
Last updated:
2/24/2017

 Page 1 of 42

Problem M1.1: Self Modifying Code on the EDSACjr

This problem gives us a flavor of EDSAC-style programming and its limitations. Please read
Handout #1 (EDSACjr) and Lecture 2 before answering the following questions (You may find
local labels in Handout #1 useful for writing self-modifying code.)

Problem M1.1.A Writing Macros For Indirection

With only absolute addressing instructions provided by the EDSACjr, writing self-modifying
code becomes unavoidable for almost all non-trivial applications. It would be a disaster, for both
you and us, if you put everything in a single program. As a starting point, therefore, you are
expected to write macros using the EDSACjr instructions given in Table H1-1 (in Handout #1)
to emulate indirect addressing instructions described in Table M1.1-1. Using macros may
increase the total number of instructions that need to be executed because certain instruction
level optimizations cannot be fully exploited. However, the code size on paper can be reduced
dramatically when macros are appropriately used. This makes programming and debugging
much easier.

Please use following global variables in your macros.

_orig_accum: CLEAR ; temp. storage for accum
_store_op: STORE 0 ; STORE template
_bge_op: BGE 0 ; BGE template
_blt_op: BLT 0 ; BLT template
_add_op: ADD 0 ; ADD template

These global variables are located somewhere in main memory and can be accessed using their
labels. The _orig_accum location will be used to temporarily store the accumulator’s value.
The other locations will be used as “templates” for generating instructions.

Opcode Description
ADDind n Accum ← Accum + M[M[n]]
STOREind n M[M[n]] ← Accum
BGEind n If Accum ≥ 0 then PC ← M[n]
BLTind n If Accum < 0 then PC ← M[n]

Table M1.1-1: Indirection Instructions

Last updated:
2/24/2017

 Page 2 of 42

Problem M1.1.B Subroutine Calling Conventions

A possible subroutine calling convention for the EDSACjr is to place the arguments right after
the subroutine call and pass the return address in the accumulator. The subroutine can then get its
arguments by offset to the return address.

Describe how you would implement this calling convention for the special case of one argument
and one return value using the EDSACjr instruction set. What do you need to do to the
subroutine for your convention to work? What do you have to do around the calling point? How
is your result returned? You may assume that your subroutines are in set places in memory and
that subroutines cannot call other subroutines. You are allowed to use the original EDSACjr
instruction set shown in Handout #1 (Table H1-1), as well as the indirection instructions listed in
Table M1.1-1.

To illustrate your implementation of this convention, write a program for the EDSACjr to
iteratively compute fib(n), where n is a non-negative integer. fib(n) returns the nth
Fibonacci number (fib(0)=0, fib(1)=1, fib(2)=1, fib(3)=2…). Make fib a
subroutine. (The C code is given below.) In few sentences, explain how could your convention
be generalized for subroutines with an arbitrary number of arguments and return values?

The following program defines the iterative subroutine fib in C.

int fib(int n) {
 int i, x, y, z;
 x=0, y=1;
 if(n<2)
 return n;
 else{
 for(i=0; i<n-1; i++){
 z=x+y;
 x=y;
 y=z;
 }
 return z;
 }
}

Last updated:
2/24/2017

 Page 3 of 42

Problem M1.1.C Subroutine Calling Other Subroutines

The following program defines a recursive version of the subroutine fib in C.

int fib_recursive (int n){
 if(n<2)
 return n;
 else{
 return(fib(n-1) + fib(n-2));
 }
}

In a few sentences, explain what happens if the subroutine calling convention you implemented
in Problem M1.1.B is used for fib_recursive.

Last updated:
2/24/2017

Page 4 of 42

Problem M1.2: CISC and RISC: Comparing ISAs

This problem requires the knowledge of Handout #2 (CISC ISA—x86jr), Handout #3 (RISC
ISA—MIPS32), and Lectures 1 and 2. Please read these materials before answering the
following questions.

Problem M1.2.A CISC

Let us begin by considering the following C code.

int b; //a global variable

void multiplyByB(int a){
 int i, result;
 for(i = 0; i<b; i++){
 result=result+a;
 }
}

Using gcc and objdump on a Pentium III, we see that the above loop compiles to the following
x86 instruction sequence. (On entry to this code, register %ecx contains i, register %edx contains
result and register %eax contains a. b is stored in memory at location 0x08047580.) A brief
explanation of each instruction in the code is given in Handout #2.

xor %edx,%edx
xor %ecx,%ecx

 loop: cmp 0x08047580,%ecx
 jl L1
 jmp done
 L1: add %eax,%edx
 inc %ecx
 jmp loop
 done: ...

How many bytes is the program? For the above x86 assembly code, how many bytes of
instructions need to be fetched if b = 10? Assuming 32-bit data values, how many bytes of data
memory need to be fetched? Stored?

Problem M1.2.B RISC

Translate each of the x86 instructions in the following table into one or more MIPS32
instructions in Handout #3. Place the L1 and loop labels where appropriate. You should use the
minimum number of instructions needed. Assume that upon entry R2 contains a and R3 contains
i. R1 should be loaded with the value of b from memory location 0x08047580, while R4 should

Last updated:
2/24/2017

Page 5 of 42

receive result. If needed, use R5 to hold the condition value and R6, R7, etc., for temporaries.
You should not need to use any floating point registers or instructions in your code.

x86 instruction label MIPS32 instruction sequence
xor %edx,%edx

xor %ecx,%ecx

cmp 0x08049580,%ecx

jl L1

jmp done

add %eax,%edx

inc %ecx

jmp loop

... done: ...

How many bytes is the MIPS32 program using your direct translation? How many bytes of
MIPS32 instructions need to be fetched for b = 10 using your direct translation? How many
bytes of data memory need to be fetched? Stored?

Problem M1.2.C Optimization

To get more practice with MIPS32, optimize the code from part B so that it can be expressed in
fewer instructions. Your solution should contain commented assembly code, a paragraph which
explains your optimizations and a short analysis of the savings you obtained.

Last updated:
2/24/2017

Page 6 of 42

Problem M1.3: Addressing Modes on MIPS ISA

Ben Bitdiddle is suspicious of the benefits of complex addressing modes. So he has decided to
investigate it by incrementally removing the addressing modes from our MIPS ISA. Then he will
write programs on the “crippled” MIPS ISAs to see what the programming on these ISAs is like.

Problem M1.3.A Displacement addressing mode

As a first step, Ben has discontinued supporting the displacement (base+offset) addressing mode,
that is, our MIPS ISA only supports register indirect addressing (without the offset).

Can you still write the same program as before? If so, please translate the following load
instruction into an instruction sequence in the new ISA. If not, explain why.

LW R1, 16(R2) è

Problem M1.3.B Register indirect addressing

Now he wants to take a bolder step by completely eliminating the register indirect addressing.
The new load and store instructions will have the following format.

LW R1, imm16 ; R1 <- M[imm16]
SW R1, imm16 ; M[imm16] <- R1

6 5 5 16

Opcode Rs Offset

Can you still write the same program as before? If so, please translate the following load
instruction into an instruction sequence in the new ISA. If not, explain why. (Don’t worry about
branches and jumps for this question.)

LW R1, 16(R2) è

Last updated:
2/24/2017

Page 7 of 42

Problem M1.3.C Subroutine

Ben is wondering whether we can implement a subroutine using only absolute addressing. He
changes the original ISA such that all the branches and jumps take a 16-bit absolute address (the
2 lower orders bits are 0 for word accesses), and that jr and jalr are not supported any longer.

With the new ISA he decides to rewrite a piece of subroutine code from his old project. Here is
the original C code he has written.

int b; //a global variable

void multiplyByB(int a){
 int i, result;
 for(i=0; i<b; i++){
 result=result+a;
 }
}

The C code above is translated into the following instruction sequence on our original MIPS ISA.
Assume that upon entry, R1 and R2 contain b and a, respectively. R3 is used for i and R4 for
result. By a calling convention, the 16-bit word-aligned return address is passed in R31.

Subroutine: xor R4, R4, R4 ; result = 0

xor R3, R3, R3 ; i = 0
loop: slt R5, R3, R1

bnez R5, L1 ; if (i < b) goto L1
return: jr R31 ; return to the caller
L1: add R4, R4, R2 ; result += a

addi R3, R3, #1 ; i++
j loop

If you can, please rewrite the assembly code so that the subroutine returns without using a jr
instruction (which is a register indirect jump). If you cannot, explain why.

Last updated:
2/24/2017

Page 8 of 42

Problem M2.1: Cache Access-Time & Performance

This problem requires the knowledge of Handout 4 (Cache Implementations) and Lecture
3 (Caches). Please, read these materials before answering the following questions.

Ben is trying to determine the best cache configuration for a new processor. He knows
how to build two kinds of caches: direct-mapped caches and 4-way set-associative
caches. The goal is to find the better cache configuration with the given building blocks.
He wants to know how these two different configurations affect the clock speed and the
cache miss-rate, and choose the one that provides better performance in terms of average
latency for a load.

Problem M2.1.A Access Time: Direct-Mapped

Now we want to compute the access time of a direct-mapped cache. We use the
implementation shown in Figure H4-A in Handout #4. Assume a 128-KB cache with 8-
word (32-byte) cache lines. The address is 32 bits, and the two least significant bits of the
address are ignored since a cache access is word-aligned. The data output is also 32 bits,
and the MUX selects one word out of the eight words in a cache line. Using the delay
equations given in Table M2.1-1, fill in the column for the direct-mapped (DM) cache in
the table. In the equation for the data output driver, ‘associativity’ refers to the
associativity of the cache (1 for direct-mapped caches, A for A-way set-associative
caches).

Component Delay equation (ps) DM (ps) SA (ps)
Decoder 200×(# of index bits) + 1000 Tag

Data
Memory array 200×log2 (# of rows) +

200×log2 (# of bits in a row) + 1000
Tag
Data

Comparator 200×(# of tag bits) + 1000
N-to-1 MUX 500×log2 N + 1000
Buffer driver 2000
Data output driver 500×(associativity) + 1000
Valid output
driver

1000

Table M2.1-1: Delay of each Cache Component

What is the critical path of this direct-mapped cache for a cache read? What is the access
time of the cache (the delay of the critical path)? To compute the access time, assume that
a 2-input gate (AND, OR) delay is 500 ps. If the CPU clock is 150 MHz, how many CPU
cycles does a cache access take?

Last updated:
2/24/2017

Page 9 of 42

Problem M2.1.B Access Time: Set-Associative

We also want to investigate the access time of a set-associative cache using the 4-way
set-associative cache in Figure H4-B in Handout #4. Assume the total cache size is still
128-KB (each way is 32-KB), a 4-input gate delay is 1000 ps, and all other parameters
(such as the input address, cache line, etc.) are the same as part M2.1.A. Compute the
delay of each component, and fill in the column for a 4-way set-associative cache in
Table M2.1-1.

What is the critical path of the 4-way set-associative cache? What is the access time of
the cache (the delay of the critical path)? What is the main reason that the 4-way set-
associative cache is slower than the direct-mapped cache? If the CPU clock is 150 MHz,
how many CPU cycles does a cache access take?

IndexTag

Input Address

• • • •
• • • •
• • • •

• • • •
• • • •
• • • •

• • • •
• • • •
• • • •

• • • •
• • • •
• • • •

4×2b-2 data words
•
•
•

S
•
•
•

T
•
•
•

S
•
•
•

T
•
•
•

S
•
•
•

T
•
•
•

S
•
•
•

T

MUX

Tag
Decoder

Data
Decoder

Valid Bit

Valid
Output Driver

=

Buffer Driver

Comparator
MUX MUX MUX= = =

Last updated:
2/24/2017

Page 10 of 42

Problem M2.1.C Miss-rate analysis

Now Ben is studying the effect of set-associativity on the cache performance. Since he
now knows the access time of each configuration, he wants to know the miss-rate of each
one. For the miss-rate analysis, Ben is considering two small caches: a direct-mapped
cache with 8 lines with 16 bytes/line, and a 4-way set-associative cache of the same size.
For the set-associative cache, Ben tries out two replacement policies – least recently used
(LRU) and round robin (FIFO).

Ben tests the cache by accessing the following sequence of hexadecimal byte addresses,
starting with empty caches. For simplicity, assume that the addresses are only 12 bits.
Complete the following tables for the direct-mapped cache and both types of 4-way set-
associative caches showing the progression of cache contents as accesses occur (in the
tables, ‘inv’ = invalid, and the column of a particular cache line contains the {tag,index}
contents of that line). You only need to fill in elements in the table when a value changes.

D-map

Address

line in cache hit?

L0 L1 L2 L3 L4 L5 L6 L7
110 inv 11 inv inv inv inv inv inv no
136 13 no
202 20 no
1A3
102
361
204
114
1A4
177
301
206
135

 D-map
Total Misses
Total Accesses

Last updated:
2/24/2017

Page 11 of 42

4-way

Address

LRU
line in cache hit?

Set 0 Set 1
way0 way1 Way2 way3 way0 way1 way2 way3

110 inv Inv Inv inv 11 inv inv inv no
136 11 13 no
202 20 no
1A3
102
361
204
114
1A4
177
301
206
135

 4-way LRU
Total Misses
Total Accesses

4-way

Address

FIFO
line in cache hit?

Set 0 Set 1
way0 way1 way2 way3 way0 way1 way2 way3

110 inv Inv Inv inv 11 inv inv inv no
136 13 no
202 20 no
1A3
102
361
204
114
1A4
177
301
206
135

 4-way FIFO
Total Misses
Total Accesses

Last updated:
2/24/2017

Page 12 of 42

Problem M2.1.D Average Latency

Assume that the results of the above analysis can represent the average miss-rates of the
direct-mapped and the 4-way LRU 128-KB caches studied in M2.1.A and M2.1.B. What
would be the average memory access latency in CPU cycles for each cache (assume that
a cache miss takes 20 cycles)? Which one is better? For the different replacement policies
for the set-associative cache, which one has a smaller cache miss rate for the address
stream in M2.1.C? Explain why. Is that replacement policy always going to yield better
miss rates? If not, give a counter example using an address stream.

Last updated:
2/24/2017

Page 13 of 42

Problem M2.2: Victim Cache Evaluation

This problem requires the knowledge of Handout #5 (Victim Cache) and Lecture 3.
Please, read these materials before answering the following questions.

Problem M2.2.A Baseline Cache Design

The diagram below shows a 32-Byte fully associative cache with four 8-Byte cache lines.
Each line consists of two 4-Byte words and has an associated tag and two status bits
(valid and dirty). The Input Address is 32-bits and the two least significant bits are
assumed to be zero. The output of the cache is a 32-bit word.

Tag

Input Address

• •• • • •• •STSTSTST

Valid Bit

=
Comparator

= = =

Valid Output
Driver

Buffer Driver

MUX MUX MUX MUX

Data
Output
Drivers

Data Bus

Last updated:
2/24/2017

Page 14 of 42

Please complete Table M2.2-1 below with delays across each element of the cache. Using
the data you compute in Table M2.2-1, calculate the critical path delay through this cache
(from when the Input Address is set to when both Valid Output Driver and the
appropriate Data Output Driver are outputting valid data).

Component Delay equation (ps) FA (ps)
Comparator 200×(# of tag bits) + 1000
N-to-1 MUX 500×log2 N + 1000
Buffer driver 2000
AND gate 1000
OR gate 500
Data output driver 500×(associativity) + 1000
Valid output
driver

1000

Table M2.2-1

Critical Path Cache Delay: _______________________

Last updated:
2/24/2017

Page 15 of 42

Problem M2.2.B Victim Cache Behavior

Now we will study the impact of a victim cache on a cache hit rate. Our main L1 cache is
a 128 byte, direct mapped cache with 16 bytes per cache line. The cache is word (4-bytes)
addressable. The victim cache in Figure H5-A (in Handout #5) is a 32 byte fully
associative cache with 16 bytes per cache line, and is also word-addressable. The victim
cache uses the first in first out (FIFO) replacement policy.

Please complete Table M2.2-2 on the next page showing a trace of memory accesses. In
the table, each entry contains the {tag,index} contents of that line, or “inv”, if no data is
present. You should only fill in elements in the table when a value changes. For
simplicity, the addresses are only 8 bits.

The first 3 lines of the table have been filled in for you.

For your convenience, the address breakdown for access to the main cache is depicted
below.

7 6 4 3 2 1 0

TAG INDEX WORD SELECT BYTE SELECT

Problem M2.2.C Average Memory Access Time

Assume 15% of memory accesses are resolved in the victim cache. If retrieving data
from the victim cache takes 5 cycles and retrieving data from main memory takes 55
cycles, by how many cycles does the victim cache improve the average memory access
time?

Last updated:
2/24/2017

Page 16 of 42

Input

Address

Main Cache Victim Cache
L0 L1 L2 L3 L4 L5 L6 L7 Hit? Way0 Way1 Hit?
inv inv inv inv inv inv inv inv - inv inv -

00 0 N N
80 8 N 0 N
04 0 N 8 Y
A0
10
C0
18
20
8C
28
AC
38
C4
3C
48
0C
24

Table M2.2-2

Last updated:
2/24/2017

Page 17 of 42

Problem M2.3: Loop Ordering

This problem requires the knowledge of Lecture 3. Please, read it before answering the
following questions.

This problem evaluates the cache performances for different loop orderings. You are
asked to consider the following two loops, written in C, which calculate the sum of the
entries in a 128 by 64 matrix of 32-bit integers:

Loop A Loop B
sum = 0;
for (i = 0; i < 128; i++)
 for (j = 0; j < 64; j++)
 sum += A[i][j];

sum = 0;
for (j = 0; j < 64; j++)
 for (i = 0; i < 128; i++)
 sum += A[i][j];

The matrix A is stored contiguously in memory in row-major order. Row major order
means that elements in the same row of the matrix are adjacent in memory as shown in
the following memory layout:

A[i][j] resides in memory location [4*(64*i + j)]

Memory Location:

0 4 252 256 4*(64*127+63)

A[0][0] A[0][1] ... A[0][63] A[1][0] ... A[127][63]

For Problem M2.3.A to Problem M2.3.C, assume that the caches are initially empty.
Also, assume that only accesses to matrix A cause memory references and all other
necessary variables are stored in registers. Instructions are in a separate instruction cache.

Last updated:
2/24/2017

Page 18 of 42

Problem M2.3.A

Consider a 4KB direct-mapped data cache with 8-word (32-byte) cache lines.
Calculate the number of cache misses that will occur when running Loop A.
Calculate the number of cache misses that will occur when running Loop B.

The number of cache misses for Loop A:_____________________________

The number of cache misses for Loop B:_____________________________

Problem M2.3.B

Consider a direct-mapped data cache with 8-word (32-byte) cache lines. Calculate the minimum
number of cache lines required for the data cache if Loop A is to run without any cache misses
other than compulsory misses. Calculate the minimum number of cache lines required for the
data cache if Loop B is to run without any cache misses other than compulsory misses.

Data-cache size required for Loop A: ____________________________ cache line(s)

Data-cache size required for Loop B: ____________________________ cache line(s)

Problem M2.3.C

Consider a 4KB fully-associative data cache with 8-word (32-byte) cache lines. This data cache
uses a first-in/first-out (FIFO) replacement policy.
Calculate the number of cache misses that will occur when running Loop A.
Calculate the number of cache misses that will occur when running Loop B.

The number of cache misses for Loop A:_____________________________

The number of cache misses for Loop B:_____________________________

Last updated:
2/24/2017

Page 19 of 42

Problem M2.4: Cache Parameters

For each of the following statements about making a change to a cache design, circle True or
False and provide a one sentence explanation of your choice. Assume all cache parameters
(capacity, associativity, line size) remain fixed except for the single change described in each
question. Please provide a one sentence explanation of your answer.

Problem M2.4.A

Doubling the line size halves the number of tags in the cache

True / False

Problem M2.4.B

Doubling the associativity doubles the number of tags in the cache.

True / False

Problem M2.4.C

Doubling cache capacity of a direct-mapped cache usually reduces conflict misses.

True / False

Problem M2.4.D

Doubling cache capacity of a direct-mapped cache usually reduces compulsory misses.

True / False

Problem M2.4.E

Doubling the line size usually reduces compulsory misses.

True / False

Last updated:
2/24/2017

Page 20 of 42

Problem M2.5: Microtags

Problem M2.5.A

Explain in one or two sentences why direct-mapped caches have much lower hit latency (as
measured in picoseconds) than set-associative caches of the same capacity.

Problem M2.5.B

A 32-bit byte-addressed machine has an 8KB, 4-way set-associative data cache with 32-byte
lines. The following figure shows how the address is divided into tag, index and offset fields.
Give the number of bits in each field.

tag Index offset

of bits in the tag: ______________

of bits in the index: ______________

of bits in the offset: ______________

Last updated:
2/24/2017

Page 21 of 42

Microtags (for questions M2.5.C – M2.5.H)

Several commercial processors (including the UltraSPARC-III and the Pentium-4) reduce the hit
latency of a set-associative cache by using only a subset of the tag bits (a “microtag”) to select
the matching way before speculatively forwarding data to the CPU. The remaining tag bits are
checked in a subsequent clock cycle to determine if the access was actually a hit. The figure
below illustrates the structure of a cache using this scheme.

HiTag LoTag data

HiTag LoTag

=

Index offset

HiTag LoTag data

=

...

To CPU

==

Hit?Hit?

Problem M2.5.C

The tag field is sub-divided into a loTag field used to select a way and a hiTag field used for
subsequent hit/miss checks, as shown below.

tag
hiTag loTag index offset

The cache design requires that all lines within a set have unique loTag fields.
In one or two sentences, explain why this is necessary.

Last updated:
2/24/2017

Page 22 of 42

Problem M2.5.D

If the loTag field is exactly two bits long, will the cache have greater, fewer, or an equal number
of conflict misses as a direct-mapped cache of the same capacity? State any assumptions made
about replacement policy.

Problem M2.5.E

If the loTag field is greater than two bits long, are there any additional constraints on
replacement policy beyond those in a conventional 4-way set-associative cache?

Problem M2.5.F

Does this scheme reduce the time required to complete a write to the cache? Explain in one or
two sentences.

Problem M2.5.G

In practice, microtags hold virtual address bits to remove address translation from the critical
path, while the full tag check is performed on translated physical addresses. If the loTag bits can
only hold untranslated bits of the virtual address, what is the largest number of loTag bits
possible if the machine has a 16KB virtual memory page size? (Assume 8KB 4-way set-
associative cache as in Question M2.5.B)

Problem M2.5.H

Describe how microtags can be made much larger, to also include virtual address bits subject to
address translation. Your design should not require address translation before speculatively
forwarding data to the CPU. Your explanation should describe the replacement policy and any
additional state the machine must maintain.

Last updated:
2/24/2017

Page 23 of 42

Problem M3.1: Virtual Memory Bits

This problem requires the knowledge of Handout #6 (Virtual Memory Implementation) and
Lecture 4 and 5. Please, read these materials before answering the following questions.

In this problem we consider simple virtual memory enhancements.

Problem M3.1.A

Whenever a TLB entry is replaced we write the entire entry back to the page table. Ben thinks
this is a waste of memory bandwidth. He thinks only a few of the bits need to be written back.
For each of the bits explain why or why not they need to be written back to the page table.

With this in mind, we will see how we can minimize the number of bits we actually need in each
TLB entry throughout the rest of the problem.

Problem M3.1.B

Ben does not like the TLB design. He thinks the TLB Entry Valid bit should be dropped and the
kernel software should be changed to ensure that all TLB entries are always valid. Is this a good
idea? Explain the advantages and disadvantages of such a design.

Problem M3.1.C

Alyssa got wind of Ben’s idea and suggests a different scheme to eliminate one of the valid bits.
She thinks the page table entry valid and TLB Entry Valid bits can be combined into a single bit.

On a refill this combined valid bit will take the value that the page table entry valid bit had. A
TLB entry is invalidated by writing it back to the page table and setting the combined valid bit in
the TLB entry to invalid.

How does the kernel software need to change to make such a scheme work? How do the
exceptions that the TLB produces change?

Last updated:
2/24/2017

Page 24 of 42

Problem M3.1.D

Now, Bud Jet jumps into the game. He wants to keep the TLB Entry Valid bit. However, there is
no way he is going to have two valid bits in each TLB entry (one for the TLB entry one for the
page table entry). Thus, he decides to drop the page table entry valid bit from the TLB entry.

How does the kernel software need to change to make this work well? How do the exceptions
that the TLB produces change?

Problem M3.1.E

Compare your answers to Problem M3.1.C and M3.1.D. What scheme will lead to better
performance?

Problem M3.1.F

How about the R bit? Can we remove them from the TLB entry without significantly impacting
performance? Explain briefly.

Problem M3.1.G

The processor has a kernel (supervisor) mode bit. Whenever kernel software executes the bit is
set. When user code executes the bit is not set. Parts of the user’s virtual address space are only
accessible to the kernel. The supervisor bit in the page table is used to protect this region—an
exception is raised if the user tries to access a page that has the supervisor bit set.

Bud Jet is on a roll and he decides to eliminate the supervisor bit from each TLB entry. Explain
how the kernel software needs to change so that we still have the protection mechanism and the
kernel can still access these pages through the virtual memory system.

Problem M3.1.H

Alyssa P. Hacker thinks Ben and Bud are being a little picky about these bits, but has devised a
scheme where the TLB entry does not need the M bit or the U bit. It works as follows. If a TLB
miss occurs due to a load, then the page table entry is read from memory and placed in the TLB.
However, in this case the W bit will always be set to 0. Provide the details of how the rest of the
scheme works (what happens during a store, when do the entries need to be written back to
memory, when are the U and M bits modified in the page table, etc.).

Last updated:
2/24/2017

Page 25 of 42

Problem M3.2: Page Size and TLBs (2005 Fall Part D)

This problem requires the knowledge of Handout #6 (Virtual Memory Implementation) and
Lecture 5. Please, read these materials before answering the following questions.

Assume that we use a hierarchical page table described in Handout #6.

The processor has a data TLB with 64 entries, and each entry can map either a 4KB page or a
4MB page. After a TLB miss, a hardware engine walks the page table to reload the TLB. The
TLB uses a first-in/first-out (FIFO) replacement policy.

We will evaluate the memory usage and execution of the following program which adds the
elements from two 1MB arrays and stores the results in a third 1MB array (note that, 1MB =
1,048,576 Bytes):

We assume the A, B, and C arrays are allocated in a contiguous 3MB region of physical
memory. We will consider two possible virtual memory mappings:
• 4KB: the arrays are mapped using 768 4KB pages (each array uses 256 pages).
• 4MB: the arrays are mapped using a single 4MB page.

For the following questions, assume that the above program is the only process in the system,
and ignore any instruction memory or operating system overheads. Assume that the arrays are
aligned in memory to minimize the number of page table entries needed.

byte A[1048576]; // 1MB array
byte B[1048576]; // 1MB array
byte C[1048576]; // 1MB array

for(int i=0; i<1048576; i++)
 C[i] = A[i] + B[i];

Last updated:
2/24/2017

Page 26 of 42

Problem M3.2.A

This is the breakdown of a virtual address which maps to a 4KB page:

Show the corresponding breakdown of a virtual address which maps to a 4MB page. Include the
field names and bit ranges in your answer.

Problem M3.2.B Page Table Overhead

We define page table overhead (PTO) as:

PTO =
Physical memory that is allocated to page tables
Physical memory that is allocated to data pages

For the given program, what is the PTO for each of the two mappings?

PTO4KB =

PTO4MB =

L1 index
33 43

L2 index
22 32

L3 index
12 21

Page Offset
0 11

11 bits 11 bits 10 bits 12 bits

Last updated:
2/24/2017

Page 27 of 42

Problem M3.2.C Page Fragmentation Overhead

We define page fragmentation overhead (PFO) as:

PFO =
Physical memory that is allocated to data pages but is never accessed

Physical memory that is allocated to data pages and is accessed

For the given program, what is the PFO for each of the two mappings?

PFO4KB =

PFO4MB =

Problem M3.2.D

Consider the execution of the given program, assuming that the data TLB is initially empty. For
each of the two mappings, how many TLB misses occur, and how many page table memory
references are required per miss to reload the TLB?

Data TLB misses

Page table memory
references (per miss)

4KB:

4MB:

Problem M3.2.E

Which of the following is the best estimate for how much longer the program takes to execute
with the 4KB page mapping compared to the 4MB page mapping?
Circle one choice and briefly explain your answer (about one sentence).

1.01× 10× 1,000× 1,000,000×

Last updated:
2/24/2017

Page 28 of 42

Problem M3.3: Page Size and TLBs

This problem requires the knowledge of Handout #6 (Virtual Memory Implementation) and
Lecture 5. Please, read these materials before answering the following questions.

The configuration of the hierarchical page table in this problem is similar to the one in Handout
#6, but we modify two parameters: 1) this problem evaluates a virtual memory system with two
page sizes, 4KB and 1MB (instead of 4 MB), and 2) all PTEs are 16 Bytes (instead of 8 Bytes).
The following figure summarizes the page table structure and indicates the sizes of the page
tables and data pages (not drawn to scale):

The processor has a data TLB with 64 entries, and each entry can map either a 4KB page or a
1MB page. After a TLB miss, a hardware engine walks the page table to reload the TLB. The
TLB uses a first-in/first-out (FIFO) replacement policy.

We will evaluate the execution of the following program which adds the elements from two
1MB arrays and stores the results in a third 1MB array (note that, 1MB = 1,048,576 Bytes, the
starting address of the arrays are given below):

Assume that the above program is the only process in the system, and ignore any instruction
memory or operating system overheads. The data TLB is initially empty.

L1 Table
(4096 PTEs, 64KB)

L2 Table
(4096 PTEs, 64KB)

L3 Table
(256 PTEs, 4KB)

Data Page
(4KB)

Data Page
(1MB)

Root ptr.
(processor

register)

byte A[1048576]; // 1MB array 0x00001000000
byte B[1048576]; // 1MB array 0x00001100000
byte C[1048576]; // 1MB array 0x00001200000

for(int i=0; i<1048576; i++)
 C[i] = A[i] + B[i];

Last updated:
2/24/2017

Page 29 of 42

Problem M3.3.A

Consider the execution of the program. There is no cache and each memory lookup has 100
cycle latency.

If all data pages are 4KB, compute the ratio of cycles for address translation to cycles for data
access.

If all data pages are 1MB, compute the ratio of cycles for address translation to cycles for data
access.

Problem M3.3.B

For this question, assume that in addition, we have a PTE cache with one cycle latency. A PTE
cache contains page table entries. If this PTE cache has unlimited capacity, compute the ratio of
cycles for address translation to cycles for data access for the 4KB data page case.

Problem M3.3.C

With the use of a PTE cache, is there any benefit to caching L3 PTE entries? Explain.

Problem M3.3.D

What is the minimum capacity (number of entries) needed in the PTE cache to get the same
performance as an unlimited PTE cache? (Assume that the PTE cache does not cache L3 PTE
entries and all data pages are 4KB)

Last updated:
2/24/2017

Page 30 of 42

Problem M3.4: 64-bit Virtual Memory

This problem examines page tables in the context of processors with 64-bit addressing.

Problem M3.4.A Single level page tables

For a computer with 64-bit virtual addresses, how large is the page table if only a single-level
page table is used? Assume that each page is 4KB, that each page table entry is 8 bytes, and that
the processor is byte-addressable.

Problem M3.4.B Let’s be practical

Many current implementations of 64-bit ISAs implement only part of the large virtual address
space. One way to do this is to segment the virtual address space into three parts as shown
below: one used for stack, one used for code and heap data, and the third one unused.

A special circuit is used to detect whether the top eight bits of an address are all zeros or all ones
before the address is sent to the virtual memory system. If they are not all equal, an invalid
virtual memory address trap is raised. This scheme in effect removes the top seven bits from the
virtual memory address, but retains a memory layout that will be compatible with future designs
that implement a larger virtual address space.

The MIPS R10000 does something similar. Because a 64-bit address is unnecessarily large, only
the low 44 address bits are translated. This also reduces the cost of TLB and cache tag arrays.
The high two virtual address bits (bits 63:62) select between user, supervisor, and kernel address
spaces. The intermediate address bits (61:44) must either be all zeros or all ones, depending on
the address region.

How large is a single-level page table that would support MIPS R10000 addresses? Assume that
each page is 4KB, that each page table entry is 8 bytes, and that the processor is byte-
addressable.

Reserved for Code and Heap

Reserved for Stack
0xFFFFFFFFFFFFFFFF

0xFF00000000000000

0x00FFFFFFFFFFFFFF

0x0000000000000000

Unused

Last updated:
2/24/2017

Page 31 of 42

Problem M3.4.C Page table overhead

A three-level hierarchical page table can be used to reduce the page table size. Suppose we break
up the 44-bit virtual address (VA) as follows:

VA[43:33] VA[32:22] VA[21:12] VA[11:0]
1st level index 2nd level index 3rd level index Page offset

If page table overhead is defined as (in bytes):

 PHYSICAL MEMORY USED BY PAGE TABLES FOR A USER PROCESS

 PHYSICAL MEMORY USED BY THE USER CODE, HEAP, AND STACK

Remember that a complete page table page (1024 or 2048 PTEs) is allocated even if only one
PTE is used. Assume a large enough physical memory that no pages are ever swapped to disk.
Use 64-bit PTEs. What is the smallest possible page table overhead for the three-level
hierarchical scheme?

Assume that once a user page is allocated in memory, the whole page is considered to be useful.
What is the largest possible page table overhead for the three-level hierarchical scheme?

Problem M3.4.D PTE Overhead

The MIPS R10000 uses a 40 bit physical address. The physical translation section of the TLB
contains the physical page number (also known as PPN), one “valid,” one “dirty,” and three
“cache status” bits.

What is the minimum size of a PTE assuming all pages are 4KB?

MIPS/Linux stores each PTE in a 64 bit word. How many bits are wasted if it uses the minimum
size you have just calculated?

Last updated:
2/24/2017

Page 32 of 42

Problem M3.4.E Page table implementation

The following comment is from the source code of MIPS/Linux and, despite its cryptic
terminology, describes a three-level page table.

/*
 * Each address space has 2 4K pages as its page directory, giving 1024
 * 8 byte pointers to pmd tables. Each pmd table is a pair of 4K pages,
 * giving 1024 8 byte pointers to page tables. Each (3rd level) page
 * table is a single 4K page, giving 512 8 byte ptes.
 * /

Assuming 4K pages, how long is each index?

Index Length (bits)
Top-level (“page directory”)
2nd-level
3rd-level

Problem M3.4.F Variable Page Sizes

A TLB may have a page mask field that allows an entry to map a page size of any power of four
between 4KB and 16MB. The page mask specifies which bits of the virtual address represent the
page offset (and should therefore not be included in translation). What are the maximum and
minimum reach of a 64-entry TLB using such a mask? The R10000 actually doubles this reach
with little overhead by having each TLB entry map two physical pages, but don’t worry about
that here.

Problem M3.4.G Virtual Memory and Caches

Ben Bitdiddle is designing a 4-way set associative cache that is virtually indexed and virtually
tagged. He realizes that such a cache suffers from a homonym aliasing problem. The homonym
problem happens when two processes use the same virtual address to access different physical
locations. Ben asks Alyssa P. Hacker for help with solving this problem. She suggests that Ben
should add a PID (Process ID) to the virtual tag. Does this solve the homonym problem?

Another problem with virtually indexed and virtually tagged caches is called synonym problem.
Synonym problem happens when distinct virtual addresses refer to the same physical location.
Does Alyssa’s idea solve this problem?

Ben thinks that a different way of solving synonym and homonym problems is to have a direct
mapped cache, rather than a set associative cache. Is he right?

Last updated:
2/24/2017

Page 33 of 42

Problem M3.5: Cache Basics (2005 Fall Part A)

Questions in Part A are about the operations of virtual and physical address caches in two
different configurations: direct-mapped and 2-way set-associative. The direct-mapped cache has
8 cache lines with 8 bytes/line (i.e. the total size is 64 bytes), and the 2-way set-associative cache
is the same size (i.e. 32 bytes/way) with the same cache line size. The page size is 16 bytes.

Please answer the following questions.

Problem M3.5.A

We ask you to follow step-by-step operations of the virtually indexed, physically tagged, 2-way
set-associative cache shown in the previous question (Figure B). You are given a snapshot of the
cache and TLB states in the figure below. Assume that the smallest physical tags (i.e. no index
part contained) are taken from the high order bits of an address, and that Least Recently Used
(LRU) replacement policy is used.
(Only valid (V) bits and tags are shown for the cache; VPNs and PPNs for the TLB.)

Index V Tags (way0) V Tags (way1)

0 1 0x45 0
1 1 0x3D 0
2 1 0x1D 0
3 0 0

Initial cache tag states

VPN PPN VPN PPN
0x0 0x0A 0x10 0x6A
0x1 0x1A 0x20 0x7A
0x2 0x2A 0x30 0x8A
0x3 0x3A 0x40 0x9A
0x5 0x4A 0x50 0xAA
0x7 0x5A 0x70 0xBA

TLB states

After accessing the address sequence (all in virtual address) given below, what will be the final
cache states? Please fill out the table at the bottom of this page with the new cache states. You
can write tags either in binary or in hexadecimal form.

Address sequence: 0x34 -> 0x38 -> 0x50 -> 0x54 -> 0x208 -> 0x20C -> 0x74 -> 0x54

Last updated:
2/24/2017

Page 34 of 42

Index V Tags (way0) V Tags (way1)
0
1
2
3

Final cache tag states

Problem M3.5.B

Assume that a cache hit takes one cycle and that a cache miss takes 16 cycles. What is the average
memory access time for the address sequence of 8 words given in Question M3.5.A?

Last updated:
2/24/2017

Page 35 of 42

Problem M3.6: Handling TLB Misses (2005 Fall Part B)

In the following questions, we ask you about the procedure of handling TLB misses. The
following figure shows the setup for this part and each component’s initial states.

(01000)
User PTE Base

(UPTB, Virtual)

0C000
System PTE Base

(SPTB, Physical)

??

E00000D1
E00000D2
E00000D3
E00000D4

•
•

0F010(01000)

0F014(01004)

0F018(01008)

0F01C(0100C)

? (01010)

E0000F01
E0000F02
E0000F03
E0000F04

•
•

0C000

0C004

0C008

0C00C

User Page Table
(in virtual space)

System Page Table
(in physical space)

•
•
E0000107
E0000106
E0000105
E0000104

E000
E000
E000
E00000FD

00FC
00FB
00FA

E00000E1
•
•

E00000E2
E00000E3
E00000E4

0F020

0F024

0F028

0F02C

0F030

0F034

0F038

0F03C

0F040

0F044

0F048

0F04C

Physical memory

Address
PA (VA)

Address
PA

Address
PA

0F010100
PPNVPN

TLB

Notes 1. All numbers are in hexadecimal.
 2. Virtual addresses are shown in parentheses, and physical addresses without parentheses.

For the rest of this part, we assume the following:

1) The system uses 20-bit virtual addresses and 20-bit physical addresses.
2) The page size is 16 bytes.
3) We use a linear (not hierarchical) page table with 4-byte page table entry (PTE). A PTE

can be broken down into the following fields. (Don’t worry about the status bits,
PTE[15:0], for the rest of Part B.)

31 16 15 14 13 12 11 10 9 0

Physical Page Number (PPN) V R W U M S 0000000000

4) The TLB contains 4 entries and is fully associative.

On the next page, we show a pseudo code for the TLB refill algorithm.

Last updated:
2/24/2017

Page 36 of 42

// On a TLB miss, “MA” (Miss Address) contains the address of that
// miss. Note that MA is a virtual address.

// UTOP is the top of user virtual memory in the virtual address
// space. The user page table is mapped to this address and up.
#define UTOP 0x01000

// UPTB and SPTB stand for User PTE Base and System PTE Base,
// respectively. See the figure in the previous page.

if (MA < UTOP) {
 // This TLB miss was caused by a normal user-level memory access

 // Note that another TLB miss can occur here while loading a PTE.
 LW Rtemp, UPTB+4*(MA>>4); // load a PTE using a virtual address
}
else {
 // This TLB miss occurred while accessing system pages (e.g. page

// tables)

 // TLB miss cannot happen here because we use a physical address.
 LW_physical Rtemp, SPTB+4*((MA-UTOP)>>4); // load a PTE using a

// physical address
}

(Protection check on Rtemp); // Don’t worry about this step here
(Extract PPN from Rtemp and store it to the TLB with VPN);
(Restart the instruction that caused the TLB miss);

TLB refill algorithm

Problem M3.6.A

What will be the physical address corresponding to the virtual address 0x00030? Fill out the
TLB states below after an access to the address 0x00030 is completed.

Virtual address 0x00030 -> Physical address (0x __________)

VPN PPN

0x0100 0x0F01

TLB states

Last updated:
2/24/2017

Page 37 of 42

Problem M3.6.B

What will be the physical address corresponding to the virtual address 0x00050? Fill out the
TLB states below after an access to the address 0x00050 is completed. (Start over from the initial
system states, not from your system states after solving the previous question.)

Virtual address 0x00050 -> Physical address (0x ___________)

VPN PPN

0x0100 0x0F01

TLB states

Problem M3.6.C

We integrate virtual memory support into our baseline 5-stage MIPS pipeline using the TLB
miss handler. We assume that accessing the TLB does not incur an extra cycle in memory access
in case of hits.

Without virtual memory support (i.e. we had only a single address space for the entire system),
the average cycles per instruction (CPI) was 2 to run Program X. If the TLB misses 10 times for
instructions and 20 times for data in every 1,000 instructions on average, and it takes 20 cycles to
handle a TLB miss, what will be the new CPI (approximately)?

Last updated:
2/24/2017

Page 38 of 42

Problem M3.7: Hierarchical Page Table & TLB (Fall 2010 Part B)

Suppose there is a virtual memory system with 64KB page which has 2-level hierarchical page
table. The physical address of the base of the level 1 page table (0x01000) is stored in a special
register named Page Table Base Register. The system uses 20-bit virtual address and 20-bit
physical address. The following figure summarizes the page table structure and shows the
breakdown of a virtual address in this system. The size of both level 1 and level 2 page table
entries is 4 bytes and the memory is byte-addressed. Assume that all pages and all page tables
are loaded in the main memory. Each entry of the level 1 page table contains the physical
address of the base of each level 2 page tables, and each of the level 2 page table entries holds
the PTE of the data page (the following diagram is not drawn to scale). As described in the
following diagram, L1 index and L2 index are used as an index to locate the corresponding 4-
byte entry in Level 1 and Level 2 page tables.

2-level hierarchical page table

A PTE in level 2 page tables can be broken into the following fields (Don’t worry about status
bits for the entire part).

Last updated:
2/24/2017

Page 39 of 42

Problem M3.7.A

Assuming the TLB is initially at the state given below and the
initial memory state is to the right, what will be the final TLB
states after accessing the virtual address given below? Please
fill out the table with the final TLB states. You only need to
write VPN and PPN fields of the TLB. The TLB has 4 slots
and is fully associative and if there are empty lines they are
taken first for new entries. Also, translate the virtual address
(VA) to the physical address (PA). For your convenience, we
separated the page number from the rest with the colon “:”.

VPN PPN
0x8 0x3

Initial TLB states

Virtual Address:

 0xE:17B0 (1110:0001011110110000)

VPN PPN
0x8 0x3

Final TLB states

VA 0xE17B0 => PA ___________________

Last updated:
2/24/2017

Page 40 of 42

Problem M3.7.B

What is the total size of memory required to store both the level 1 and 2 page tables?

Problem M3.7.C

Ben Bitdiddle wanted to reduce the amount of physical memory required to store the page table,
so he decided to only put the level 1 page table in the physical memory and use the virtual
memory to store level 2 page tables. Now, each entry of the level 1 page table contains the
virtual address of the base of each level 2 page tables, and each of the level 2 page table entries
contains the PTE of the data page (the following diagram is not drawn to scale). Other system
specifications remain the same. (The size of both level 1 and level 2 page table entries is 4 bytes.)

Ben’s design with 2-level hierarchical page table

Last updated:
2/24/2017

Page 41 of 42

Assuming the TLB is initially at the state given below and
the initial memory state is to the right (different from
M5.9.A), what will be the final TLB states after accessing the
virtual address given below? Please fill out the table with the
final TLB states. You only need to write VPN and PPN fields
of the TLB. The TLB has 4 slots and it is fully associative
and if there are empty lines they are taken first for new
entries. Also, translate the virtual address to the physical
address. Again, we separated the page number from the rest
with the colon “:”.

Initial TLB states

Virtual Address:

0xA:0708 (1010:0000011100001000)

VPN PPN
0x8 0x1

Final TLB states

VA 0xA0708 => PA _______________________

VPN PPN
0x8 0x1

Last updated:
2/24/2017

Page 42 of 42

Problem M3.7.D

Alice P. Hacker examines Ben’s design and points out that his scheme can result in infinite loops.
Describe the scenario where the memory access falls into infinite loops.

