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Problem M1.1: Self Modifying Code on the EDSACjr 
 
Problem M1.1.A Writing Macros For Indirection 

 
One way to implement ADDind n is as follows: 
 
.macro ADDind(n) 
 STORE  orig_accum ; Save original accum 
 CLEAR    ; accum <- 0 
 ADD  n  ; accum <- M[n] 
 ADD  _add_op ; accum <- ADD M[n] 
 STORE  _L1  ; M[_L1] <- ADD M[n] 
 CLEAR    ; accum <- 0 
_L1: CLEAR    ; This will be replaced by  
     ; ADD M[n] and will have  
     ; the effect: accum <- M[M[n]] 
 ADD  _orig_accum ; accum <- M[M[n]] + original accum 
.end macro 
 
The first thing we do is save the original accumulator value. This is necessary since the instructions we are going to 
use within the macro are going to destroy the value in the accumulator. Next, we load the contents of M[n] into the 
accumulator. We assume that M[n] is a legal address and fits in 11 bits.   
 
After getting the value of M[n] into the accumulator, we add it to the ADD template at _add_op. Since the 
template has 0 for its operand, the resulting number will have the ADD opcode with the value of M[n] in the 
operand field, and thus will be equivalently an ADD M[n]. By storing the contents of the accumulator into the 
address _L1, we replace the CLEAR with what is equivalently an ADD M[n] instruction. Then we clear the 
accumulator so that when the instruction at _L1 is executed, accum will get M[M[n]]. Finally, we add the original 
accumulator value to get the desired result, M[M[n]] plus the original content of the accumulator. 
 
STOREind n can be implemented in a very similar manner. 
 
.macro STOREind(n) 
 STORE  _orig_accum ; Save original accum 
 CLEAR    ; accum <- 0 
 ADD  n  ; accum <- M[n] 
 ADD  _store_op ; accum <- STORE M[n]    
 STORE  _L1  ; M[_L1] <- STORE M[n] 
 CLEAR    ; accum <- 0 
 ADD  _orig_accum ; accum <- original accum 
_L1: CLEAR    ; This will be replaced by  
     ; STORE M[n], and will have the 
     ; effect: M[M[n]]<- orig. accum 
.end macro 
 
After getting the value of M[n] into the accumulator, we add it to the STORE template at _store_op. Since the 
template has 0 for its operand, the resulting number will have the STORE opcode with the value of M[n] in the 
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operand field, and thus will be equivalently a STORE M[n] instruction. As before, we store this into _L1 and then 
restore the accumulator value to its original value. When the PC reaches _L1, it then stores the original value of the 
accumulator into M[M[n]]. 
 
BGEind and BLTind are very similar to STOREind.  BGEind is shown below. BLTind is the same except that 
we use _blt_op instead of _bge_op. 
 
.macro BGEind(n) 
 STORE  _orig_accum ; Save original accum 
 CLEAR    ; accum <- 0 
 ADD  n  ; accum <- M[n] 
 ADD  _bge_op ; acuum <- BGE M[n] 
 STORE  _L1  ; M[_L1] <- BGE M[n] 
 CLEAR    ; accum <- 0 
 ADD  _orig_accum ; accum <- original accum 
_L1: CLEAR    ; This is replaced by BGE M[n] 
.end macro 
 
 
Problem M1.1.B Subroutine Calling Conventions 

 
We implement the following contract between the caller and the callee: 

1. The caller places the argument in the address slot between the function-calling jump instruction and the 
return address. Just before jumping to the subroutine, the caller loads the return address into the 
accumulator. 

2. In the beginning of a subroutine, the callee receives the return address in the accumulator. The argument 
can be accessed by reading the memory location preceding the return address. The code below shows pass-
by-value as we create a local copy of the argument. Since the subroutine receives the address of the 
argument, it’s easy to eliminate the dereferencing and deal only with the address in a pass-by-reference 
manner. 

3. When the computation is done, the callee puts the return value in the accumulator and then jumps to the 
return address. 

 
A call looks like 
 
  ......   ; preceding code sequence 
  clear 
  add  _THREE ; accum <- 3 
  bge  _here  ; skip over pointer 
_hereptr .fill  _here  ; hereptr = &here 
_here  add  _hereptr ; accum <- here+3 = return addr 
  bge  _sub  ; jump to subroutine 
      ; The following address location is 
      ; reserved for argument passing and  
      ; should never be executed as code: 
_argument .fill 6   ; argument slot 
  ......   ; rest of program 
 
(note that without an explicit program counter, a little work is required to establish the return address). 
 
The subroutine begins: 
 
_sub  store  _return ; save the return address 
  sub  _ONE  ; accum <- &argument = return address-1 
  store  _arg  ; M[_arg] <- &argument = return address-1 
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  clear 
  ADDind _arg  ; accum <- *(&arg0) 
  store  _arg  ; M[_arg] <- arg 
 
And ends (with the return value in the accumulator): 
 
  BGEind _return 
       
The subroutine uses some local storage: 
_arg  clear    ; local copy of argument 
_return clear    ; reserved for return address 
 
We need the following global constants: 
_ONE  or  1  ; recall that OR’s opcode is 00000 
_THREE or  3  ; so positive constants are easy to form 
   
The following program uses this convention to compute fib(n) as specified in the problem set.  It uses the indirection 
macros, templates, and storage from part M1.1.A. 
  
;; The Caller Code Section 
;; ......    ; preceding code sequence 
_caller clear 
  add  _THREE ; accum <- 3 
  bge  _here 
_hereptr .fill  _here 
_here  add  _hereptr ; accum <- here+3 = return addr 
  bge  _fib  ; jump to subroutine 
 
;; The following address location is reserved for 
;; argument passing and should never be executed as code 
arg0  .fill  4  ; arg 0 slot.  N=4 in this example 
 
_rtpnt end 
 
;; The fib Subroutine Code Section 
 
; function call prelude 
_fib  store  _return ; save the return address 
  sub  _ONE 
  store  _n  ; M[_n] <- &arg0 = return address-1 
  clear 
  ADDind _n  ; accum <- *(&arg0) 
  store  _n  ; M[_n] <- arg0 
  
; fib body 
  clear  
  store  _x  ; x=0 
  add  _ONE 
  store  _y  ; y=1 
  
  clear    ; if(n<2) 
  add  _n 
  sub  _TWO 
  blt  _retn 
  
  clear 
  store  _i  ; for (i = 0; 
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_forloop clear    ; i < n-1; 
  add  _n 
  sub  _ONE 
  sub  _i 
  sub  _ONE 
  blt  _done 
_compute clear 
  add  _x 
  add  _y 
  store  _z  ; z = x+y 
  clear 
  add  _y 
  store  _x  ; x = y 
  clear 
  add  _z 
  store  _y  ; y = z 
  
_next  clear         ; i++)  
  add  _i 
  add  _ONE 
  store  _i 
  bge  _forloop  
 
_retn    clear 
  add _n 
  BGEind _return ; return n 
  
_done  clear    
  add  _z 
  BGEind _return ; return z 
  
;; Global constants (remember that OR's opcode is 00000) 
 
_ONE  or 1 
_TWO  or 2 
_THREE or 3 
_FOUR  or 4 
 
These memory locations are private to the subroutine 
 
_return clear  ; return address 
_n  clear  ; n 
_x  clear 
_y  clear 
_z  clear 
_i  clear  ; index 
_result clear  ; fib 
 
Now we can see how powerful this indirection addressing mode is! It makes programming much simpler.   
 
The 1 argument-1 result convention could be extended to variable number of arguments and results by 

1. Leaving as many argument slots in the caller code between the subroutine call instruction and the 
return address. This works as long as both the caller and callee agree on how many arguments are 
being passed. 

2. Multiple results can be returned as a pointer to a vector (or a list) of the results. This implies an 
indirection, and so, yet another chance for self-modifying code. 
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Problem M1.1.C Subroutine Calling Other Subroutines 

 
The subroutine calling convention implemented in Problem M1.1.B stores the return address in a fixed memory 
location (_return). When fib_recursive is first called, the return address is stored there. However, this 
original return address will be overwritten when fib_recursive makes its first recursive call. Therefore, your 
program can never return to the original caller! 
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Problem M1.2: CISC, RISC, and Stack: Comparing ISAs 
 
Problem M1.2.A CISC 

 
How many bytes is the program?  19 
 
How many bytes of instructions need to be fetched if b = 10?  
 
(2+2) + 10*(13) + (6+2+2) = 144 
 
Assuming 32-bit data values, how many bytes of data memory need to be fetched? Stored? 
 
Fetched: the compare instruction accesses memory, and brings in a 4 byte word b+1 times: 4 * 11 = 44 
Stored: 0 
 
Problem M1.2.B RISC 

 
Many translations will be appropriate, here’s one.  We ignore MIPS32’s branch-delay slot in this solution since it 
hadn’t been discussed in lecture.  Remember that you need to construct a 32-bit address from 16-bit immediate 
values. 
 
x86 instruction label MIPS32 instruction sequence 
xor    %edx,%edx 
      

 xor r4, r4, r4 
 

xor    %ecx,%ecx 
          

 xor r3, r3, r3 
 

cmp    0x8047580,%ecx loop 
 

lui r6, 0x0804 
lw r1, 0x7580 (r6) 
slt r5, r3, r1 
 

jl     L1  
 

 bnez r5, L1 
 

jmp    done  j done 
 

add    %eax,%edx L1 add r4, r4, r2 
 

inc    %ecx 
 

 addi r3, r3, #1 
 

jmp    loop  j loop 
 

... done: ... 
 

How many bytes is the MIPS32 program using your direct translation? 
 
10*4 = 40 
 
How many bytes of MIPS32 instructions need to be fetched for b = 10 using your direct translation.   
 
There are 2 instructions in the prelude and 7 that are part of the loop (we don’t need to fetch the ‘j done’ until the 
11th iteration). There are 5 instructions in the 11th iteration. All instructions are 4 bytes.  4(2+10*7+5) = 308. 
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Note:  You can also place the label ‘loop’ in two other locations assuming r6 and r1 hold the same values for the 
remaining of the program after being loaded. One location is in front of the lw instruction, and we reduce the 
number of fetched byte to 268. The other is in front of the slt instruction, and we further decrease the number of 
fetched bytes to 228. 
 
How many bytes of data memory need to be fetched? Stored?  
 
Fetched: 11 * 4 = 44 (or 4 if you place the label ‘loop’ in front of the slt instruction) 
Stored: 0 
 
 
Problem M1.2.C Optimization 

 
There are two ideas that we have for optimization. 
 
1) We count down to zero instead of up for the number of iterations. By doing this, we can eliminate the slt 
instruction prior to the branch instruction. 
 
2) Hold b value in a register if you haven’t done it already. 
 
   xor r4, r4, r4 
   lui r6, 0x0804   
   lw r1, 0x9580(r6)  
   jmp dec    

loop:  add r4, r4, r2   
dec:  addiu r1, r1, #-1 

   bgez r1, loop 
done:       

 
This modification brings the dynamic code size down to 144 bytes, the static code size down to 28 and memory 
traffic down to 4 bytes. 
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Problem M1.3: Addressing Modes on MIPS ISA 
 
 
Problem M1.3.A Displacement addressing mode 

 
The answer is yes. 
 
LW R1, 16(R2)      è  ADDI R3, R2, #16 

LW R1, 0(R3) 
 
     (R3 is a temporary register.) 
 
 
 
 
 
 
Problem M1.3.B Register indirect addressing 

 
The answer is yes once again. 
 
LW R1, 16(R2)      è  

 
lw_template:   LW   R1, 0      ; it is placed in data region 

 ... 
LW_start: LW   R3, lw_template 
   ADDI R4, R2, #16 

   ADD  R3, R3, R4  ; R3 <- “LW R1, addr” 
   SW R3, _L1   ; write the LW instruction 
       _L1: NOP     ; to be replaced by “LW ..” 

 
(R3 and R4 are temporary registers.) 
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Problem M1.3.C Subroutine 
 
Yes, you can rewrite the code as follows. 
 
Subroutine: lw   R6, ret_inst ; r6 = “j 0” 

add  R6, R6, R31 ; R6 = “j return_addr” 
sw   R6, return   ; replacing nop with “j return_addr” 
 
xor  R4, R4, R4 ; result = 0 
xor  R3, R3, R3 ; i = 0 

loop:  slt  R5, R3, R1  
bnez R5, L1  ; if (i < b) goto L1 

return: nop   ; will be replaced by “j return_addr” 
L1:  add  R4, R4, R2 ; result += a 

addi R3, R3, #1 ; i++ 
j    loop 

ret_inst: j    0   ; jump instruction template 
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Problem M2.1: Cache Access-Time & Performance 
 
Here is the completed Table M2.1-1 for M2.1.A and M2.1.B. 
 

Component Delay equation (ps)  DM (ps) SA (ps) 
Decoder 200×(# of index bits) + 1000 Tag 3400 3000 

Data 3400 3000 
Memory array 200×log2 (# of rows) +  

200×log2 (# of bits in a row) + 1000 
Tag 4217 4250 
Data 5000 5000 

Comparator 200×(# of tag bits) + 1000  4000 4400 
N-to-1 MUX 500×log2 N + 1000  2500 2500 
Buffer driver 2000   2000 
Data output driver 500×(associativity) + 1000  1500 3000 
Valid output driver 1000  1000 1000 

 
Table M2.1-1:  Delay of each Cache Component 

 
Problem M2.1.A Access time: DM 

 
To use the delay equations, we need to know how many bits are in the tag and how many are in 
the index. We are given that the cache is addressed by word, and that input addresses are 32-bit 
byte addresses; the two low bits of the address are not used. 
 
Since there are 8 (23) words in the cache line, 3 bits are needed to select the correct word from 
the cache line. 
 
In a 128 KB direct-mapped cache with 8 word (32 byte) cache lines, there are 4×210 = 212 cache 
lines (128KB/32B). 12 bits are needed to address 212 cache lines, so the number of index bits is 
12.  The remaining 15 bits (32 – 2  – 3 – 12) are the tag bits. 
 
We also need the number of rows and the number of bits in a row in the tag and data memories. 
The number of rows is simply the number of cache lines (212), which is the same for both the tag 
and the data memory. The number of bits in a row for the tag memory is the sum of the number 
of tag bits (15) and the number of status bits (2), 17 bits total. The number of bits in a row for the 
data memory is the number of bits in a cache line, which is 256 (32 bytes × 8 bits/byte). 
 
With 8 words in the cache line, we need an 8-to-1 MUX. Since there is only one data output 
driver, its associativity is 1. 
 
 
Decoder (Tag) = 200 × (# of index bits) + 1000  = 200 × 12 + 1000  = 3400 ps 
Decoder (Data) = 200 × (# of index bits) + 1000  = 200 × 12 + 1000  = 3400 ps 
 
Memory array (Tag) = 200 × log2(# of rows) + 200 × log2(# bits in a row) + 1000    
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   = 200 × log2(212) + 200 × log2(17) + 1000   ≈ 4217 ps 
Memory array (Data) = 200 × log2(# of rows) + 200 × log2(# bits in a row) + 1000 
   = 200 × log2(212) + 200 × log2(256) + 1000   = 5000 ps 
 
Comparator  = 200 × (# of tag bits) + 1000  = 200 × 15 + 1000= 4000 ps 
 
N-to-1 MUX  = 500 × log2(N) + 1000 = 500 × log2(8) + 1000 = 2500 ps 
 
Data output driver = 500 × (associativity) + 1000 = 500 × l + 1000 = 1500 ps 
 
To determine the critical path for a cache read, we need to compute the time it takes to go 
through each path in hardware, and find the maximum. 
 
Time to tag output driver 
= (tag decode time) + (tag memory access time) + (comparator time) + (AND gate time)  

+ (valid output driver time) 
≈ 3400 + 4217 + 4000 + 500 + 1000 = 13117 ps 
 
Time to data output driver 
= (data decode time) + (data memory access time) + (mux time) + (data output driver time) 
= 3400 + 5000 + 2500 + 1500 = 12400 ps 
 
The critical path is therefore the tag read going through the comparator. The access time is 13117 
ps. At 150 MHz, it takes 0.013117 × 150, or 2 cycles, to do a cache access. 
 
 
Problem M2.1.B Access time: SA 

 
As in M2.1.A, the low two bits of the address are not used, and 3 bits are needed to select the 
appropriate word from a cache line. However, now we have a 128 KB 4-way set associative 
cache. Since each way is 32 KB and cache lines are 32 bytes, there are 210 lines in a way 
(32KB/32B) that are addressed by 10 index bits.  The number of tag bits is then (32 – 2 – 3 – 10), 
or 17. 
 
The number of rows in the tag and data memory is 210, or the number of sets. The number of bits 
in a row for the tag memory is now quadruple the sum of the number of tag bits (17) and the 
number of status bits (2), 76 bits total. The number of bits in a row for the data memory is four 
times  the number of bits in a cache line, which is 1024 (4 × 32 bytes × 8 bits/byte). 
 
As in 1.A, we need an 8-to-1 MUX. However, since there are now four data output drivers, the 
associativity is 4. 
 
Decoder (Tag)  = 200 × (# of index bits) + 1000  = 200 × 10 + 1000 = 3000 ps 
Decoder (Data)  = 200 × (# of index bits) + 1000  = 200 × 10 + 1000 = 3000 ps 
 
Memory array (Tag) = 200 × log2(# of rows) + 200 × log2(# bits in a row) + 1000 
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   = 200 × log2(210) + 200 × log2(76) + 1000   ≈ 4250 ps 
Memory array (Data) = 200 × log2(# of rows) + 200 × log2(# bits in a row) + 1000 
   = 200 × log2(210) + 200 × log2(1024) + 1000  = 5000 ps 
 
Comparator  = 200 × (# of tag bits) + 1000  = 200 × 17 + 1000= 4400 ps 
 
N-to-1 MUX  = 500 × log2(N) + 1000 = 500 × log2(8) + 1000 = 2500 ps 
 
Data output driver = 500 × (associativity) + 1000 = 500 × 4 + 1000= 3000 ps 
 
Time to valid output driver 
= (tag decode time) + (tag memory access time) + (comparator time) + (AND gate time)  

+ (OR gate time) + (valid output driver time) 
= 3000 + 4250 + 4400 + 500 + 1000 + 1000 = 14150 ps 
 
There are two paths to the data output drivers, one from the tag side, and one from the data side. 
Either may determine the critical path to the data output drivers. 
 
Time to get through data output driver through tag side 
= (tag decode time) + (tag memory access time) + (comparator time) + (AND gate time)  
 + (buffer driver time) + (data output driver) 
= 3000 + 4250 + 4400 + 500 + 2000 + 3000 = 17150 ps 
 
Time to get through data output driver through data side 
= (data decode time) + (data memory access time) + (mux time) + (data output driver) 
= 3000 + 5000 + 2500 + 3000 = 13500 ps 
 
From the above calculations, it’s clear that the critical path leading to the data output driver goes 
through the tag side. 
 
The critical path for a read therefore goes through the tag side comparators, then through the 
buffer and data output drivers. The access time is 17150 ps. The main reason that the 4-way set 
associative cache is slower than the direct-mapped cache is that the data output drivers need the 
results of the tag comparison to determine which, if either, of the data output drivers should be 
putting a value on the bus.  At 150 MHz, it takes 0.0175 × 150, or 3 cycles, to do a cache access. 
 
It is important to note that the structure of cache we’ve presented here does not describe all the 
details necessary to operate the cache correctly. There are additional bits necessary in the cache 
which keeps track of the order in which lines in a set have been accessed. We’ve omitted this 
detail for sake of clarity. 
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Problem M2.1.C Miss-rate analysis 
 

D-map 
 
Address 

 
line in cache hit? 

L0 L1 L2 L3 L4 L5 L6 L7  
110 inv 11 inv inv inv inv inv inv no 
136    13     no 
202 20        no 
1A3   1A      no 
102 10        no 
361       36  no 
204 20        no 
114         yes 
1A4         yes 
177        17 no 
301 30        no 
206 20        no 
135         yes 

  
 D-map 
Total Misses 10 
Total Accesses 13 
 
 
 

4-way 
 
Address 

LRU 
line in cache Hit? 

Set 0 Set 1 
way0 way1 way2 way3 way0 way1 way2 way3  

110 inv inv inv inv 11 inv inv inv No 
136      13   No 
202 20        No 
1A3  1A       No 
102   10      No 
361    36     No 
204         Yes 
114         Yes 
1A4         Yes 
177       17  No 
301   30      No 
206         Yes 
135         Yes 
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 4-way LRU 
Total Misses 8 
Total Accesses 13 
 
 

4-way 
 
Address 

FIFO 
line in cache Hit? 

Set 0 Set 1 
way0 way1 way2 way3 way0 way1 way2 way3  

110 inv Inv inv inv 11 inv inv Inv No 
136      13   No 
202 20        No 
1A3  1A       No 
102   10      No 
361    36     No 
204         Yes 
114         Yes 
1A4         Yes 
177       17  No 
301 30        No 
206  20       No 
135         Yes 

 
 4-way FIFO 
Total Misses 9 
Total Accesses 13 
 
 
Problem M2.1.D Average latency 

 
The miss rate for the direct-mapped cache is 10/13. The miss rate for the 4-way LRU set 
associative cache is 8/13. 
 
The average memory access latency is (hit time) + (miss rate) × (miss time). 
 
For the direct-mapped cache, the average memory access latency would be (2 cycles) + (10/13) × 
(20 cycles) = 17.38 ≈ 18 cycles. 
 
For the LRU set associative cache, the average memory access latency would be (3 cycles) + 
(8/13) × (20 cycles) = 15.31 ≈ 16 cycles. 
 
The set associative cache is better in terms of average memory access latency. 
 
For the above example, LRU has a slightly smaller miss rate than FIFO.  This is because the 
FIFO policy replaced the {20} block instead of the {10} block during the 12th access, because 
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the {20} block has been in the cache longer even though the {10} was least recently used, 
whereas the LRU policy took advantage of temporal/spatial locality.  
 
LRU doesn’t always have lower miss rate than FIFO. Consider the following counter example: A 
sequence accesses 3 separate memory locations A,B and C in the order of A, B, A, C, B, B, B, 
…. When this sequence is executed on a processor employing a fully-associative cache with 2 
cache lines and LRU replacement policy, the execution ends up with 4 misses. On the other 
hand, the same sequence will only produces 3 misses if the cache uses FIFO replacement policy. 
(We assume the cache is empty at the beginning of the execution). 
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Problem M2.2: Victim Cache Evaluation 
 
Problem M2.2.A Baseline Cache Design 

 
 

Component Delay equation (ps)  FA (ps) 
Comparator 200×(# of tag bits) + 1000 6800 
N-to-1 MUX 500×log2 N + 1000 1500 
Buffer driver 2000 2000 
AND gate 1000 1000 
OR gate 500 500 
Data output driver 500×(associativity) + 1000 3000 
Valid output 
driver 

1000 1000 

Table M2.2-1 
 
The Input Address has 32 bits. The bottom two bits are discarded (cache is word-addressable) 
and bit 2 is used to select a word in the cache line. Thus the Tag has 29 bits. The Tag+Status 
line in the cache is 31 bits. 
 
The MUXes are 2-to-1, thus N is 2. The associativity of the Data Output Driver is 4 – there are 
four drivers driving each line on the common Data Bus. 
 
Delay to the Valid Bit is equal to the delay through the Comparator, AND gate, OR gate, and 
Valid Output Driver. Thus it is 6800 + 1000 + 500 + 1000 = 9300 ps. 
 
Delay to the Data Bus is delay through MAX ((Comparator, AND gate, Buffer Driver), 
(MUX)), Data Output Drivers. Thus it is MAX (6800 + 1000 + 2000, 1500) + 3000 = MAX 
(9800, 1500) + 3000 = 9800 + 3000 = 12800 ps. 
 

Critical Path Cache Delay:  12800 ps 
 
 



 

  17 

 

Problem M2.2.B Victim Cache Behavior 
 
 

 
Input 

Address 

Main Cache Victim Cache 
L0 L1 L2 L3 L4 L5 L6 L7 Hit? Way0 Way1 Hit? 
inv inv inv inv inv inv inv inv - inv inv - 

00 0        N   N 
80 8        N 0  N 
04 0        N 8  Y 
A0   A      N   N 
10  1       N   N 
C0     C    N   N 
18         Y   N 
20   2      N  A N 
8C 8        N 0  Y 
28         Y   N 
AC   A      N  2 Y 
38    3     N   N 
C4         Y   N 
3C         Y   N 
48     4    N C  N 
0C 0        N  8 N 
24   2      N A  N 

Table M2.2-2
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Problem M2.2.C Average Memory Access Time 

 
 
15% of accesses will take 50 cycles less to complete, so the average memory access 
improvement is 0.15 * 50 = 7.5 cycles.
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Problem M2.3: Loop Ordering 
 

Problem M2.3.A  
 
 
Each element of the matrix can only be mapped to a particular cache location because the cache 
here is a Direct-mapped data cache. Matrix A has 64 columns and 128 rows. Since each row of 
matrix has 64 32-bit integers and each cache line can hold 8 words, each row of the matrix fits 
exactly into eight (64÷8) cache lines as the following: 
 

0  A[0][0] A[0][1] A[0][2] A[0][3] A[0][4] A[0][5] A[0][6] A[0][7] 
1  A[0][8] A[0][9] A[0][10] A[0][11] A[0][12] A[0][13] A[0][14] A[0][15] 
2  A[0][16] A[0][17] A[0][18] A[0][19] A[0][20] A[0][21] A[0][22] A[0][23] 
3  A[0][24] A[0][25] A[0][26] A[0][27] A[0][28] A[0][29] A[0][30] A[0][31] 
4  A[0][32] A[0][33] A[0][34] A[0][35] A[0][36] A[0][37] A[0][38] A[0][39] 
5  A[0][40] A[0][41] A[0][42] A[0][43] A[0][44] A[0][45] A[0][46] A[0][47] 
6  A[0][48] A[0][49] A[0][50] A[0][51] A[0][52] A[0][53] A[0][54] A[0][55] 
7  A[0][56] A[0][57] A[0][58] A[0][59] A[0][60] A[0][61] A[0][62] A[0][63] 
8  A[1][0] A[1][1] A[1][2] A[1][3] A[1][4] A[1][5] A[1][6] A[1][7] 
• 
• 
• 

• 
• 
• 

• 
• 
• 

• 
• 
• 

• 
• 
• 

• 
• 
• 

• 
• 
• 

• 
• 
• 

• 
• 
• 

 
Loop A accesses memory sequentially (each iteration of Loop A sums a row in matrix A), an 
access to a word that maps to the first word in a cache line will miss but the next seven accesses 
will hit. Therefore, Loop A will only have compulsory misses (128×64÷8 or 1024 misses). 
 
The consecutive accesses in Loop B will use every eighth cache line (each iteration of Loop B 
sums a column in matrix A). Fitting one column of matrix A, we would need 128×8 or 1024 
cache lines. However, our 4KB data cache with 32B cache line only has 128 cache lines. When 
Loop B accesses a column, all the data that the previous iteration might have brought in would 
have already been evicted. Thus, every access will cause a cache miss (64×128 or 8192 misses). 
 

The number of cache misses for Loop A:_             _1024                               _ 
 

The number of cache misses for Loop B:                  8192________________                       
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Problem M2.3.B  
 
Since Loop A accesses memory sequentially, we can overwrite the cache lines that were previous 
brought in. Loop A will only require 1 cache line to run without any cache misses other than 
compulsory misses.  
 
For Loop B to run without any cache misses other than compulsory misses, the data cache needs 
to have the capacity to hold one column of matrix A. Since the consecutive accesses in Loop B 
will use every eighth cache line and we have 128 elements in a matrix A column, Loop B 
requires 128×8 or 1024 cache lines. 
 

Data-cache size required for Loop A: ______________1_   __________  cache 
line(s)  

 

Data-cache size required for Loop B: ____________1024____________  cache 
line(s) 

 
 
Problem M2.3.C  

 
Loop A still only has compulsory misses (128×64÷8 or 1024 misses). 
 
Because of the fully-associative data cache, Loop B now can fully utilize the cache and the 
consecutive accesses in Loop B will no longer use every eighth cache line. Fitting one column of 
matrix A, we now would only need 128 cache lines. Since 4KB data cache with 8-word cache 
lines has 128 cache lines, Loop B only has compulsory misses (128×(64÷8) or 1024 misses). 
 

The number of cache misses for Loop A:____________1024_____________ 
 

The number of cache misses for Loop B:____________ 1024_____________ 
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Problem M2.4: Cache Parameters 

 
Problem M2.4.A  

 
TRUE. Since cache size is unchanged, the line size doubles, the number of tag entries is halved. 
 
 
Problem M2.4.B  

 
FALSE. The total number of lines across all sets is still the same, therefore the number of tags in 
the cache remain the same.  
 
 
Problem M2.4.C  

 
TRUE. Doubling the capacity increases the number of lines from N to 2N. Address i and address 
i+N now map to different entries in the cache and hence, conflicts are reduced. 
 
 

Problem M2.4.D  
 
FALSE. The number of lines doubles but the line size remains the same. So the compulsory 
“cold-start” misses stays the same.  
 
 
Problem M2.4.E  

 
TRUE. Doubling the line size causes more data to be pulled into the cache on a miss. This 
exploits spatial locality as subsequent loads to different words in the same cache line will hit in 
the cache reducing compulsory misses. 
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Problem M2.5: Microtags 
 
Problem M2.5.A  

 
A direct-mapped cache can forward data to the CPU before checking the tags for a hit or a miss.  
A set-associative cache has to first compare cache tags to select the correct way from which to 
forward data to the CPU. 
 
 
 

Problem M2.5.B  
 
 

tag Index offset 
 
 

# of bits in the tag: ____21________ 
 

# of bits in the index: _____6________ 
 

# of bits in the offset: _____5________ 
 
32-byte line requires 5 bits to select the correct byte. 
An 8KB, 4-way cache has 2KB in each way, and each way holds 2KB/32B=64 lines, so we need 
6 index bits. 
The remaining 32-6-5=21 bits are the tag. 
 
 
Problem M2.5.C  

 
If the loTags are not unique, then multiple ways can attempt to drive data on the tristate bus out 
to the CPU causing bus contention. 
 
(It is possible to have a scheme that speculatively picks one of the ways when there is as match 
in loTags, but this would require additional cross-way logic that would slow the design down, 
and would also incur extra misses when the speculation was wrong.) 
 
Problem M2.5.D  

 
The loTag has to be unique across ways, and so in a 4-way cache with 2-bit tags the tags would 
never be able to hold addresses that were different from a direct-mapped cache of the same 
capacity. The conflict misses would therefore be identical. 
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Problem M2.5.E 

 

 
When a new line is brought into the cache, any existing line in the set with the same loTag must 
be chosen as the victim.  If there is no line with the same loTag, any conventional replacement 
policy can be used. 
 
Problem M2.5.F  

 
No. The full tag check is required to determine whether the write is a hit to the cached line. 
 
 
Problem M2.5.G  

 
A 16KB page implies 14 untranslated address bits.  An 8KB, 4-way cache requires 11 
index+offset bits, leaving 3 untranslated bits for loTag. 

 
Problem M2.5.H  

 
If the loTags include translated virtual address bits, then each cache line must store the physical 
page number (PPN) as the hiTag.  An access will hit if loTag matches, and the PPN in hiTag 
matches.  The replacement policy has to maintain two invariants: 1) no two lines in a set have the 
same loTag bits and 2) no two lines have the same PPN.  If two lines had the same PPN, there 
might be a virtual address alias.   Because a new line might have the same loTag as an existing 
line, and also the same PPN as a different line, two lines might have to be evicted to bring in one 
new line. 
A slight improvement is to only evict a line with the same PPN if the untranslated part of loTag 
is identical.  If the untranslated bits are different, the two lines cannot be aliases. 
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Problem M3.1: Virtual Memory Bits 
 
Problem M3.1.A  

 
The answer depends on certain assumptions in the OS. Here we assume that the OS does 
everything that is reasonable to keep the TLB and page table coherent. Thus, any change that OS 
software makes is made to both the TLB and the page table. 
 
However, the hardware can change the U bit (whenever a hit occurs this bit will be set) and the 
M bit (whenever a page is modified this bit will be set). Thus, these are the only bits that need to 
be written back. Note that the system will function correctly even if the U bit is not written back.  
In this case the performance would just decrease. 
 
It is also important to note, that if the entry is laid out properly in memory, all the hardware-
modified bits in the TLB can be written back to memory with a single memory write instruction. 
Thus it makes no difference whether one or two bits have been modified in the TLB, because 
writing back one bit or two bits still requires writing back a whole word. 
 
 
Problem M3.1.B  

 
An advantage of this scheme is that we do not need the TLB Entry Valid bit in the TLB 
anymore. One bit savings is not very much. 
 
A disadvantage of this scheme is that the kernel needs to ensure that all TLB entries always are 
valid. During a context switch, all TLB entries would need to be restored (this is time-
consuming). And, in general, whenever a TLB entry is invalidated, it will have to be replaced 
with another entry. 
 
 
Problem M3.1.C  

 
Changes to exceptions: “Page Table Entry Invalid” and “TLB Miss” exceptions are replaced 
with exceptions “TLB Entry Invalid” and “TLB No Match” 
 
The TLB Entry Invalid exception will be raised if the VPN matches the TLB tag but the 
(combined) valid bit is false. When this exception is raised the kernel will need to consult the 
page table entry to see if this is a TLB miss (valid bit in page table entry is true), or an access of 
an invalid page table entry (valid bit in page table entry is false). Depending on what the cause of 
the exception was, it will then have to perform the necessary operations to recover.   
 
The TLB No Match exception will be raised if the VPN does not match any of the TLB tags. If 
this exception is raised the kernel will do the same thing it did when a TLB Miss occurred in the 
previous design. 
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Problem M3.1.D  

 
When loading a page table entry into the TLB, the kernel will first check to see if the page table 
entry is valid or not. If it is valid, then the entry can safely be loaded into the TLB. If the page 
table entry is not valid, then the Page Table Entry Invalid exception handler needs to be called to 
create a valid entry before loading it into the TLB. Thus we only keep valid page table entries in 
the TLB. If a page table entry is to be invalidated, the TLB entry needs to be invalidated. 
 
Changes to exceptions: Page Table Entry Invalid exception is not raised by the TLB anymore. 
 
 
Problem M3.1.E  

 
The solution for Problem M3.1.C ends up taking two exceptions, if the PTE has the combined 
valid bit set to invalid. The first exception will be the TLB No Match exception, which will call a 
handler. The handler will load the corresponding PTE into the TLB and restart the instruction. 
The instruction will cause another exception right away, because the valid bit will be set to 
invalid. The exception will be the TLB Entry Invalid exception.  
 
The solution for Problem M3.1.D will only take one exception, because the handler for Page 
Table Entry Invalid exception will get called by the TLB Miss handler. When the instruction that 
caused the exception is restarted, it will execute correctly, because the handler will have created 
a valid PTE and put it in the TLB. 
 
Thus Bud Jet’s solution in M3.1.D will be faster. 
 
Problem M3.1.F  

 
Yes, the R bit can be removed in the same way we removed the V bit in 5.1.D. When loading a 
page table entry into the TLB we check if the data page is resident or not.  If it is resident, we can 
write the entry into the TLB. If it is not resident, we go to the nonresident page handler, loading 
the page into memory before loading the entry into the TLB. Thus, we only keep page table 
entries of resident pages in the TLB. In order to preserve this invariant, the kernel will have to 
invalidate the TLB entry corresponding to any page that gets swapped out. There’s no 
performance penalty since the page was going to be loaded in from disk anyway to service the 
access that triggered the fault. 
 
Problem M3.1.G  

 
The OS needs to check the permissions before loading the entry into the TLB. If permissions 
were violated, then the Protection Fault handler is called. Thus, we only keep page table entries 
of pages that the process has permissions to access. 
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Problem M3.1.H  

 
Whenever a page table entry is loaded into the TLB the U bit in the page table PTE can be set.  
Thus, we do not need the U bit in the TLB entry anymore. 
 
Whenever a Write Fault happens (store and W bit is 0) the kernel will check the page table PTE 
to see if the W bit is set there. If it is not set the old Write Fault handler will be called. If the W 
bit is set, then the kernel will set the M bit in the PTE, set the W bit in the TLB entry to 1, and 
restart the store instruction. Thus, the M bit is not needed in the TLB either, and hence, TLB 
entries do not need to be written back to the page table anymore. 
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Problem M3.2:  Page Size and TLBs 
 
Problem M3.2.A  

 

 
The L1 index and L2 index fields are the same, but the Page Offset field subsumes the L3 index 
and increases to 22 bits.   
 
 
Problem M3.2.B Page Table Overhead 

 
 

PTO4KB = 
16 KB + 16 KB + 8 KB 

= 
40 KB 

= 1.3% 
3 MB 3 MB 

 

PTO4MB = 16 KB + 16 KB = 32 KB = 0.8% 
4 MB 4 MB 

 
For the 4KB page mapping, one L3 table is sufficient to map the 768 pages since each contains 
1024 PTEs. Thus, the page table consists of one L1 table (16KB), one L2 table (16KB), and one 
L3 table (8KB), for a total of 40 KB. The 768 4KB data pages consume exactly 3MB.  The total 
overhead is 1.3%.   
 
The page table for the 4MB page mapping, requires only one L1 table (16KB) and one L2 table 
(16KB), for a total of 32 KB.  A single 4MB data pages is used, and the total overhead is 0.8%. 
 
 
Problem M3.2.C Page Fragmentation Overhead 

 
 

PFO4KB = 
0 

= 0% 
3 MB 

 

PFO4MB = 1 MB = 33% 
3 MB 

 
With the 4KB page mapping, all 3MB of the allocated data is accessed. With the 4MB page 
mapping, only 3MB is accessed and 1MB is unused.  The overhead is 33%. 
 

L1 index 
33 43 

L2 index 
22 32 21 

Page Offset 
0 

11 bits 11 bits 22 bits 
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Problem M3.2.D  

 
 

Data TLB misses 
Page table memory 

references (per miss) 

4KB: 768 3 

4MB: 1 2 

 
The program sequentially accesses all the bytes in each page. With the 4KB page mapping, a 
TLB miss occurs each time a new page of the input or output data is accessed for the first time.  
Since the TLB has more than 3 entries (it has 64), there are no misses during the subsequent 
accesses within each page. The total number of misses is 768. With the 4MB page mapping, all 
of the input and output data is mapped using a single page, so only one TLB miss occurs. 
 
For either page size, a TLB miss requires loading an L1 page table entry and then loading an L2 
page table entry. The 4KB page mapping additionally requires loading an L3 page table entry. 
 
 
Problem M3.2.E  

 
 

1.01× 10× 1,000× 1,000,000× 
 
 
Although the 4KB page mapping incurs many more TLB misses, with either mapping the 
program executes 2M loads, 1M adds, and 1M stores (where M = 220). With the 4MB mapping, 
the single TLB miss is essentially zero overhead.  With the 4KB mapping, there is one TLB miss 
for every 4K loads or stores. Each TLB miss requires 3 page table memory references, so the 
overhead is less than 1 page table memory reference for every 1000 data memory references.  
Since the TLB misses likely cause additional overhead by disrupting the processor pipeline, a 
1% slowdown is a reasonable but probably conservative estimate.
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Problem M3.3: Page Size and TLBs 
 
Problem M3.3.A  

 
If all data pages are 4KB 
 
Address translation cycles = 100 + 100 +100 (for L1, L2 and L3 PTE) 
 
Data access cycles = 4K * 100 
(there is no cache, this assumes that memory access is byte-wise) 
 
If all data pages are 1MB 
 
Address translation cycles = 100 + 100 (for L1, L2 PTE) 
 
Data access cycles = 1M * 100 
(there is no cache, this assumes that memory access is byte-wise) 
 
Problem M3.3.B  

 
Address translation cycles = (256*3 + 3 + 1) * 100 
(Note that the arrays are contiguous and share some PTE entries. 256 L3 PTEs per array * 3 
arrays, 1 L2 PTE per array * 3 arrays, 1 L1 PTE) 
 
Data access cycles = 3M*100 
 
Problem M3.3.C  

 
No. For the sample program given, all L3 PTEs are used only once. 
 
Problem M3.3.D  

 
4. (1 for L1 and 3 for L2)
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Problem M3.4: 64-bit Virtual Memory 
 
This problem examines page tables in the context of processors with a 64-bit addressing. 
 
Problem M3.4.A Single level page tables 

 
12 bits are needed to represent the 4KB page. There are 64-12=52 bits in a VPN. Thus, there are 
252 PTEs.  Each is 8 bytes.  252 * 23 = 255, or 32 petabytes! 
 
Problem M3.4.B Let’s be practical 

 
22 segments * 2(44-12) virtual pages = 234 PTEs.  23 (bytes/PTE) * 234 PTEs = 237 bytes. 
 
It is possible to interpret the question as there being 3 segments of 244 bytes. Thus we’d need: 
 
3 segments * 2(44-12) virtual pages = 233 + 232 PTEs.  23*(233+ 232) = 236 + 235 bytes. 
 

Problem M3.4.C Page table overhead 
 
The smallest possible page table overhead occurs when all pages are resident in memory. In this 
case, the overhead is  
 
8(211 + 211*211 + 211*211*210) / 244 ≈ 235 / 244 ≈ 1 / 29 
 
The largest possible page table overhead occurs when only one data page is resident in memory. 
In this case, we need 1 L0 page table, 1 L1 page table, 1 L2 page table in order to get data page. 
Thus the overhead is: 
 
8(211 + 211 + 210) / 212 = 10 
 
 
Problem M3.4.D PTE Overhead 

 
PPN is 40-12=28 bits. 28+1+1+3=33 bits. 
 
There are 31 wasted bits in a 64 bit page table entry. It turns out that some of the “wasted” space 
is recovered by the OS to do bookkeeping, but not much.   
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Problem M3.4.E Page table implementation 
 
The top level has 1024 = 210 entries. Next level also has 1024 = 210 entries. The 3rd level has 512 
= 29 entries. So the table is as follows: 
 

Index Length (bits) 
Top-level (“page directory”) 10 

2nd-level 10 

3rd-level 9 

 
 
Problem M3.4.F Variable Page Sizes 

 
Minimum = 4KB * 64 = 256KB 
Maximum = 16MB * 64 = 1GB 
 
Problem M3.4.G Virtual Memory and Caches 

 
Alyssa’s suggestion solves the homonym problem. If we add a PID as a part of the cache tag, we 
can ensure that two same virtual addresses from different processes can be distinghuished in the 
cache, because their PIDs will be different. 
 
Putting a PID in the tag of a cache does not solve the synonym problem. This is because the 
synonym problem already deals with different virtual addresses, which presumably would have 
different tags in the cache. In fact, those two virtual addresses would usually belong to different 
processes, which would have different PIDs. 
 
Ben is wrong in thinking that changing the cache to be direct mapped helps in any way. The 
homonym problem still happens, because same virtual addresses still receive the same tags. The 
synonym problem still happens because two different virtual addresses still receive different 
tags.  
 
One way to solve both these problems is to make the cache physically tagged, as described in 
Lecture 5.
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Problem M3.5: Cache Basics 
 
Problem M3.5.A  

 
 

Index V Tags (way0) V Tags (way1)  
0 1 0x45 0   
1 1 0x3D 0   
2 1 0x2D 1 0x25  
3 1 0x1D 0   

 
 
Problem M3.5.B  

 
 
0x34 (hit: index 2)  
-> 0x38 (miss: index 3) 
-> 0x50 (miss: index 2) 
-> 0x54 (hit: index 2) 
-> 0x208 (hit: index 1) 
-> 0x20C (hit: index 1) 
-> 0x74 (miss: index 2) 
-> 0x54 (hit: index 2)  
 
Because there are 5 hits and 3 misses,   
Average memory access time = 1 + 3 / 8 * 16 = 7 cycles
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Problem M3.6: Handling TLB Misses 
 
Problem M3.6.A  

 
 
Virtual address 0x00030 -> Physical address (0x00D40) 
 
 

VPN PPN 

0x0100 0x0F01 

0x0003 0x00D4 

  

  

TLB states 
 
 
Problem M3.6.B  

 
 
Virtual address 0x00050 -> Physical address (0x00E20) 
 
 

VPN PPN 

0x0100 0x0F01 

0x0101 0x0F02 

0x0005 0x00E2 

  

TLB states 
 
 
Problem M3.6.C  

 
New CPI = 2 + (0.01+0.02)*20 = 2.6  
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Problem M3.7: Hierarchical Page Table & TLB (Fall 2010 Part B) 
 
Suppose there is a virtual memory system with 64KB page which has 2-level hierarchical page 
table. The physical address of the base of the level 1 page table (0x01000) is stored in a special 
register named Page Table Base Register. The system uses 20-bit virtual address and 20-bit 
physical address. The following figure summarizes the page table structure and shows the 
breakdown of a virtual address in this system. The size of both level 1 and level 2 page table 
entries is 4 bytes and the memory is byte-addressed. Assume that all pages and all page tables 
are loaded in the main memory. Each entry of the level 1 page table contains the physical 
address of the base of each level 2 page tables, and each of the level 2 page table entries holds 
the PTE of the data page (the following diagram is not drawn to scale). As described in the 
following diagram, L1 index and L2 index are used as an index to locate the corresponding 4-
byte entry in Level 1 and Level 2 page tables. 
 

  
2-level hierarchical page table 

 
A PTE in level 2 page tables can be broken into the following fields (Don’t worry about status 
bits for the entire part). 
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Problem M3.7.A 

 

 
Assuming the TLB is initially at the state given below and the 
initial memory state is to the right, what will be the final TLB 
states after accessing the virtual address given below? Please 
fill out the table with the final TLB states. You only need to 
write VPN and PPN fields of the TLB. The TLB has 4 slots 
and is fully associative and if there are empty lines they are 
taken first for new entries. Also, translate the virtual address 
(VA) to the physical address (PA). For your convenience, we 
separated the page number from the rest with the colon “:”.  

. 
VPN PPN 
0x8 0x3 

  

  

   
Initial TLB states 

 
  

 
Virtual Address:  
 
    0xE:17B0   (1110:0001011110110000) 
 

 
VPN PPN 
0x8 0x3 
0xE 0x6 

  

   
Final TLB states 

 
 
VA  0xE17B0 => PA   _________0x617B0__________   
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Problem M3.7.B  
 
What is the total size of memory required to store both the level 1 and 2 page tables?  
 
4 * 4 (level 1) + 4 * 4* 4 (level 2) = 80 bytes 
 
 
Problem M3.7.C  

 
Ben Bitdiddle wanted to reduce the amount of physical memory required to store the page table, 
so he decided to only put the level 1 page table in the physical memory and use the virtual 
memory to store level 2 page tables. Now, each entry of the level 1 page table contains the 
virtual address of the base of each level 2 page tables, and each of the level 2 page table entries 
contains the PTE of the data page (the following diagram is not drawn to scale). Other system 
specifications remain the same. (The size of both level 1 and level 2 page table entries is 4 bytes.)  
 

  
Ben’s design with 2-level hierarchical page table 
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Assuming the TLB is initially at the state given below and the 
initial memory state is to the right (different from M5.8.A), what 
will be the final TLB states after accessing the virtual address given 
below? Please fill out the table with the final TLB states. You only 
need to write VPN and PPN fields of the TLB. The TLB has 4 slots 
and it is fully associative and if there are empty lines they are taken 
first for new entries. Also, translate the virtual address to the 
physical address. Again, we separated the page number from the 
rest with the colon “:”. 
. 

 
 
 
 
 
 
 
 

Initial TLB states 
 
Virtual Address:  
 
0xA:0708    (1010:0000011100001000) 
 
 

VPN PPN 
0x8 0x1 
0x2 0x1 
0xA 0xF 

   
Final TLB states 

 
VA  0xA0708 => PA   ____________0xF0708___________ 
 
Problem M3.7.D  

 
Alice P. Hacker examines Ben’s design and points out that his scheme can result in infinite loops. 
Describe the scenario where the memory access falls into infinite loops. 
 
 

1. When the TLB is empty 
2. When the VPN of the virtual address and the VPN of the level 1 page table entry are the 

same 
 

VPN PPN 
0x8 0x1 

  

  

  


