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Problem M4.1: Fully-Bypassed Simple 5-Stage Pipeline 
 
Problem M4.1.A Stall 

 
We still need the logic for stalls, because we cannot prevent load-use hazard. If a load instruction is followed by an 
instruction which takes the loaded value as a source operand, we cannot avoid stalling for a cycle. The following 
instruction sequence illustrates this hazard. 
 
LW  R1, 0(R2)    # R1 <- M[R2] 
ADD R3, R5, R1   # R1 is a source operand of ADD (data dependency) 
       # The correct value of R1 is not available when 
       # ADD is in ID stage.  So it has to stall for a cycle. 

 
 
Problem M4.1.B Bypass Signal 

 
Here are the bypass conditions. 
 
Bypass EX->ID ASrc = (rsD=wsE).we-bypassE.re1D  
 
Bypass MEM->ID  = (rsD=wsM).weM.re1D 
 
Bypass WB->ID  = (rsD=wsW).weW.re1D 
 
Priority: Bypass EX->ID  > Bypass MEM->ID > Bypass WB->ID 
(In order to execute a given program correctly, the value from the latest producer must be taken if multiple bypass 
paths are active.)  
 
 
Problem M4.1.C Partial Bypassing 

 
It is an open question and there is no single correct answer. Here are a couple of issues to consider as a guideline. 
 
First, you may consider the penalty for not having all the bypass paths. If we don’t have the bypass path EX→ID, 
we have to stall for three cycles for the hazard to be resolved. Likewise, not having MEM→ID results in a stall of 
two cycles, and not having WB→ID, in one. Therefore, you can conclude that the bypass path between EX→ID is 
the most beneficial. 
 
Secondly, the best bypass path depends on the access patterns of data. The EX→ID bypass path is effective if a 
producer instruction is followed by a consumer, except load-use cases (See solution for M4.1.A). On the other hand, 
the MEM→ID bypass path works best if there are many load-use cases or many (producer, consumer) pairs have an 
independent instruction between them. Likewise, the WB→ID bypass path helps when many (producer, consumer) 
pairs are separated by exactly two independent instructions. 
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Problem M4.2: Basic Pipelining  
 
Problem M4.2.A Mux Control Signals (1) 

 

PCEn = (S==Execute) 
 
IREn = (S==I-Fetch) 
 
 

AddrSrc = Case S 
 
I-Fetch => PC 
 
Execute  => ALU 
 

 
 
Problem M4.2.B Modified pipeline 

 
A stall can occur in 2 different cases. 

1. A structural hazard in the shared memory. 
LD  R1, 16(R2) 
Any instruction following this LD instruction should be stalled. 

 
2. The other is caused by a control hazard, because we don’t have a delay slot. 

J 200 
Any instruction following this J instruction should be flushed. 

 

Problem M4.2.C Mux Control Signals (2) 
 

 
PCEnable = not ((opcode == LW) or (opcode == SW)) 
 
 
 

 
AddrSrc = Case opcode 
 
not (LW or SW)  => PC 
 
(LW or SW)  => ALU 
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IRSrc = Case opcode 
 
LW or SW or Jump or Brtaken  => nop 
 
Else  => Mem 
 

 
 
Problem M4.2.D  

 
Time PC “IR” PCenable PCSrc1 AddrSrc IRSrc 
t0 I1:100 - 1 pc+4 PC Mem 
t1 I2:104 I1 1 Pc+4 PC Mem 
t2 I3:108 I2 0 * ALU Nop 
t3 I3:108 - 1 pc+4 PC Mem 
t4 I4:112 I3 1 jabs PC Nop 
t5 I7:312 - 1 pc+4 PC Mem 
t6 I8:316 I7 1 pc+4 PC Mem 

 
 
Problem M4.2.E Self-Modifying Code 

 
The answer is no. The hazard is resolved by the datapath itself because (1) memory accesses are 
serialized by the stall logic at the shared memory and (2) memory write takes only one cycle. 
 
Problem M4.2.F  

 
Due to this rerouting we will now have to stall even if it is an ALU instruction. 
 
Problem M4.2.G Architecture Comparison 

 
The Princeton architecture is cheaper than the Harvard architecture, but the Harvard architecture 
is faster than the Princeton architecture. 
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Problem M4.3: Processor Design (Short Yes/No Questions) 
 
Problem M4.3.A Interlock vs. Bypassing 

 
No. Data dependencies are preserved with either interlocks or bypassing, so the processors 
always generate the same results. Bypassing improves performance by eliminating stalls. 
 
 
Problem M4.3.B Delay Slot 

 
Yes. The instruction following a taken branch is executed on processor A, but killed on 
processor B so the processors can generate different results. 
 
 
Problem M4.3.C Structural Hazard 

 
No. Both processors retrieve the same data values. There is only a performance difference 
because processor A must stall an instruction fetch to allow a load instruction to access memory. 
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Problem M5.1:  Pipelined Cache Access 
 
Problem M5.1.A 

 

 
Ben’s initial datapath design is shown below: 
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Alyssa suggests combining the third and fourth stages, which would result in the following 
design (used in the MIPS R4000 processor discussed in Appendix A of the textbook): 
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This scheme allows an instruction to be read from the register file before it is known whether the 
instruction is valid. However, reading values from the register file does not affect processor state 
and thus does not affect the correctness of the program execution. If the tag check fails—
meaning that the fetched instruction is invalid—the incorrect instruction can be replaced with a 
NOP in the Execute stage, and the processor can wait for the correct instruction to be brought 
into the I-cache. 
 
That raises the question of whether Ben can similarly combine the data cache tag check stage 
with the write-back stage. Theoretically, the answer is yes, although the issues involved with 
combining these two stages make it highly impractical. Thus, both answers are acceptable—the 
important thing to consider is the reasoning used. Combining the last two stages would result in 
the following pipeline: 
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The obvious problem with this scheme is that a load instruction that misses in the data cache will 
write an incorrect value into the register file—therefore merging the stages does not work. This 
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is correct.  However, one can also argue that the scheme can be made to work by modifying the 
pipeline. This argument is based on the fact that even if a load instruction places incorrect data 
into a register, the load can re-execute and place the correct data into the register, overwriting the 
wrong value. As a side note, it should be pointed out that allowing processor state to be 
incorrectly updated in a machine which implements precise interrupts would not work without 
substantial hardware modifications. However, ignoring the issue of interrupts (which had not 
been covered in lecture at the time of the problem set), there is a more fundamental issue with 
this approach. Ben’s pipeline currently has no means of correctly re-executing the load 
instruction.  Simply flushing the pipeline on a data cache miss and restarting execution with the 
load instruction does not work because of the following type of instruction: 
 
LW R1, 0(R1) 
 
If the load results in a D-cache miss, it will have overwritten the value in R1 before it re-
executes, meaning that the incorrect address will be calculated the second time around.  Another 
alternative is to store the address once it has been calculated in the Execute stage. This requires 
special address registers in each pipeline stage starting with D-Cache Address Decode. But 
another problem is the fact that cache access is pipelined, so a load in the write-back stage that 
has caused a D-cache miss has to be sent backwards in the pipeline (along with the correct 
address) in order to access the cache once the correct data has been fetched. This requires 
additional bypass paths in the processor. In general, speculatively updating processor state 
requires rollback mechanisms to be implemented. Backing up the pipeline is the approach used 
in the MIPS R4000 in the event of a data cache miss, but the tag check and write-back stages are 
separate. 
 
Problem M5.1.B  

 
Ben’s current design does not work for data writes because the tag needs to be checked before 
the cache is updated. One solution is to add a fourth stage which handles the actual write in the 
event of a cache hit. However, unless the cache can handle two simultaneous accesses, this 
scheme does not allow a store to be in this fourth stage at the same time that another memory 
operation is in the D-Cache Array Access stage. A better solution is to use a delayed write buffer 
(also see Problem M5.2). The store data is written into the write buffer, and if a hit occurs in the 
D-Cache Tag Check stage, the data will be written into the cache at a later time (for example, 
when the next store instruction is processed)—the processor can continue execution as normal. 
This requires load instructions to check the write buffer as well as the cache to ensure that the 
correct value is read. With this scheme, a three-stage pipeline can be maintained for the data 
cache. 
 
Problem M5.1.C  

 
Ben’s final 8-stage pipeline is shown below: 
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This pipeline uses direct-mapped instruction and data caches. Replacing these direct-mapped 
caches with set-associative caches could potentially reduce the miss rate, at a possible cost in hit 
time. However, a close examination of the pipeline and the diagram for a set-associative cache 
(seen in Problem M2.1.B) shows that the I-cache must be direct-mapped. For a set-associative 
cache, when a word is being read, the result of the tag check is used as an enable signal for the 
value being read. However, in the above pipeline, the instruction is needed at the beginning of 
the I-Cache Tag Check stage so that it can be decoded in parallel with the tag check. Thus, the I-
cache must be direct-mapped. 
 
For the data cache, the tag check occurs in its own stage. This makes it possible to use a set-
associative cache, since the data for a load instruction isn’t needed until the beginning of the 
Write-Back stage. However, in practice this would probably be a bad idea, since the extra delay 
required to wait for the tag check before driving out the data might lengthen the clock period. 
 
Problem M5.1.D  

 
Pipelining the caches has a harmful effect on branches. If conditional branch instructions resolve 
in the Execute stage, then the processor’s branch delay is 3 cycles, as shown by the following 
example in which there are no delay-slot instructions and the datapath is fully-bypassed: 
 
    ADDI R1, R0, #1 
    BEQ  R1, R0, L1 
    SUB  R2, R3, R4 
L1: AND  R5, R6, R7 
 
 
 t1 t2 t3 t4 t5 
IAD	 BEQ    SUB 
IAA ADDI BEQ    
ITC/ID  ADDI BEQ   
EX   ADDI BEQ  
DAD    ADDI BEQ 
DAA     ADDI 
DTC      
WB      
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Problem M5.1.E  
 
Since a data cache access takes 3 cycles, it will take more cycles (as compared to the five-stage 
pipeline) to obtain the result of a load instruction. If an instruction depends on the load, a simple 
scheme is to wait until after the D-Cache Tag Check stage before bypassing the load value. This 
will ensure that the dependent instruction does not execute with incorrect data. An interlock can 
be used to implement this solution. If an instruction in the Instruction Decode stage needs to read 
the result of a load instruction that is either in the Execute, D-Cache Address Decode, D-Cache 
Array Access, or D-Cache Tag Check stages, then that dependent instruction will be stalled until 
the load reaches the Write-Back stage (at which point the load value will be bypassed to the 
Execute stage). This is illustrated by the below example. 
 
LW R1, 0(R2) 
ADD R3, R1, R2 
 
 t1 t2 t3 t4 t5 t6 t7 
IAD	 ADD       
IAA LW ADD      
ITC/ID  LW ADD ADD ADD ADD  
EX   LW    ADD 
DAD    LW    
DAA     LW   
DTC      LW  
WB       LW 
 
As shown by the above resource usage diagram, the load delay for this scheme is 3 cycles. 
 
Problem M5.1.F  

 
Another alternative to waiting until after the D-Cache Tag Check stage before bypassing the load 
value is to bypass the value at the end of the D-Cache Array Access stage. If there is a tag 
mismatch, the processor will wait for the correct data to be brought into the cache; then it will re-
execute the load and all of the instructions behind it in the pipeline.  In order to implement this 
scheme, only the program counter of the load instruction needs to be saved in the event of a tag 
mismatch. The load instruction will be nullified (as well as instructions behind it in the pipeline). 
When the DataReady signal is asserted (indicating that the load data is now available in the 
cache), the processor can restart the load instruction and continue as normal. The benefit of this 
scheme is that the load delay is now reduced to 2 cycles. 
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Problem M5.1.G  
 
Even with the scheme in Problem M5.1.F, the load delay is 2 cycles, while it was only 1 cycle in 
the original 5-stage pipeline (although to be fair, the cycle time should be shorter in the 8-stage 
pipeline). One solution to this problem is the addition of a fast-path cache that can be accessed in 
one cycle. The resulting pipeline is shown below. 
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The benefit of this approach is that a load instruction that hits in the fast-path cache will now 
have its value available at the end of the Slow-Path D-Cache Address Decode stage, whereas 
before it wasn’t available until the end of the Slow-Path D-Cache Array Access stage. We can 
re-examine the instruction sequence from the solution to Problem M5.1.E: 
 
LW R1, 0(R2) 
ADD R3, R1, R2 
 
If the fast-path cache always hits, the load delay will only be 1 cycle, which saves 1 cycle over 
the scheme from Problem M5.1.F and 2 cycles over the scheme from Problem M5.1.E. This 
scheme differs from having a single D-cache in the original 5-stage pipeline because the fast-
path cache will be very small in order to avoid lengthening the cycle time. The idea is to keep the 
low miss rate of a large primary cache, the shorter cycle time available with a pipelined cache, 
and the single-cycle load delay associated with an unpipelined cache. 
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Problem M5.2: Write Buffer for Data Cache 
 
Problem M5.2.A  

 
Little’s law:  T = 1 / (20*2)  = 1 / 40 
                      L = 100 
           Therefore, N = T*L = 2.5 (entries on average) 

 
 
Problem M5.2.B  

 
Stall = ( Popcount(Wbuf) >= (N – 2) ) . (IR == Store) 

               
If you assume that you can figure out the number of store instructions in flight by decoding the 
IR in each stage, you will be able to eliminate (-2) in the answer above. 
 
 
Problem M5.2.C  

 
Stall =  ( Popcount(WBuf) + Popcount(Pipeline) >N ) 

 
If you assume in the previous question that you can figure out the number of store instructions in 
flight by decoding the IR in each stage, you may conclude the optimization does not make any 
change. 


