
Last updated:
3/1/2017

Page 1 of 16

Problem M4.1: Fully-Bypassed Simple 5-Stage Pipeline

We have reproduced the fully bypassed 5-stage MIPS processor pipeline from Lecture 7 in
Figure M4.1-A. In this problem, we ask you to write equations to generate correct bypass and
stall signals. Feel free to use any symbol introduced in the lecture.

Problem M4.1.A Stall

Do we still need to stall this pipeline? If so, explain why. (1) Write down the correct equation for
the stall condition and (2) give an example instruction sequence which causes a stall.

Problem M4.1.B Bypass Signal

In Lecture 7, we gave you an example of bypass signal (ASrc) from EX stage to ID stage. In the
fully bypassed pipeline, however, the mux control signals become more complex, because we
have more inputs to the muxes in the ID stage.

Write down the bypass condition for each bypass path in Mux 1. Please indicate the priority of
the signals; that is, if all bypass conditions are met, indicate which signals have the highest and
the lowest priorities.

Bypass EX->ID ASrc = (rsD=wsE).we-bypassE.re1D (given in Lecture 7)

Bypass MEM->ID =

Bypass WB->ID =

Priority:

Problem M4.1.C Partial Bypassing

While bypassing gives us a performance benefit, it may introduce extra logic in critical paths and
may force us to lower the clock frequency. Suppose we can afford to have only one bypass in the
datapath. How would you justify your choice? Argue in favor of one bypass path over another.

Last updated:
3/1/2017

Page 2 of 16

Figure M4.1-A: Fully-Bypassed MIPS Pipeline

ASrc
IR IR IR

PC A

B

Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4
Add

IR ALU

Imm
Ext

rd1

GPRs

rs1
rs2

ws
wd rd2

we

wdat
a

addr

wdata

rdata Data
Memory

we

31

nop

stall

D

E M W

PC for JAL, ...

BSrc

Last updated:
3/1/2017

Page 3 of 16

Problem M4.2: Basic Pipelining

Unlike the Harvard-style (separate instruction and data memories) architectures, machines using
the Princeton-style have a shared instruction and data memory. In order to reduce the memory
cost, Ben Bitdiddle has proposed the following two-stage Princeton-style MIPS pipeline to
replace a single-cycle Harvard-style pipeline from our lectures.

Every instruction takes exactly two cycles to execute (i.e., instruction fetch and execute) and
there is no overlap between two sequential instructions; that is, fetching an instruction occurs in
the cycle following the previous instruction’s execution (no pipelining).

Assume that the new pipeline does not contain a branch delay slot. Also, don’t worry about self-
modifying code for now.

IR

0x4

clk

RegDst

PCSrc1 RegWrite

BSrc zero?

WBSrc

31

PCSrc2

ExtSelOpCode

0x4Add

rd1

GPRs

rs1
rs2

ws
wd rd2

we

Imm
Ext

addr

wdata

rdata
Data
Memory

z
ALU

Add

OpSel

ALU
Control

clk

Add

we

MemWrite

clk

PC

PCen

IRen AddrSrc

clk

Figure M4.2-A: Two-stage pipeline, Princeton-style

Last updated:
3/1/2017

Page 4 of 16

Problem M4.2.A Mux Control Signals (1)

Please complete the following control signals. You are allowed to use any internal signals (e.g.,
OpCode, PC, IR, zero?, rd1, data, etc.) but not other control signals (ExtSel, IRSrc, PCSrc, etc.).

Example syntax: PCEn = (OpCode == ALUOp) or ((ALU.zero?) and (not (PC == 17)))

You may also use the variable S which indicates the pipeline’s operation phase at a given time.

S := I-Fetch | Execute (toggles every cycle)

PCEn =

IREn =

AddrSrc = Case _____________

____________ => PC

____________ => ALU

Last updated:
3/1/2017

Page 5 of 16

Problem M4.2.B Modified pipeline

After having implemented his proposed architecture, Ben has observed that a lot of datapath is
not in use because only one phase (either I-Fetch or Execute) is active at any given time. So he
has decided to fetch the next instruction during the Execute phase of the previous instruction.

Figure M4.2-B: Modified Two-stage Princeton-style MIPS Pipeline

Do we need to stall this pipeline? If so, for each cause (1) write down the cause in one sentence
and (2) give an example instruction sequence. If not, explain why. (Remember there is no delay
slot.)

Last updated:
3/1/2017

Page 6 of 16

Problem M4.2.C Mux Control Signals (2)

Please complete the following control signals in the modified pipeline. As before, you are
allowed to use any internal signals (e.g., OpCode, PC, IR, zero?, rd1, data, etc.) but not other
control signals (ExtSel, IRSrc, PCSrc, etc.)

PCEnable =

AddrSrc = Case _____________

____________ => PC

____________ => ALU

IRSrc = Case _____________

____________ => nop

____________ => Mem

Last updated:
3/1/2017

Page 7 of 16

Problem M4.2.D

Now we are ready to put Ben’s machine to the test. We would like to see a cycle-by-cycle
animation of Ben’s two-stage pipelined, Princeton-style MIPS machine when executing the
instruction sequence below. In the following table, each row represents a snapshot of some
control signals and the content of some special registers for a particular cycle. Ben has already
finished the first two rows. Complete the remaining entries in the table. Use * for “don’t care”.

Label Address Instruction
I1 100 ADD
I2 104 LW
I3 108 J I7
I4 112 LW
I5 116 ADD
I6 120 SUB
I7 312 ADD
I8 316 ADD

Time PC “IR” PCenable PCSrc1 AddrSrc IRSrc
t0 I1:100 - 1 pc+4 PC Mem
t1 I2:104 I1 1 Pc+4 PC Mem
t2
t3
t4
t5
t6

Last updated:
3/1/2017

Page 8 of 16

Problem M4.2.E Self-Modifying Code

Suppose we allow self-modifying code to execute, i.e., store instructions can write to the portion
of memory that contains executable code. Does the two-stage Princeton pipeline need to be
modified to support such self-modifying code? If so, please indicate how. You may use the
diagram below to draw modifications to the datapath. If you think no modifications are required,
explain why.

Problem M4.2.F

Last updated:
3/1/2017

Page 9 of 16

To solve a chip layout problem Ben decides to reroute the input of the WB mux to come from
after the AddrSrc MUX rather than ahead of the AddrSrc MUX. (The new path is shown with a
bold line, the old in a dotted line.) The rest of the design is unaltered.

How does this break the design? Provide a code sequence to illustrate the problem and explain in
one sentence what goes wrong.

Problem M4.2.G Architecture Comparison

Give one advantage of the Princeton architecture over the Harvard architecture.

Give one advantage of the Harvard architecture over the Princeton architecture.

Last updated:
3/1/2017

Page 10 of 16

Problem M4.3: Processor Design (Short Yes/No Questions)

The following statements describe two variants of a processor which are otherwise identical. In
each case, circle "Yes" if the variants might generate different results from the same compiled
program, circle "No" otherwise. You must also briefly explain your reasoning. Ignore differences
in the time that each machine takes to execute the program.

Problem M4.3.A Interlock vs. Bypassing

Pipelined processor A uses interlocks to resolve data hazards, while pipelined processor B has
full bypassing.

Yes / No

Problem M4.3.B Delay Slot

Pipelined processor A uses branch delay slots to resolve control hazards, while pipelined
processor B kills instructions following a taken branch.

Yes / No

Problem M4.3.C Structural Hazard

Pipelined processor A has a single memory port used to fetch instructions and data, while
pipelined processor B has no structural hazards.

Yes / No

Last updated:
3/1/2017

Page 11 of 16

Problem M5.1: Pipelined Cache Access

This problem requires the knowledge of Lecture 3. Please, review it before answering the
following questions. You may also want to take a look at pipeline lectures if you do not feel
comfortable with the topic.

Problem M5.1.A

Ben Bitdiddle is designing a five-stage pipelined MIPS processor with separate 32 KB direct-
mapped primary instruction and data caches. He runs simulations on his preliminary design, and
he discovers that a cache access is on the critical path in his machine. After remembering that
pipelining his processor helped to improve the machine’s performance, he decides to try
applying the same idea to caches. Ben breaks each cache access into three stages in order to
reduce his cycle time. In the first stage the address is decoded. In the second stage the tag and
data memory arrays are accessed; for cache reads, the data is available by the end of this stage.
However, the tag still has to be checked—this is done in the third stage.

After pipelining the instruction and data caches, Ben’s datapath design looks as follows:

I-Cache
Address
Decode

I-Cache
Array

Access

I-Cache
Tag

Check

Instruction
Decode &
Register

Fetch

Execute
D-Cache
Address
Decode

D-Cache
Array

Access

D-Cache
Tag

Check

Write-
back

Alyssa P. Hacker examines Ben’s design and points out that the third and fourth stages can be
combined, so that the instruction cache tag check occurs in parallel with instruction decoding and
register file read access. If Ben implements her suggestion, what must the processor do in the
event of an instruction cache tag mismatch? Can Ben do the same thing with load instructions by
combining the data cache tag check stage with the write-back stage? Why or why not?

Problem M5.1.B

Alyssa also notes that Ben’s current design is flawed, as using three stages for a data cache
access won’t allow writes to memory to be handled correctly. She argues that Ben either needs to
add a fourth stage or figure out another way to handle writes. What problem would be
encountered on a data write? What can Ben do to keep a three-stage pipeline for the data cache?

Last updated:
3/1/2017

Page 12 of 16

Problem M5.1.C

With help from Alyssa, Ben streamlines his design to consist of eight stages (the handling of data
writes is not shown):

I-Cache
Address
Decode

I-Cache
Array

Access

I-Cache Tag
Check,

Instruction
Decode &
Register

Fetch

Execute
D-Cache
Address
Decode

D-Cache
Array

Access

D-Cache
Tag Check

Write-
Back

Both the instruction and data caches are still direct-mapped. Would this scheme still work with a
set-associative instruction cache? Why or why not? Would it work with a set-associative data
cache? Why or why not?

Problem M5.1.D

After running additional simulations, Ben realizes that pipelining the caches was not entirely
beneficial, as now the cache access latency has increased. If conditional branch instructions
resolve in the Execute stage, how many cycles is the processor’s branch delay?

Problem M5.1.E

Assume that Ben’s datapath is fully-bypassed. When a load is executed, the data becomes
available at the end of the D-cache Array Access stage. However, the tag has not yet been
checked, so it is unknown whether the data is correct. If the load data is bypassed immediately,
before the tag check occurs, then the instruction that depends on the load may execute with
incorrect data. How can an interlock in the Instruction Decode stage solve this problem? How
many cycles is the load delay using this scheme (assuming a cache hit)?

Problem M5.1.F

Alyssa proposes an alternative to using an interlock. She tells Ben to allow the load data to be
bypassed from the end of the D-Cache Array Access stage, so that the dependent instruction can
execute while the tag check is being performed. If there is a tag mismatch, the processor will
wait for the correct data to be brought into the cache; then it will re-execute the load and all of
the instructions behind it in the pipeline before continuing with the rest of the program. What
processor state needs to be saved in order to implement this scheme? What additional steps need
to be taken in the pipeline? Assume that a DataReady signal is asserted when the load data is
available in the cache, and is set to 0 when the processor restarts its execution (you don’t have to
worry about the control logic details of this signal). How many cycles is the load delay using this
scheme (assuming a cache hit)?

Last updated:
3/1/2017

Page 13 of 16

Problem M5.1.G

Ben is worried about the increased latency of the caches, particularly the data cache, so Alyssa
suggests that he add a small, unpipelined cache in parallel with the D-cache. This “fast-path”
cache can be considered as another level in the memory hierarchy, with the exception that it will
be accessed simultaneously with the “slow-path” three-stage pipelined cache. Thus, the slow-
path cache will contain a superset of the data found in the fast-path cache. A read hit in the fast-
path cache will result in the requested data being available after one cycle. In this situation, the
simultaneous read request to the slow-path cache will be ignored. A write hit in the fast-path
cache will result in the data being written in one cycle. The simultaneous write to the slow-path
cache will proceed as normal, so that the data will be written to both caches. If a read miss
occurs in the fast-path cache, then the simultaneous read request to the slow-path cache will
continue to be processed—if a read miss occurs in the slow-path cache, then the next level of the
memory hierarchy will be accessed. The requested data will be placed in both the fast-path and
slow-path caches. If a write miss occurs in the fast-path cache, then the simultaneous write to the
slow-path cache will continue to be processed as normal. The fast-path cache uses a no-write
allocate policy, meaning that on a write miss, the cache will remain unchanged—only the slow-
path cache will be modified.

Ben’s new pipeline design looks as follows after implementing Alyssa’s suggestion:

I-Cache
Address
Decode

I-Cache
Array

Access

I-Cache Tag
Check,

Instruction
Decode &
Register

Fetch

Execute

Fast-Path D-
Cache

Access and
Tag Check

& Slow Path
D-Cache
Address
Decode

Slow-Path
D-Cache

Array
Access

Slow-Path
D-Cache

Tag Check

Write-
Back

The number of processor pipeline stages is still eight, even with the addition of the fast-path
cache. Since the processor pipeline is still eight stages, what is the benefit of using a fast-path
cache? Give an example of an instruction sequence and state how many cycles are saved if the
fast-path cache always hits.

Last updated:
3/1/2017

Page 14 of 16

Problem M5.2: Write Buffer for Data Cache (2005 Fall Part C)

In order to boost the performance of memory writes, Ben Bitdiddle has proposed to add a write
buffer to our 5-stage fully-bypassed MIPS pipeline as shown below. Assuming a write-
through/write no-allocate cache, every memory write request will be queued in the write buffer
in the MEM stage, and the pipeline will continue execution without waiting for writes to be
completed. A queued entry in the write buffer gets cleared only after the write operation
completes, so the maximum number of outstanding memory writes is limited by the size of the
write buffer.

Please answer the following questions.

ASrc
IRIR IR

PC
A

B

Y

R

MD1 MD2

addr
inst

Inst
Cache

0x4
Add

IR ALU

Imm
Ext

rd1

GPRs

rs1
rs2

ws
wd rd2

we

wdata

addr

wdata

rdata
Data
Cache

we

31

nop

stall

D

E M W

PC for JAL, ...

BSrc

WBuf To main memory
Popcount(WBuf)

Problem M5.2.A

Ben wants to determine the size of the write buffer, so he runs benchmark X to get the
observation below. What will be the average number of writes in flight (=the number of valid
entries in the write buffer on average)?

1) The CPI of the benchmark is 2.
2) On average, one of every 20 instructions is a memory write.
3) Memory has a latency of 100 cycles, and is fully pipelined.

Last updated:
3/1/2017

Page 15 of 16

Problem M5.2.B

Based on the experiment in the previous question, Ben has added the write buffer with N entries
to the pipeline. (Do not use your answer in M5.2A to replace N.) Now he wants to design a stall
logic to prevent a write buffer overflow. The structure of the write buffer is shown in the figure
below. Popcount(WBuf) gives the number of valid entries in the write buffer at any given
moment.

ADDR0 DATA0

WAddr WData

0

0

1

Valid

Size
= N

Popcount(WBuf)
valid entries

Please write down the stall condition to prevent write buffer overflows. You should derive the
condition without assuming any modification of the given pipeline. You can use Boolean and
arithmetic operations in your stall condition.

Stall =

Last updated:
3/1/2017

Page 16 of 16

Problem M5.2.C

In order to optimize the stall logic, Ben has decided to add a predecode bit to detect store
instructions in the instruction cache (I-Cache). That is, now every entry in the I-Cache has a store
bit associated with it, and it propagates through the pipeline with an Sstage bit added to each
pipeline register (except the one between MEM and WB stages) as shown below.
Popcount(Pipeline) gives the number of store instructions that are in flight (= number of
Sstage bits set to 1).

ASrc
IRIR IR

PC
A

B

Y

R

MD1 MD2

addr
inst

Inst
Cache

0x4
Add

IR ALU

Imm
Ext

rd1

GPRs

rs1
rs2

ws
wd rd2

we

wdata

addr

wdata

rdata
Data
Cache

we

31

nop

stall

D

E M W

PC for JAL, ...

BSrc

WBuf

SD

SE SM

Popcount
(pipeline)

To main memory
Popcount(WBuf)

How will this optimization change the stall condition, if at all?

Stall =

