

 1

 6.823 Computer System Architecture
. Module #1 Problem Set #2 Solutions

Last Updated:

3/2/2017

http:/csg.csail.mit.edu/6.823/
Problem M4.1: Fully-Bypassed Simple 5-Stage Pipeline

Problem M4.1.A Stall

We still need the logic for stalls, because we cannot prevent load-use hazard. If a load instruction is followed by an
instruction which takes the loaded value as a source operand, we cannot avoid stalling for a cycle. The following
instruction sequence illustrates this hazard.

LW R1, 0(R2) # R1 <- M[R2]
ADD R3, R5, R1 # R1 is a source operand of ADD (data dependency)
 # The correct value of R1 is not available when
 # ADD is in ID stage. So it has to stall for a cycle.

Problem M4.1.B Bypass Signal

Here are the bypass conditions.

Bypass EX->ID ASrc = (rsD=wsE).we-bypassE.re1D

Bypass MEM->ID = (rsD=wsM).weM.re1D

Bypass WB->ID = (rsD=wsW).weW.re1D

Priority: Bypass EX->ID > Bypass MEM->ID > Bypass WB->ID
(In order to execute a given program correctly, the value from the latest producer must be taken if multiple bypass
paths are active.)

Problem M4.1.C Partial Bypassing

It is an open question and there is no single correct answer. Here are a couple of issues to consider as a guideline.

First, you may consider the penalty for not having all the bypass paths. If we don’t have the bypass path EX→ID,
we have to stall for three cycles for the hazard to be resolved. Likewise, not having MEM→ID results in a stall of
two cycles, and not having WB→ID, in one. Therefore, you can conclude that the bypass path between EX→ID is
the most beneficial.

Secondly, the best bypass path depends on the access patterns of data. The EX→ID bypass path is effective if a
producer instruction is followed by a consumer, except load-use cases (See solution for M4.1.A). On the other hand,
the MEM→ID bypass path works best if there are many load-use cases or many (producer, consumer) pairs have an
independent instruction between them. Likewise, the WB→ID bypass path helps when many (producer, consumer)
pairs are separated by exactly two independent instructions.

 2

Problem M4.2: Basic Pipelining

Problem M4.2.A Mux Control Signals (1)

PCEn = (S==Execute)

IREn = (S==I-Fetch)

AddrSrc = Case S

I-Fetch => PC

Execute => ALU

Problem M4.2.B Modified pipeline

A stall can occur in 2 different cases.

1. A structural hazard in the shared memory.
LD R1, 16(R2)
Any instruction following this LD instruction should be stalled.

2. The other is caused by a control hazard, because we don’t have a delay slot.

J 200
Any instruction following this J instruction should be flushed.

Problem M4.2.C Mux Control Signals (2)

PCEnable = not ((opcode == LW) or (opcode == SW))

AddrSrc = Case opcode

not (LW or SW) => PC

(LW or SW) => ALU

 3

IRSrc = Case opcode

LW or SW or Jump or Brtaken => nop

Else => Mem

Problem M4.2.D

Time PC “IR” PCenable PCSrc1 AddrSrc IRSrc
t0 I1:100 - 1 pc+4 PC Mem
t1 I2:104 I1 1 Pc+4 PC Mem
t2 I3:108 I2 0 * ALU Nop
t3 I3:108 - 1 pc+4 PC Mem
t4 I4:112 I3 1 jabs PC Nop
t5 I7:312 - 1 pc+4 PC Mem
t6 I8:316 I7 1 pc+4 PC Mem

Problem M4.2.E Self-Modifying Code

The answer is no. The hazard is resolved by the datapath itself because (1) memory accesses are
serialized by the stall logic at the shared memory and (2) memory write takes only one cycle.

Problem M4.2.F

Due to this rerouting we will now have to stall even if it is an ALU instruction.

Problem M4.2.G Architecture Comparison

The Princeton architecture is cheaper than the Harvard architecture, but the Harvard architecture
is faster than the Princeton architecture.

 4

Problem M4.3: Processor Design (Short Yes/No Questions)

Problem M4.3.A Interlock vs. Bypassing

No. Data dependencies are preserved with either interlocks or bypassing, so the processors
always generate the same results. Bypassing improves performance by eliminating stalls.

Problem M4.3.B Delay Slot

Yes. The instruction following a taken branch is executed on processor A, but killed on
processor B so the processors can generate different results.

Problem M4.3.C Structural Hazard

No. Both processors retrieve the same data values. There is only a performance difference
because processor A must stall an instruction fetch to allow a load instruction to access memory.

 5

Problem M5.1: Pipelined Cache Access

Problem M5.1.A

Ben’s initial datapath design is shown below:

I-Cache
Address
Decode

I-Cache
Array
Access

I-Cache
Tag
Check

Instruction
Decode &
Register
Fetch

Execute D-
Cache
Address
Decode

D-
Cache
Array
Access

D-
Cache
Tag
Check

Write-
back

Alyssa suggests combining the third and fourth stages, which would result in the following
design (used in the MIPS R4000 processor discussed in Appendix A of the textbook):

I-Cache
Address
Decode

I-Cache
Array
Access

I-Cache
Tag
Check,
Instruction
Decode &
Register
Fetch

Execute D-Cache
Address
Decode

D-Cache
Array
Access

D-Cache
Tag
Check

Write-
Back

This scheme allows an instruction to be read from the register file before it is known whether the
instruction is valid. However, reading values from the register file does not affect processor state
and thus does not affect the correctness of the program execution. If the tag check fails—
meaning that the fetched instruction is invalid—the incorrect instruction can be replaced with a
NOP in the Execute stage, and the processor can wait for the correct instruction to be brought
into the I-cache.

That raises the question of whether Ben can similarly combine the data cache tag check stage
with the write-back stage. Theoretically, the answer is yes, although the issues involved with
combining these two stages make it highly impractical. Thus, both answers are acceptable—the
important thing to consider is the reasoning used. Combining the last two stages would result in
the following pipeline:

I-Cache
Address
Decode

I-Cache
Array
Access

I-Cache
Tag Check,
Instruction
Decode &
Register
Fetch

Execute D-Cache
Address
Decode

D-Cache
Array
Access

D-Cache
Tag Check
& Write-
Back

The obvious problem with this scheme is that a load instruction that misses in the data cache will
write an incorrect value into the register file—therefore merging the stages does not work. This

 6

is correct. However, one can also argue that the scheme can be made to work by modifying the
pipeline. This argument is based on the fact that even if a load instruction places incorrect data
into a register, the load can re-execute and place the correct data into the register, overwriting the
wrong value. As a side note, it should be pointed out that allowing processor state to be
incorrectly updated in a machine which implements precise interrupts would not work without
substantial hardware modifications. However, ignoring the issue of interrupts (which had not
been covered in lecture at the time of the problem set), there is a more fundamental issue with
this approach. Ben’s pipeline currently has no means of correctly re-executing the load
instruction. Simply flushing the pipeline on a data cache miss and restarting execution with the
load instruction does not work because of the following type of instruction:

LW R1, 0(R1)

If the load results in a D-cache miss, it will have overwritten the value in R1 before it re-
executes, meaning that the incorrect address will be calculated the second time around. Another
alternative is to store the address once it has been calculated in the Execute stage. This requires
special address registers in each pipeline stage starting with D-Cache Address Decode. But
another problem is the fact that cache access is pipelined, so a load in the write-back stage that
has caused a D-cache miss has to be sent backwards in the pipeline (along with the correct
address) in order to access the cache once the correct data has been fetched. This requires
additional bypass paths in the processor. In general, speculatively updating processor state
requires rollback mechanisms to be implemented. Backing up the pipeline is the approach used
in the MIPS R4000 in the event of a data cache miss, but the tag check and write-back stages are
separate.

Problem M5.1.B

Ben’s current design does not work for data writes because the tag needs to be checked before
the cache is updated. One solution is to add a fourth stage which handles the actual write in the
event of a cache hit. However, unless the cache can handle two simultaneous accesses, this
scheme does not allow a store to be in this fourth stage at the same time that another memory
operation is in the D-Cache Array Access stage. A better solution is to use a delayed write buffer
(also see Problem M5.2). The store data is written into the write buffer, and if a hit occurs in the
D-Cache Tag Check stage, the data will be written into the cache at a later time (for example,
when the next store instruction is processed)—the processor can continue execution as normal.
This requires load instructions to check the write buffer as well as the cache to ensure that the
correct value is read. With this scheme, a three-stage pipeline can be maintained for the data
cache.

Problem M5.1.C

Ben’s final 8-stage pipeline is shown below:

 7

I-Cache
Address
Decode

I-Cache
Array
Access

I-Cache
Tag
Check,
Instruction
Decode &
Register
Fetch

Execute D-Cache
Address
Decode

D-Cache
Array
Access

D-Cache
Tag
Check

Write-
Back

This pipeline uses direct-mapped instruction and data caches. Replacing these direct-mapped
caches with set-associative caches could potentially reduce the miss rate, at a possible cost in hit
time. However, a close examination of the pipeline and the diagram for a set-associative cache
(seen in Problem M2.1.B) shows that the I-cache must be direct-mapped. For a set-associative
cache, when a word is being read, the result of the tag check is used as an enable signal for the
value being read. However, in the above pipeline, the instruction is needed at the beginning of
the I-Cache Tag Check stage so that it can be decoded in parallel with the tag check. Thus, the I-
cache must be direct-mapped.

For the data cache, the tag check occurs in its own stage. This makes it possible to use a set-
associative cache, since the data for a load instruction isn’t needed until the beginning of the
Write-Back stage. However, in practice this would probably be a bad idea, since the extra delay
required to wait for the tag check before driving out the data might lengthen the clock period.

Problem M5.1.D

Pipelining the caches has a harmful effect on branches. If conditional branch instructions resolve
in the Execute stage, then the processor’s branch delay is 3 cycles, as shown by the following
example in which there are no delay-slot instructions and the datapath is fully-bypassed:

 ADDI R1, R0, #1
 BEQ R1, R0, L1
 SUB R2, R3, R4
L1: AND R5, R6, R7

 t1 t2 t3 t4 t5
IAD	 BEQ SUB
IAA ADDI BEQ
ITC/ID ADDI BEQ
EX ADDI BEQ
DAD ADDI BEQ
DAA ADDI
DTC
WB

 8

Problem M5.1.E

Since a data cache access takes 3 cycles, it will take more cycles (as compared to the five-stage
pipeline) to obtain the result of a load instruction. If an instruction depends on the load, a simple
scheme is to wait until after the D-Cache Tag Check stage before bypassing the load value. This
will ensure that the dependent instruction does not execute with incorrect data. An interlock can
be used to implement this solution. If an instruction in the Instruction Decode stage needs to read
the result of a load instruction that is either in the Execute, D-Cache Address Decode, D-Cache
Array Access, or D-Cache Tag Check stages, then that dependent instruction will be stalled until
the load reaches the Write-Back stage (at which point the load value will be bypassed to the
Execute stage). This is illustrated by the below example.

LW R1, 0(R2)
ADD R3, R1, R2

 t1 t2 t3 t4 t5 t6 t7
IAD	 ADD
IAA LW ADD
ITC/ID LW ADD ADD ADD ADD
EX LW ADD
DAD LW
DAA LW
DTC LW
WB LW

As shown by the above resource usage diagram, the load delay for this scheme is 3 cycles.

Problem M5.1.F

Another alternative to waiting until after the D-Cache Tag Check stage before bypassing the load
value is to bypass the value at the end of the D-Cache Array Access stage. If there is a tag
mismatch, the processor will wait for the correct data to be brought into the cache; then it will re-
execute the load and all of the instructions behind it in the pipeline. In order to implement this
scheme, only the program counter of the load instruction needs to be saved in the event of a tag
mismatch. The load instruction will be nullified (as well as instructions behind it in the pipeline).
When the DataReady signal is asserted (indicating that the load data is now available in the
cache), the processor can restart the load instruction and continue as normal. The benefit of this
scheme is that the load delay is now reduced to 2 cycles.

 9

Problem M5.1.G

Even with the scheme in Problem M5.1.F, the load delay is 2 cycles, while it was only 1 cycle in
the original 5-stage pipeline (although to be fair, the cycle time should be shorter in the 8-stage
pipeline). One solution to this problem is the addition of a fast-path cache that can be accessed in
one cycle. The resulting pipeline is shown below.

I-Cache
Address
Decode

I-Cache
Array
Access

I-Cache
Tag Check,
Instruction
Decode &
Register
Fetch

Execute Fast-Path
D-Cache
Access and
Tag Check
& Slow
Path
D-Cache
Address
Decode

Slow-
Path
D-Cache
Array
Access

Slow-Path
D-Cache
Tag Check

Write-
Back

The benefit of this approach is that a load instruction that hits in the fast-path cache will now
have its value available at the end of the Slow-Path D-Cache Address Decode stage, whereas
before it wasn’t available until the end of the Slow-Path D-Cache Array Access stage. We can
re-examine the instruction sequence from the solution to Problem M5.1.E:

LW R1, 0(R2)
ADD R3, R1, R2

If the fast-path cache always hits, the load delay will only be 1 cycle, which saves 1 cycle over
the scheme from Problem M5.1.F and 2 cycles over the scheme from Problem M5.1.E. This
scheme differs from having a single D-cache in the original 5-stage pipeline because the fast-
path cache will be very small in order to avoid lengthening the cycle time. The idea is to keep the
low miss rate of a large primary cache, the shorter cycle time available with a pipelined cache,
and the single-cycle load delay associated with an unpipelined cache.

 10

Problem M5.2: Write Buffer for Data Cache

Problem M5.2.A

Little’s law: T = 1 / (20*2) = 1 / 40
 L = 100
 Therefore, N = T*L = 2.5 (entries on average)

Problem M5.2.B

Stall = (Popcount(Wbuf) >= (N – 2)) . (IR == Store)

If you assume that you can figure out the number of store instructions in flight by decoding the
IR in each stage, you will be able to eliminate (-2) in the answer above.

Problem M5.2.C

Stall = (Popcount(WBuf) + Popcount(Pipeline) >N)

If you assume in the previous question that you can figure out the number of store instructions in
flight by decoding the IR in each stage, you may conclude the optimization does not make any
change.

