,%edx 
          

  
 
 

xor    %ecx,%ecx 
          

  
 
 

cmp    0x08049580,%ecx   
 
 

jl     L1  
 

  
 
 

jmp    done   
 
 

add    %eax,%edx   
 
 

inc    %ecx 
 

  
 
 

jmp    loop   
 
 

... done: ... 

 
How many bytes is the MIPS32 program using your direct translation? How many bytes of 
MIPS32 instructions need to be fetched for b = 10 using your direct translation? How many 
bytes of data memory need to be fetched? Stored?  
 
 
Problem M1.2.C Optimization 

 
To get more practice with MIPS32, optimize the code from part B so that it can be expressed in 
fewer instructions. Your solution should contain commented assembly code, a paragraph which 
explains your optimizations and a short analysis of the savings you obtained. 
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Problem M1.3: Addressing Modes on MIPS ISA 
 
Ben Bitdiddle is suspicious of the benefits of complex addressing modes. So he has decided to 
investigate it by incrementally removing the addressing modes from our MIPS ISA. Then he will 
write programs on the “crippled” MIPS ISAs to see what the programming on these ISAs is like. 
 
Problem M1.3.A Displacement addressing mode 

 
As a first step, Ben has discontinued supporting the displacement (base+offset) addressing mode, 
that is, our MIPS ISA only supports register indirect addressing (without the offset).    
 
Can you still write the same program as before? If so, please translate the following load 
instruction into an instruction sequence in the new ISA. If not, explain why. 
 

LW R1, 16(R2)      è 
 
 
 
 
Problem M1.3.B Register indirect addressing 

 
Now he wants to take a bolder step by completely eliminating the register indirect addressing.  
The new load and store instructions will have the following format. 
 

LW R1, imm16   ; R1 <- M[imm16] 
SW R1, imm16   ; M[imm16] <- R1  

 
6 5 5 16 

Opcode Rs  Offset 
 
Can you still write the same program as before? If so, please translate the following load 
instruction into an instruction sequence in the new ISA. If not, explain why. (Don’t worry about 
branches and jumps for this question.) 
 

LW R1, 16(R2)      è 
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Problem M1.3.C Subroutine 

  
Ben is wondering whether we can implement a subroutine using only absolute addressing. He 
changes the original ISA such that all the branches and jumps take a 16-bit absolute address (the 
2 lower orders bits are 0 for word accesses), and that jr and jalr are not supported any longer. 
 
With the new ISA he decides to rewrite a piece of subroutine code from his old project. Here is 
the original C code he has written. 
 
int b;  //a global variable 
 
void multiplyByB(int a){ 
  int i, result; 
  for(i=0; i<b; i++){ 
    result=result+a; 
  } 
} 
 
The C code above is translated into the following instruction sequence on our original MIPS ISA. 
Assume that upon entry, R1 and R2 contain b and a, respectively. R3 is used for i and R4 for 
result. By a calling convention, the 16-bit word-aligned return address is passed in R31. 
 
Subroutine: xor  R4, R4, R4 ; result = 0 

xor  R3, R3, R3 ; i = 0 
loop:  slt  R5, R3, R1  

bnez R5, L1  ; if (i < b) goto L1 
return: jr   R31  ; return to the caller 
L1:  add  R4, R4, R2 ; result += a 

addi R3, R3, #1 ; i++ 
j    loop 

 
If you can, please rewrite the assembly code so that the subroutine returns without using a jr 
instruction (which is a register indirect jump). If you cannot, explain why.   
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Problem M2.1: Cache Access-Time & Performance 
 
This problem requires the knowledge of Handout 4 (Cache Implementations) and Lecture 
3 (Caches).  Please, read these materials before answering the following questions. 
 
Ben is trying to determine the best cache configuration for a new processor. He knows 
how to build two kinds of caches: direct-mapped caches and 4-way set-associative 
caches. The goal is to find the better cache configuration with the given building blocks.  
He wants to know how these two different configurations affect the clock speed and the 
cache miss-rate, and choose the one that provides better performance in terms of average 
latency for a load.   
 
Problem M2.1.A Access Time: Direct-Mapped 

 
Now we want to compute the access time of a direct-mapped cache. We use the 
implementation shown in Figure H4-A in Handout #4. Assume a 128-KB cache with 8-
word (32-byte) cache lines. The address is 32 bits, and the two least significant bits of the 
address are ignored since a cache access is word-aligned. The data output is also 32 bits, 
and the MUX selects one word out of the eight words in a cache line. Using the delay 
equations given in Table M2.1-1, fill in the column for the direct-mapped (DM) cache in 
the table. In the equation for the data output driver, ‘associativity’ refers to the 
associativity of the cache (1 for direct-mapped caches, A for A-way set-associative 
caches).  
 
 

Component Delay equation (ps)  DM (ps) SA (ps) 
Decoder 200×(# of index bits) + 1000 Tag   

Data   
Memory array 200×log2 (# of rows) +  

200×log2 (# of bits in a row) + 1000 
Tag   
Data   

Comparator 200×(# of tag bits) + 1000    
N-to-1 MUX 500×log2 N + 1000    
Buffer driver 2000    
Data output driver 500×(associativity) + 1000    
Valid output 
driver 

1000    

 
Table M2.1-1:  Delay of each Cache Component 

 
What is the critical path of this direct-mapped cache for a cache read? What is the access 
time of the cache (the delay of the critical path)? To compute the access time, assume that 
a 2-input gate (AND, OR) delay is 500 ps. If the CPU clock is 150 MHz, how many CPU 
cycles does a cache access take?  
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Problem M2.1.B Access Time: Set-Associative 
 
We also want to investigate the access time of a set-associative cache using the 4-way 
set-associative cache in Figure H4-B in Handout #4. Assume the total cache size is still 
128-KB (each way is 32-KB), a 4-input gate delay is 1000 ps, and all other parameters 
(such as the input address, cache line, etc.) are the same as part M2.1.A. Compute the 
delay of each component, and fill in the column for a 4-way set-associative cache in 
Table M2.1-1.  
 
What is the critical path of the 4-way set-associative cache? What is the access time of 
the cache (the delay of the critical path)? What is the main reason that the 4-way set-
associative cache is slower than the direct-mapped cache? If the CPU clock is 150 MHz, 
how many CPU cycles does a cache access take? 

IndexTag

Input Address

• • • •
• • • •
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• • • •
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=
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Problem M2.1.C Miss-rate analysis 
 
Now Ben is studying the effect of set-associativity on the cache performance. Since he 
now knows the access time of each configuration, he wants to know the miss-rate of each 
one. For the miss-rate analysis, Ben is considering two small caches: a direct-mapped 
cache with 8 lines with 16 bytes/line, and a 4-way set-associative cache of the same size.  
For the set-associative cache, Ben tries out two replacement policies – least recently used 
(LRU) and round robin (FIFO). 
 
Ben tests the cache by accessing the following sequence of hexadecimal byte addresses, 
starting with empty caches. For simplicity, assume that the addresses are only 12 bits.  
Complete the following tables for the direct-mapped cache and both types of 4-way set-
associative caches showing the progression of cache contents as accesses occur (in the 
tables, ‘inv’ = invalid, and the column of a particular cache line contains the {tag,index} 
contents of that line). You only need to fill in elements in the table when a value changes.  
 
 

D-map 
 
Address 

 
line in cache hit? 

L0 L1 L2 L3 L4 L5 L6 L7  
110 inv 11 inv inv inv inv inv inv no 
136    13     no 
202 20        no 
1A3          
102          
361          
204          
114          
1A4          
177          
301          
206          
135          

   
 D-map 
Total Misses  
Total Accesses  
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4-way 
 
Address 

LRU 
line in cache hit? 

Set 0 Set 1 
way0 way1 Way2 way3 way0 way1 way2 way3  

110 inv Inv Inv inv 11 inv inv inv no 
136     11 13   no 
202 20        no 
1A3          
102          
361          
204          
114          
1A4          
177          
301          
206          
135          

 
 4-way LRU 
Total Misses  
Total Accesses  
 
 

4-way 
 
Address 

FIFO 
line in cache hit? 

Set 0 Set 1 
way0 way1 way2 way3 way0 way1 way2 way3  

110 inv Inv Inv inv 11 inv inv inv no 
136      13   no 
202 20        no 
1A3          
102          
361          
204          
114          
1A4          
177          
301          
206          
135          

 
 4-way FIFO 
Total Misses  
Total Accesses  
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Problem M2.1.D Average Latency 
 
Assume that the results of the above analysis can represent the average miss-rates of the 
direct-mapped and the 4-way LRU 128-KB caches studied in M2.1.A and M2.1.B. What 
would be the average memory access latency in CPU cycles for each cache (assume that 
a cache miss takes 20 cycles)? Which one is better? For the different replacement policies 
for the set-associative cache, which one has a smaller cache miss rate for the address 
stream in M2.1.C? Explain why. Is that replacement policy always going to yield better 
miss rates? If not, give a counter example using an address stream. 
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Problem M2.2:  Victim Cache Evaluation 
 
This problem requires the knowledge of Handout #5 (Victim Cache) and Lecture 3.  
Please, read these materials before answering the following questions. 
 

Problem M2.2.A Baseline Cache Design 
 
The diagram below shows a 32-Byte fully associative cache with four 8-Byte cache lines.  
Each line consists of two 4-Byte words and has an associated tag and two status bits 
(valid and dirty). The Input Address is 32-bits and the two least significant bits are 
assumed to be zero. The output of the cache is a 32-bit word. 
 
 
 

Tag

Input Address

• •• • • •• •STSTSTST

Valid Bit

=
Comparator

= = =

Valid Output
Driver

Buffer Driver

MUX MUX MUX MUX

Data 
Output
Drivers

Data Bus
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Please complete Table M2.2-1 below with delays across each element of the cache. Using 
the data you compute in Table M2.2-1, calculate the critical path delay through this cache 
(from when the Input Address is set to when both Valid Output Driver and the 
appropriate Data Output Driver are outputting valid data).  
 

Component Delay equation (ps)  FA (ps) 
Comparator 200×(# of tag bits) + 1000  
N-to-1 MUX 500×log2 N + 1000  
Buffer driver 2000  
AND gate 1000  
OR gate 500  
Data output driver 500×(associativity) + 1000  
Valid output 
driver 

1000  

Table M2.2-1 
 
 
Critical Path Cache Delay:  _______________________ 
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Problem M2.2.B Victim Cache Behavior 
 
Now we will study the impact of a victim cache on a cache hit rate. Our main L1 cache is 
a 128 byte, direct mapped cache with 16 bytes per cache line. The cache is word (4-bytes) 
addressable. The victim cache in Figure H5-A (in Handout #5) is a 32 byte fully 
associative cache with 16 bytes per cache line, and is also word-addressable. The victim 
cache uses the first in first out (FIFO) replacement policy. 
 
Please complete Table M2.2-2 on the next page showing a trace of memory accesses. In 
the table, each entry contains the {tag,index} contents of that line, or “inv”, if no data is 
present. You should only fill in elements in the table when a value changes. For 
simplicity, the addresses are only 8 bits. 
 
The first 3 lines of the table have been filled in for you. 
 
For your convenience, the address breakdown for access to the main cache is depicted 
below. 
 

7 6  4 3 2 1 0 

TAG INDEX WORD SELECT BYTE SELECT 
 
 
 
 
 
Problem M2.2.C Average Memory Access Time 

 
 
Assume 15% of memory accesses are resolved in the victim cache. If retrieving data 
from the victim cache takes 5 cycles and retrieving data from main memory takes 55 
cycles, by how many cycles does the victim cache improve the average memory access 
time? 
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Input 

Address 

Main Cache Victim Cache 
L0 L1 L2 L3 L4 L5 L6 L7 Hit? Way0 Way1 Hit? 
inv inv inv inv inv inv inv inv - inv inv - 

00 0        N   N 
80 8        N 0  N 
04 0        N 8  Y 
A0             
10             
C0             
18             
20             
8C             
28             
AC             
38             
C4             
3C             
48             
0C             
24             

Table M2.2-2
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Problem M2.3: Loop Ordering 
 
This problem requires the knowledge of Lecture 3.  Please, read it before answering the 
following questions. 
 
This problem evaluates the cache performances for different loop orderings. You are 
asked to consider the following two loops, written in C, which calculate the sum of the 
entries in a 128 by 64 matrix of 32-bit integers: 
 

Loop A Loop B 
sum = 0; 
for (i = 0; i < 128; i++) 
  for (j = 0; j < 64; j++) 
    sum += A[i][j]; 

sum = 0; 
for (j = 0; j < 64; j++) 
  for (i = 0; i < 128; i++) 
    sum += A[i][j]; 

 
The matrix A is stored contiguously in memory in row-major order. Row major order 
means that elements in the same row of the matrix are adjacent in memory as shown in 
the following memory layout: 
 
A[i][j] resides in memory location [4*(64*i + j)] 
 
Memory Location: 
              
0 4   252 256  4*(64*127+63) 

A[0][0] A[0][1] ... A[0][63] A[1][0] ... A[127][63] 
 
For Problem M2.3.A to Problem M2.3.C, assume that the caches are initially empty.  
Also, assume that only accesses to matrix A cause memory references and all other 
necessary variables are stored in registers. Instructions are in a separate instruction cache.   
 



Last updated: 
2/24/2017 

Page 18 of 42 

 
Problem M2.3.A  

 
Consider a 4KB direct-mapped data cache with 8-word (32-byte) cache lines.   
Calculate the number of cache misses that will occur when running Loop A. 
Calculate the number of cache misses that will occur when running Loop B. 
 

The number of cache misses for Loop A:_____________________________ 

The number of cache misses for Loop B:_____________________________ 
 

Problem M2.3.B  
 
Consider a direct-mapped data cache with 8-word (32-byte) cache lines. Calculate the minimum 
number of cache lines required for the data cache if Loop A is to run without any cache misses 
other than compulsory misses. Calculate the minimum number of cache lines required for the 
data cache if Loop B is to run without any cache misses other than compulsory misses. 
 

Data-cache size required for Loop A: ____________________________  cache line(s)  

Data-cache size required for Loop B: ____________________________  cache line(s) 
 
Problem M2.3.C  

 
Consider a 4KB fully-associative data cache with 8-word (32-byte) cache lines. This data cache 
uses a first-in/first-out (FIFO) replacement policy. 
Calculate the number of cache misses that will occur when running Loop A.   
Calculate the number of cache misses that will occur when running Loop B.   
 

The number of cache misses for Loop A:_____________________________ 

The number of cache misses for Loop B:_____________________________ 
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Problem M2.4: Cache Parameters 
 
For each of the following statements about making a change to a cache design, circle True or 
False and provide a one sentence explanation of your choice. Assume all cache parameters 
(capacity, associativity, line size) remain fixed except for the single change described in each 
question. Please provide a one sentence explanation of your answer. 
 
Problem M2.4.A  

 
Doubling the line size halves the number of tags in the cache 
 
True  /  False 
 
Problem M2.4.B  

 
Doubling the associativity doubles the number of tags in the cache. 
 
True  /   False 
 
Problem M2.4.C  

 
Doubling cache capacity of a direct-mapped cache usually reduces conflict misses. 
 
True  /   False 
 

Problem M2.4.D  
 
Doubling cache capacity of a direct-mapped cache usually reduces compulsory misses. 
 
True  /   False 
 

Problem M2.4.E  
 
Doubling the line size usually reduces compulsory misses. 
 
True  /   False 
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Problem M2.5: Microtags 
 
Problem M2.5.A  

 
Explain in one or two sentences why direct-mapped caches have much lower hit latency (as 
measured in picoseconds) than set-associative caches of the same capacity. 
 

Problem M2.5.B  
 
A 32-bit byte-addressed machine has an 8KB, 4-way set-associative data cache with 32-byte 
lines. The following figure shows how the address is divided into tag, index and offset fields. 
Give the number of bits in each field. 
 
 

tag Index offset 
 
 

# of bits in the tag: ______________ 
 

# of bits in the index: ______________ 
 

# of bits in the offset: ______________ 
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Microtags (for questions M2.5.C – M2.5.H) 
 
Several commercial processors (including the UltraSPARC-III and the Pentium-4) reduce the hit 
latency of a set-associative cache by using only a subset of the tag bits (a “microtag”) to select 
the matching way before speculatively forwarding data to the CPU.  The remaining tag bits are 
checked in a subsequent clock cycle to determine if the access was actually a hit. The figure 
below illustrates the structure of a cache using this scheme.  
 
 
 

HiTag LoTag data

HiTag LoTag

=

Index offset

HiTag LoTag data

=

...

To CPU

==

Hit?Hit?  
 
Problem M2.5.C  

 
The tag field is sub-divided into a loTag field used to select a way and a hiTag field used for 
subsequent hit/miss checks, as shown below. 
 

tag   
hiTag loTag index offset 

 
The cache design requires that all lines within a set have unique loTag fields. 
In one or two sentences, explain why this is necessary. 
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Problem M2.5.D  

 
If the loTag field is exactly two bits long, will the cache have greater, fewer, or an equal number 
of conflict misses as a direct-mapped cache of the same capacity? State any assumptions made 
about replacement policy. 
 

 
Problem M2.5.E  

 
If the loTag field is greater than two bits long, are there any additional constraints on 
replacement policy beyond those in a conventional 4-way set-associative cache? 
 
 
Problem M2.5.F  

 
Does this scheme reduce the time required to complete a write to the cache? Explain in one or 
two sentences. 
 
Problem M2.5.G  

 
In practice, microtags hold virtual address bits to remove address translation from the critical 
path, while the full tag check is performed on translated physical addresses. If the loTag bits can 
only hold untranslated bits of the virtual address, what is the largest number of loTag bits 
possible if the machine has a 16KB virtual memory page size? (Assume 8KB 4-way set-
associative cache as in Question M2.5.B) 
 
Problem M2.5.H  

 
Describe how microtags can be made much larger, to also include virtual address bits subject to 
address translation. Your design should not require address translation before speculatively 
forwarding data to the CPU. Your explanation should describe the replacement policy and any 
additional state the machine must maintain. 
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Problem M3.1: Virtual Memory Bits 
 
This problem requires the knowledge of Handout #6 (Virtual Memory Implementation) and 
Lecture 4 and 5. Please, read these materials before answering the following questions. 
 
In this problem we consider simple virtual memory enhancements.  
 
Problem M3.1.A  

 
Whenever a TLB entry is replaced we write the entire entry back to the page table. Ben thinks 
this is a waste of memory bandwidth. He thinks only a few of the bits need to be written back. 
For each of the bits explain why or why not they need to be written back to the page table.   
 
With this in mind, we will see how we can minimize the number of bits we actually need in each 
TLB entry throughout the rest of the problem. 
 
Problem M3.1.B  

 
Ben does not like the TLB design. He thinks the TLB Entry Valid bit should be dropped and the 
kernel software should be changed to ensure that all TLB entries are always valid.  Is this a good 
idea? Explain the advantages and disadvantages of such a design. 
 
Problem M3.1.C  

 
Alyssa got wind of Ben’s idea and suggests a different scheme to eliminate one of the valid bits. 
She thinks the page table entry valid and TLB Entry Valid bits can be combined into a single bit.   
 
On a refill this combined valid bit will take the value that the page table entry valid bit had. A 
TLB entry is invalidated by writing it back to the page table and setting the combined valid bit in 
the TLB entry to invalid.   
 
How does the kernel software need to change to make such a scheme work? How do the 
exceptions that the TLB produces change? 
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Problem M3.1.D  
 
Now, Bud Jet jumps into the game. He wants to keep the TLB Entry Valid bit. However, there is 
no way he is going to have two valid bits in each TLB entry (one for the TLB entry one for the 
page table entry). Thus, he decides to drop the page table entry valid bit from the TLB entry.   
 
How does the kernel software need to change to make this work well? How do the exceptions 
that the TLB produces change?   
 
Problem M3.1.E  

 
Compare your answers to Problem M3.1.C and M3.1.D. What scheme will lead to better 
performance? 
 
Problem M3.1.F  

 
How about the R bit? Can we remove them from the TLB entry without significantly impacting 
performance? Explain briefly.  
 
Problem M3.1.G  

 
The processor has a kernel (supervisor) mode bit. Whenever kernel software executes the bit is 
set. When user code executes the bit is not set. Parts of the user’s virtual address space are only 
accessible to the kernel. The supervisor bit in the page table is used to protect this region—an 
exception is raised if the user tries to access a page that has the supervisor bit set. 
 
Bud Jet is on a roll and he decides to eliminate the supervisor bit from each TLB entry.  Explain 
how the kernel software needs to change so that we still have the protection mechanism and the 
kernel can still access these pages through the virtual memory system. 
 
Problem M3.1.H  

 
Alyssa P. Hacker thinks Ben and Bud are being a little picky about these bits, but has devised a 
scheme where the TLB entry does not need the M bit or the U bit. It works as follows. If a TLB 
miss occurs due to a load, then the page table entry is read from memory and placed in the TLB. 
However, in this case the W bit will always be set to 0.  Provide the details of how the rest of the 
scheme works (what happens during a store, when do the entries need to be written back to 
memory, when are the U and M bits modified in the page table, etc.).  
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Problem M3.2:  Page Size and TLBs  (2005 Fall Part D) 
 
This problem requires the knowledge of Handout #6 (Virtual Memory Implementation) and 
Lecture 5. Please, read these materials before answering the following questions. 
 
Assume that we use a hierarchical page table described in Handout #6. 

 
The processor has a data TLB with 64 entries, and each entry can map either a 4KB page or a 
4MB page. After a TLB miss, a hardware engine walks the page table to reload the TLB.  The 
TLB uses a first-in/first-out (FIFO) replacement policy.  
 
We will evaluate the memory usage and execution of the following program which adds the 
elements from two 1MB arrays and stores the results in a third 1MB array (note that, 1MB = 
1,048,576 Bytes): 

 
We assume the A, B, and C arrays are allocated in a contiguous 3MB region of physical 
memory. We will consider two possible virtual memory mappings: 
• 4KB: the arrays are mapped using 768 4KB pages (each array uses 256 pages). 
• 4MB: the arrays are mapped using a single 4MB page. 
 
For the following questions, assume that the above program is the only process in the system, 
and ignore any instruction memory or operating system overheads. Assume that the arrays are 
aligned in memory to minimize the number of page table entries needed.   
  

byte A[1048576]; // 1MB array  
byte B[1048576]; // 1MB array  
byte C[1048576]; // 1MB array  
 
for(int i=0; i<1048576; i++) 
  C[i] = A[i] + B[i]; 
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Problem M3.2.A  
 
This is the breakdown of a virtual address which maps to a 4KB page: 

 
Show the corresponding breakdown of a virtual address which maps to a 4MB page.  Include the 
field names and bit ranges in your answer. 

 
 
 

 
 

Problem M3.2.B Page Table Overhead 
 
We define page table overhead (PTO) as: 
 

PTO = 
Physical memory that is allocated to page tables 
Physical memory that is allocated to data pages 

 
For the given program, what is the PTO for each of the two mappings? 
 

PTO4KB = 
 
 

 

PTO4MB = 
 
 

 
  

L1 index 
33 43 

L2 index 
22 32 

L3 index 
12 21 

Page Offset 
0 11 

11 bits 11 bits 10 bits 12 bits 
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Problem M3.2.C Page Fragmentation Overhead 
 
We define page fragmentation overhead (PFO) as: 
 

PFO = 
Physical memory that is allocated to data pages but is never accessed 

Physical memory that is allocated to data pages and is accessed 
 
For the given program, what is the PFO for each of the two mappings? 
 

PFO4KB = 
 
 

 

PFO4MB = 
 
 

 
Problem M3.2.D  

 
Consider the execution of the given program, assuming that the data TLB is initially empty. For 
each of the two mappings, how many TLB misses occur, and how many page table memory 
references are required per miss to reload the TLB? 
 

 
Data TLB misses 

Page table memory 
references (per miss) 

4KB: 
  

4MB: 
  

 
Problem M3.2.E  

 
Which of the following is the best estimate for how much longer the program takes to execute 
with the 4KB page mapping compared to the 4MB page mapping? 
Circle one choice and briefly explain your answer (about one sentence). 
 

1.01× 10× 1,000× 1,000,000× 
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Problem M3.3: Page Size and TLBs 
 
This problem requires the knowledge of Handout #6 (Virtual Memory Implementation) and 
Lecture 5. Please, read these materials before answering the following questions. 
 
The configuration of the hierarchical page table in this problem is similar to the one in Handout 
#6, but we modify two parameters:  1) this problem evaluates a virtual memory system with two 
page sizes, 4KB and 1MB (instead of 4 MB), and 2) all PTEs are 16 Bytes (instead of 8 Bytes). 
The following figure summarizes the page table structure and indicates the sizes of the page 
tables and data pages (not drawn to scale): 
 

 
The processor has a data TLB with 64 entries, and each entry can map either a 4KB page or a 
1MB page. After a TLB miss, a hardware engine walks the page table to reload the TLB. The 
TLB uses a first-in/first-out (FIFO) replacement policy.  
 
We will evaluate the execution of the following program which adds the elements from two 
1MB arrays and stores the results in a third 1MB array (note that, 1MB = 1,048,576 Bytes, the 
starting address of the arrays are given below): 
 

 
 
 
 
 
 

 
 
Assume that the above program is the only process in the system, and ignore any instruction 
memory or operating system overheads. The data TLB is initially empty. 
 
 
  

L1 Table 
(4096 PTEs, 64KB) 

L2 Table 
(4096 PTEs, 64KB) 

L3 Table 
(256 PTEs, 4KB) 

Data Page 
(4KB) 

Data Page 
(1MB) 

Root ptr. 
(processor  

register) 

byte A[1048576]; // 1MB array 0x00001000000 
byte B[1048576]; // 1MB array 0x00001100000 
byte C[1048576]; // 1MB array 0x00001200000 
 
for(int i=0; i<1048576; i++) 
  C[i] = A[i] + B[i]; 
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Problem M3.3.A  
 
Consider the execution of the program. There is no cache and each memory lookup has 100 
cycle latency. 
 
If all data pages are 4KB, compute the ratio of cycles for address translation to cycles for data 
access. 
 
If all data pages are 1MB, compute the ratio of cycles for address translation to cycles for data 
access. 
 
 
Problem M3.3.B  

 
For this question, assume that in addition, we have a PTE cache with one cycle latency. A PTE 
cache contains page table entries. If this PTE cache has unlimited capacity, compute the ratio of 
cycles for address translation to cycles for data access for the 4KB data page case. 
 
 

Problem M3.3.C  
 
With the use of a PTE cache, is there any benefit to caching L3 PTE entries? Explain. 
 
 

Problem M3.3.D  
 
What is the minimum capacity (number of entries) needed in the PTE cache to get the same 
performance as an unlimited PTE cache? (Assume that the PTE cache does not cache L3 PTE 
entries and all data pages are 4KB) 
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Problem M3.4: 64-bit Virtual Memory 
 
This problem examines page tables in the context of processors with 64-bit addressing. 
 
Problem M3.4.A Single level page tables 

 
For a computer with 64-bit virtual addresses, how large is the page table if only a single-level 
page table is used? Assume that each page is 4KB, that each page table entry is 8 bytes, and that 
the processor is byte-addressable. 
 
Problem M3.4.B Let’s be practical 

 
Many current implementations of 64-bit ISAs implement only part of the large virtual address 
space. One way to do this is to segment the virtual address space into three parts as shown 
below: one used for stack, one used for code and heap data, and the third one unused.  
 
 
 
 
 
 
 
 
 
 
 
 
 
A special circuit is used to detect whether the top eight bits of an address are all zeros or all ones 
before the address is sent to the virtual memory system. If they are not all equal, an invalid 
virtual memory address trap is raised. This scheme in effect removes the top seven bits from the 
virtual memory address, but retains a memory layout that will be compatible with future designs 
that implement a larger virtual address space. 
 

The MIPS R10000 does something similar. Because a 64-bit address is unnecessarily large, only 
the low 44 address bits are translated. This also reduces the cost of TLB and cache tag arrays. 
The high two virtual address bits (bits 63:62) select between user, supervisor, and kernel address 
spaces. The intermediate address bits (61:44) must either be all zeros or all ones, depending on 
the address region.  
 
How large is a single-level page table that would support MIPS R10000 addresses?  Assume that 
each page is 4KB, that each page table entry is 8 bytes, and that the processor is byte-
addressable. 
 

Reserved for Code and Heap 

Reserved for Stack 
0xFFFFFFFFFFFFFFFF 

0xFF00000000000000 

0x00FFFFFFFFFFFFFF 

0x0000000000000000 

Unused 



Last updated: 
2/24/2017 

Page 31 of 42 

Problem M3.4.C Page table overhead 
 
A three-level hierarchical page table can be used to reduce the page table size. Suppose we break 
up the 44-bit virtual address (VA) as follows:  
 

VA[43:33] VA[32:22] VA[21:12] VA[11:0] 
1st level index 2nd level index 3rd level index Page offset 

 
If page table overhead is defined as (in bytes): 
 

                   PHYSICAL MEMORY USED BY PAGE TABLES FOR A USER PROCESS              

 

 PHYSICAL MEMORY USED BY THE USER CODE, HEAP, AND STACK  

 
 
Remember that a complete page table page (1024 or 2048 PTEs) is allocated even if only one 
PTE is used. Assume a large enough physical memory that no pages are ever swapped to disk.  
Use 64-bit PTEs. What is the smallest possible page table overhead for the three-level 
hierarchical scheme? 
 
Assume that once a user page is allocated in memory, the whole page is considered to be useful. 
What is the largest possible page table overhead for the three-level hierarchical scheme?   
 
Problem M3.4.D PTE Overhead 

 
The MIPS R10000 uses a 40 bit physical address.  The physical translation section of the TLB 
contains the physical page number (also known as PPN), one “valid,” one “dirty,” and three 
“cache status” bits.    
 
What is the minimum size of a PTE assuming all pages are 4KB?   
 
MIPS/Linux stores each PTE in a 64 bit word. How many bits are wasted if it uses the minimum 
size you have just calculated? 
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Problem M3.4.E Page table implementation 
 
The following comment is from the source code of MIPS/Linux and, despite its cryptic 
terminology, describes a three-level page table. 
 
/* 
 * Each address space has 2 4K pages as its page directory, giving 1024 
 * 8 byte pointers to pmd tables. Each pmd table is a pair of 4K pages, 
 * giving 1024 8 byte pointers to page tables. Each (3rd level) page 
 * table is a single 4K page, giving 512 8 byte ptes.  
 * / 
 
 
Assuming 4K pages, how long is each index?   
 

Index Length (bits) 
Top-level (“page directory”)  
2nd-level  
3rd-level  

 
 
Problem M3.4.F Variable Page Sizes 

 
A TLB may have a page mask field that allows an entry to map a page size of any power of four 
between 4KB and 16MB. The page mask specifies which bits of the virtual address represent the 
page offset (and should therefore not be included in translation). What are the maximum and 
minimum reach of a 64-entry TLB using such a mask? The R10000 actually doubles this reach 
with little overhead by having each TLB entry map two physical pages, but don’t worry about 
that here. 
 
Problem M3.4.G Virtual Memory and Caches 

 
Ben Bitdiddle is designing a 4-way set associative cache that is virtually indexed and virtually 
tagged. He realizes that such a cache suffers from a homonym aliasing problem. The homonym 
problem happens when two processes use the same virtual address to access different physical 
locations. Ben asks Alyssa P. Hacker for help with solving this problem. She suggests that Ben 
should add a PID (Process ID) to the virtual tag. Does this solve the homonym problem? 
 
Another problem with virtually indexed and virtually tagged caches is called synonym problem. 
Synonym problem happens when distinct virtual addresses refer to the same physical location. 
Does Alyssa’s idea solve this problem? 
 
Ben thinks that a different way of solving synonym and homonym problems is to have a direct 
mapped cache, rather than a set associative cache. Is he right? 
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Problem M3.5: Cache Basics (2005 Fall Part A) 
 
Questions in Part A are about the operations of virtual and physical address caches in two 
different configurations: direct-mapped and 2-way set-associative. The direct-mapped cache has 
8 cache lines with 8 bytes/line (i.e. the total size is 64 bytes), and the 2-way set-associative cache 
is the same size (i.e. 32 bytes/way) with the same cache line size.  The page size is 16 bytes. 
 
Please answer the following questions. 
  
 
Problem M3.5.A  

 
We ask you to follow step-by-step operations of the virtually indexed, physically tagged, 2-way 
set-associative cache shown in the previous question (Figure B). You are given a snapshot of the 
cache and TLB states in the figure below. Assume that the smallest physical tags (i.e. no index 
part contained) are taken from the high order bits of an address, and that Least Recently Used 
(LRU) replacement policy is used.   
(Only valid (V) bits and tags are shown for the cache; VPNs and PPNs for the TLB.)   

 
Index V Tags (way0) V Tags (way1)  

0 1 0x45 0   
1 1 0x3D 0   
2 1 0x1D 0   
3 0  0   

Initial cache tag states 
 

VPN PPN VPN PPN 
0x0 0x0A 0x10 0x6A 
0x1 0x1A 0x20 0x7A 
0x2 0x2A 0x30 0x8A 
0x3 0x3A 0x40 0x9A 
0x5 0x4A 0x50 0xAA 
0x7 0x5A 0x70 0xBA 

TLB states 
 
After accessing the address sequence (all in virtual address) given below, what will be the final 
cache states? Please fill out the table at the bottom of this page with the new cache states. You 
can write tags either in binary or in hexadecimal form.  
 
Address sequence:  0x34 -> 0x38 -> 0x50 -> 0x54 -> 0x208 -> 0x20C -> 0x74 -> 0x54 
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Index V Tags (way0) V Tags (way1)  
0      
1      
2      
3      

Final cache tag states 
 
Problem M3.5.B  

 
Assume that a cache hit takes one cycle and that a cache miss takes 16 cycles. What is the average 
memory access time for the address sequence of 8 words given in Question M3.5.A? 
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Problem M3.6: Handling TLB Misses (2005 Fall Part B) 
 
In the following questions, we ask you about the procedure of handling TLB misses. The 
following figure shows the setup for this part and each component’s initial states. 

 

(01000)
User PTE Base 

(UPTB, Virtual)

0C000
System PTE Base 

(SPTB, Physical)

??

E00000D1
E00000D2
E00000D3
E00000D4

•
•

0F010(01000)

0F014(01004)

0F018(01008)

0F01C(0100C)

? (01010)

E0000F01
E0000F02
E0000F03
E0000F04

•
•

0C000

0C004

0C008

0C00C

User Page Table 
(in virtual space)

System Page Table 
(in physical space)

•
•
E0000107
E0000106
E0000105
E0000104

E000
E000
E000
E00000FD

00FC
00FB
00FA

E00000E1
•
•

E00000E2
E00000E3
E00000E4

0F020

0F024

0F028

0F02C

0F030

0F034

0F038

0F03C

0F040

0F044

0F048

0F04C

Physical memory

Address
PA (VA)

Address
PA

Address
PA

0F010100
PPNVPN

TLB

 
Notes  1. All numbers are in hexadecimal. 
 2. Virtual addresses are shown in parentheses, and physical addresses without parentheses. 
 
 
For the rest of this part, we assume the following: 

1) The system uses 20-bit virtual addresses and 20-bit physical addresses. 
2) The page size is 16 bytes. 
3) We use a linear (not hierarchical) page table with 4-byte page table entry (PTE).  A PTE 

can be broken down into the following fields. (Don’t worry about the status bits, 
PTE[15:0], for the rest of Part B.) 

31 16 15 14 13 12 11 10 9 0 

Physical Page Number (PPN) V R W U M S 0000000000 
 
4) The TLB contains 4 entries and is fully associative. 
 

On the next page, we show a pseudo code for the TLB refill algorithm. 
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// On a TLB miss, “MA” (Miss Address) contains the address of that  
// miss.  Note that MA is a virtual address. 
 
// UTOP is the top of user virtual memory in the virtual address  
// space.  The user page table is mapped to this address and up. 
#define UTOP 0x01000 
 
// UPTB and SPTB stand for User PTE Base and System PTE Base,  
// respectively.  See the figure in the previous page. 
 
if (MA < UTOP) {   
   // This TLB miss was caused by a normal user-level memory access 
 
   // Note that another TLB miss can occur here while loading a PTE. 
   LW Rtemp, UPTB+4*(MA>>4);   // load a PTE using a virtual address 
} 
else { 
   // This TLB miss occurred while accessing system pages (e.g. page  

// tables) 
 
   // TLB miss cannot happen here because we use a physical address. 
   LW_physical Rtemp, SPTB+4*((MA-UTOP)>>4);  // load a PTE using a  

// physical address 
} 
 
(Protection check on Rtemp); // Don’t worry about this step here 
(Extract PPN from Rtemp and store it to the TLB with VPN); 
(Restart the instruction that caused the TLB miss); 

TLB refill algorithm 
 
 

Problem M3.6.A  
 
What will be the physical address corresponding to the virtual address 0x00030?  Fill out the 
TLB states below after an access to the address 0x00030 is completed. 
 
Virtual address 0x00030 -> Physical address (0x __________) 
 

VPN PPN 

0x0100 0x0F01 

  

  

  

TLB states 
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Problem M3.6.B  
 
What will be the physical address corresponding to the virtual address 0x00050? Fill out the 
TLB states below after an access to the address 0x00050 is completed. (Start over from the initial 
system states, not from your system states after solving the previous question.) 
 
 
Virtual address 0x00050 -> Physical address (0x ___________) 
 
 

VPN PPN 

0x0100 0x0F01 

  

  

  

TLB states 
 
 
Problem M3.6.C  

 
We integrate virtual memory support into our baseline 5-stage MIPS pipeline using the TLB 
miss handler. We assume that accessing the TLB does not incur an extra cycle in memory access 
in case of hits. 
 
Without virtual memory support (i.e. we had only a single address space for the entire system), 
the average cycles per instruction (CPI) was 2 to run Program X. If the TLB misses 10 times for 
instructions and 20 times for data in every 1,000 instructions on average, and it takes 20 cycles to 
handle a TLB miss, what will be the new CPI (approximately)? 
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Problem M3.7: Hierarchical Page Table & TLB (Fall 2010 Part B) 
 
Suppose there is a virtual memory system with 64KB page which has 2-level hierarchical page 
table. The physical address of the base of the level 1 page table (0x01000) is stored in a special 
register named Page Table Base Register. The system uses 20-bit virtual address and 20-bit 
physical address. The following figure summarizes the page table structure and shows the 
breakdown of a virtual address in this system. The size of both level 1 and level 2 page table 
entries is 4 bytes and the memory is byte-addressed. Assume that all pages and all page tables 
are loaded in the main memory. Each entry of the level 1 page table contains the physical 
address of the base of each level 2 page tables, and each of the level 2 page table entries holds 
the PTE of the data page (the following diagram is not drawn to scale). As described in the 
following diagram, L1 index and L2 index are used as an index to locate the corresponding 4-
byte entry in Level 1 and Level 2 page tables. 
 

  
2-level hierarchical page table 

 
A PTE in level 2 page tables can be broken into the following fields (Don’t worry about status 
bits for the entire part). 
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Problem M3.7.A  
 
Assuming the TLB is initially at the state given below and the 
initial memory state is to the right, what will be the final TLB 
states after accessing the virtual address given below? Please 
fill out the table with the final TLB states. You only need to 
write VPN and PPN fields of the TLB. The TLB has 4 slots 
and is fully associative and if there are empty lines they are 
taken first for new entries. Also, translate the virtual address 
(VA) to the physical address (PA). For your convenience, we 
separated the page number from the rest with the colon “:”.  

 
VPN PPN 
0x8 0x3 

  

  

   
Initial TLB states 

 
  

 
Virtual Address:  
 
    0xE:17B0   (1110:0001011110110000) 
 

 
VPN PPN 
0x8 0x3 

  

  

   
Final TLB states 

 
 
VA  0xE17B0 => PA   ___________________   
 
 
 
 
  



Last updated: 
2/24/2017 

Page 40 of 42 

Problem M3.7.B  
 
What is the total size of memory required to store both the level 1 and 2 page tables?  
 
 
 
 
Problem M3.7.C  

 
Ben Bitdiddle wanted to reduce the amount of physical memory required to store the page table, 
so he decided to only put the level 1 page table in the physical memory and use the virtual 
memory to store level 2 page tables. Now, each entry of the level 1 page table contains the 
virtual address of the base of each level 2 page tables, and each of the level 2 page table entries 
contains the PTE of the data page (the following diagram is not drawn to scale). Other system 
specifications remain the same. (The size of both level 1 and level 2 page table entries is 4 bytes.)  
 

  
Ben’s design with 2-level hierarchical page table 
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Assuming the TLB is initially at the state given below and 
the initial memory state is to the right (different from 
M5.9.A), what will be the final TLB states after accessing the 
virtual address given below? Please fill out the table with the 
final TLB states. You only need to write VPN and PPN fields 
of the TLB. The TLB has 4 slots and it is fully associative 
and if there are empty lines they are taken first for new 
entries. Also, translate the virtual address to the physical 
address. Again, we separated the page number from the rest 
with the colon “:”. 

 

Initial TLB states 
 
 
 
 
Virtual Address:  
 
0xA:0708    (1010:0000011100001000) 
 
 

VPN PPN 
0x8 0x1 

  
  

   
Final TLB states 

 
 
 
VA  0xA0708 => PA   _______________________ 
 
 
  

VPN PPN 
0x8 0x1 
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Problem M3.7.D  
 
Alice P. Hacker examines Ben’s design and points out that his scheme can result in infinite loops. 
Describe the scenario where the memory access falls into infinite loops. 
 


