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Computer System Architecture  

6.823 Quiz #1 
March 6, 2015 

Professors Daniel Sanchez and Joel Emer 

 
 

This is a closed book, closed notes exam. 

 80 Minutes 

  18 Pages 

 
Notes: 

 Not all questions are of equal difficulty, so look over the entire exam and 

budget your time carefully. 

 Please carefully state any assumptions you make. 

 Please write your name on every page in the quiz. 

 You must not discuss a quiz's contents with other students who have not 

yet taken the quiz. 

 

 

 

  

 

 

Part A ________     27 Points 

Part B ________     38 Points 

Part C ________     35 Points 

 

 

 

 

TOTAL        ______  100 Points
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Part A: Self-Modifying Code (27 Points) 
 

In this problem we will use and extend the EDSACjr instruction set from Handout 1, 

shown in Table A-1. 
 

Opcode Description 

ADD n Accum  Accum + M[n] 

SUB n Accum  Accum - M[n] 

LD n Accum  M[n] 

ST n M[n]  Accum  

CLEAR Accum  0 

OR n Accum  Accum | M[n] 

AND n Accum  Accum & M[n] 

SHIFTR n Accum  Accum shiftr n 

SHIFTL n Accum  Accum shiftl n 

BGE n If Accum ≥ 0 then PC  n 

BLT n If Accum < 0 then PC  n 

END Halt machine 

Table A-1. EDSACjr Instruction Set 
 

 

 

Question 1 (15 Points) 
 

Write a program that loops over an n-item array and replaces each item with its absolute 

value, as shown in the following pseudo-code: 

 

 
 

Part of the program is already written for you, and to simplify your job you can assume 

the loop will be executed only once. The memory map on the next page shows the 

memory contents before the program starts. Array A is stored in memory in a contiguous 

manner, starting from location A. Memory locations N, I, and ONE hold the values of n, i, 

and 1, respectively. If you need to, you can use additional memory locations for your own 

variables. You should label each variable and define its initial value. 

  

for (i = 0; i < n; i++) 

    A[i] = |A[i]| 
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            Memory:                                       Program:  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 … 

A A[0] 

 A[1] 

 … 

 A[n-1] 

 … 

ONE 1 

N n 

I 0 

  

TMP 0 

  

  

  

  

  

   

loop: LD I 

 SUB N 

 BGE done 

   

I1: LD A 

 BGE cont 

 ST  TMP 

 CLEAR  

 SUB TMP 

I2: ST A 

   

cont: LD I1 

 ADD ONE 

 ST I1 

 LD I2 

 ADD ONE 

 ST I2 

   

   

   

   

   

   

 

 

 

 

 

 

  LD I 

 ADD ONE 

 ST I 

 BGE loop 

done: END  
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Question 2 (12 Points) 

 

Tired of writing self-modifying code, Ben Bitdiddle decides to extend EDSACjr to 

support indirect addressing. However, because registers are expensive, Ben does not want 

to add an index register. Instead, he implements the indirect addressing instructions 

shown in Table A-2. To execute an indirect addressing instruction, the new architecture 

first reads the target address from memory and then loads/stores the data from/to memory.  

 

Opcode Description 

ADDind n Accum  Accum + M[M[n]] 

SUBind n Accum  Accum – M[M[n]] 

LDind n Accum  M[M[n]] 

STind n M[M[n]] Accum  

Table A-2. Additional Indirect Addressing Instructions 

 

Using the instructions in Table A-1 and Table A-2, rewrite the program from Question 1 

without using self-modifying code. As before, you can use additional memory locations 

for your own variables. You should label each variable and define its initial value. 
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            Memory:                                       Program:  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

loop: LD I 

 SUB N 

 BGE done 

   

 LDind IDX 

 BGE cont 

 CLEAR  

 SUBind IDX 

 STind IDX 

   

cont: LD IDX 

 ADD ONE 

 ST IDX 

   

   

   

   

   

   

   

   

   

   

 

 

 

 

 

 

  LD I 

 ADD ONE 

 ST I 

 BGE loop 

done: END  

   

 … 

A A[0] 

 A[1] 

 … 

 A[n-1] 

 … 

ONE 1 

N n 

I 0 

  

IDX A 
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Part B: Caches and Virtual Memory (38 pts) 
 

Question 1 (13 points) 
 

Consider a reference stream that repetitively loops over four addresses, A, B, C, and D 

(ABCDABCDABCD….). We will study how different replacement policies perform on 

this reference stream, using a small, 2-entry, fully-associative cache.  

 

1. Find out how the cache performs with LRU replacement. Fill the table below to show 

the cache contents over time, and note whether each access is a hit or a miss. Then, 

compute the long-term miss ratio (i.e., discounting cache warm-up). (3 points) 

 

Access 0 1 2 3 4 5 6 7 8 9 10 11 

Address A B C D A B C D A B C D 

Entry 1 - A A C C A A C C A A C 

Entry 2 - - B B D D B B D D B B 

Hit? N N N N N N N N N N N N 

 

 

       What is the long-term miss ratio under LRU?  100% 

 

 

 

2. Find out how the cache performs under optimal replacement. This cache cannot 

bypass accesses, i.e., on every miss, it must replace an existing block and insert 

the new block. Fill the time diagram below, and find the long-term hit rate. (5 points) 

 

Access 0 1 2 3 4 5 6 7 8 9 10 11 

Address A B C D A B C D A B C D 

Entry 1 - A A A A A B C C C C C 

Entry 2 - - B C D D D D D A B B 

Hit? N N N N Y N N Y N N Y N 

 

 
     What is the long-term miss ratio under optimal replacement?  66%  (2/3) 
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3. In the example, is there a simple policy that, without knowing the future, performs as 

well as the optimal one? If so, which one? (5 points) 

 

      Yes, MRU (Most Recently Used) 

 

 

 

 

 

 

 

 

 

 

Question 2 (9 points) 

 

Consider a byte addressing system with 16-bit virtual and physical addresses. The 

system has a cache with the following properties: 

 8 sets with 128 bytes per block   

 4-way set-associative organization 

 Virtually-indexed, physically-tagged 

 

1. Suppose we use 256-byte pages. Where in the cache can virtual address 0xABCD 

live?  Please use crosses (X) to mark its possible locations in the diagram below. 

      (The binary representation of 0xABCD is 1010 1011 1100 1101.)  (3 points) 

 

Index 
Cache Contents 

Way 0 Way 1 Way 2 Way 3 

0     

1     

2     

3     

4     

5     

6     

7 X X X X 

 

                                bit  15                              0 

             Virtual address: 1010 1011 1100 1101 

             Index: 111 (bit 9-7) 
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2. As before, suppose we use 256-byte pages. Where in the cache can physical address 

0xABCD live? Please use crosses (X) to mark its possible locations. (3 points) 

 

Index 
Cache Contents 

Way 0 Way 1 Way 2 Way 3 

0     

1 X X X X 

2     

3 X X X X 

4     

5 X X X X 

6     

7 X X X X 

 

                                 bit  15                              0 

             Physical address: 1010 1011 1100 1101 

             Virtual address:   xxxx xxxx 1100 1101 

             Index: xx1 (bit 9-7) 

 

3. Suppose we use 1024-byte pages instead. Where in the cache can physical address 

0xABCD live?  Please use crosses (X) to mark its possible locations. (3 points) 

 

Index 
Cache Contents 

Way 0 Way 1 Way 2 Way 3 

0     

1     

2     

3     

4     

5     

6     

7 X X X X 

 
                                 bit  15                              0 

             Physical address: 1010 1011 1100 1101 

             Virtual address:   xxxx xx11 1100 1101 

             Index: 111 (bit 9-7) 
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Question 3 (16 points) 
 

We’d like our memory system to support two page sizes: 256-byte small pages and 

1024-byte large pages. A common approach to support multiple page sizes is to use 

separate TLBs, one for each page size. Instead, to reduce area overheads, we will use a 

single TLB to cache translations of both small and large pages, shown in Figure B-1. The 

TLB has 8 sets and 2 ways. The L bit denotes whether the cached PTE is for a large page. 

  

V = valid bit  L = large page bit (set to 1 when a large page is stored) 

PPN = physical page number 

 

 
Way 0 Way 1 

V L Tag PPN V L Tag PPN 
0         

1         

2         

3         

4         

5         

6         

7         

 
Each TLB access consists of three steps. First, the TLB checks for a small-page match, 

using the tag and index bits shown in Figure B-2. Second, if it does not find a small-page 

match, it checks for a large-page match, using the tag and index bits in Figure B-3. Third, 

if the second lookup misses as well, it results in a TLB miss and a page table walk. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VPN  Offset 

7                           0 10        8 

Figure B-2. Tag and index bits for small (256-byte) pages. 

Figure B-1. TLB for multiple page sizes. 

Figure B-3. Tag and index bits for large (1024-byte) pages. 

3-bit index 5-bit tag 

 

VPN  Offset 

9                                     0 10         

3-bit index 

5-bit tag 

 

15                       11 

15                       11 

   Pad two zeros 0 0 
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Assume virtual address 0xABBA translates to physical address 0x47BA. 

 

1. If virtual address 0xABBA belongs to a small (256-byte) page, fill in the fields of 

the TLB entry, and mark all possible TLB locations it can be in. (3 points) 

 

TLB entry              Possible locations 
 

L Tag PPN 

0 10101 0x47 
 

0xABBA  = 1010 1011 1011 1010 

0x47BA  = 0100 0111 1011 1010 

 

VPN   = 1010 1011 

PPN  = 0100 0111 

Page offset  = 1011 1010 

 

Index to TLB = 011 (from VPN bit 8-10) 

Tag  = 10101 (from VPN bit 11-15) 

 

 

2. If virtual address 0xABBA belongs to a large (1024-byte) page, fill in the fields of 

the TLB entry, and mark all possible TLB locations it can be in. (3 points) 

 

TLB entry              Possible locations 
 

L Tag PPN 

1 10101 0100 01 
 

0xABBA  = 1010 1011 1011 1010 

0x47BA  = 0100 0111 1011 1010 

 

VPN   = 1010 10 

PPN  = 0100 01 

Page offset  = 11 1011 1010 

 

Index to TLB = 000 (from VPN bit 10 + 00) 

Tag  = 10101 (from VPN bit 11-15) 

 

 

 

 

 

 Way 0 Way 1 

0   

1   

2   

3 X X 

4   

5   

6   

7   

 Way 0 Way 1 

0 X X 

1   

2   

3   

4   

5   

6   

7   
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3. What is the reach of this TLB? (TLB reach = maximum amount of memory 

accessible without TLB misses) (4 points) 

 

 

 
2*2*1K page + 6*2*256 page = 7K 

 

 

 

 

 

 

 

 

 
4. This TLB has a utilization problem for large pages. Explain why it happens and how 

to solve it. (6 points) 

 

Problem: Padding zeros limits large pages to locate only in entry 0 and 4. 

 

Do not pad index bits with 00 for large pages but use the first 3 bits from the VPN of 

large pages. 

 

Fixed reach: 8*2*1K page = 16K 
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HAL 180 ISA and 6-Stage Pipelined Implementation 

 
Inspired by how the IBM 360 uses condition codes, Ben Bitdiddle designs the HAL 180 

architecture, which features two flag registers. Table C-1 describes these flags.  

 

Name Description 

Sign Flag (SF) Stores 1 if the result of the last arithmetic or comparison 

instruction was negative, 0 if it was non-negative 

Zero Flag (ZF) Stores 1 if the result of the last arithmetic, logical, or 

comparison instruction was zero, and 0 if it was non-zero 

Table C-1. HAL 180 status flags. 

 

 

Table C-2 summarizes the different instruction types and the flags they read or write. The 

SF and ZF columns have an “R” when the instruction reads the status flag, a “W” if it 

writes the flag (and does not read it), or a blank if the instruction does not affect the status 

flag. For example, JL (jump if less than) reads SF; ADD writes all flags; and JMP 

(unconditional jump) does not affect any flag. Some instructions, like CMP, write the 

status flags but do not return any result.  

 

Instruction Description SF ZF 

Arithmetic Instructions 

ADD s1, s2 s1  s1 + s2 W W 

SUB s1, s2 s1  s1 - s2 W W 

MUL s1, s2 s1  s1 × s2 W W 

Logical Instructions 

AND s1, s2 s1  s1 & s2  W 

OR s1, s2 s1  s1 | s2  W 

XOR s1, s2 s1  s1 ^ s2  W 

Comparison Instructions 

CMP s1, s2 temp  s1 - s2 W W 

Jump Instructions 

JMP target jump to the address specified by target   

JL target jump to target if SF == 1 R  

JG target jump to target if SF == 0 and ZF == 0 R R 

Memory Instructions 

LD s1, s2 s1 M[s2]   

ST s1, s2 M[s1]  s2   

Table C-2. HAL 180 instruction set. 
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Ben also designs a 6-stage pipelined implementation of the HAL 180. In this pipeline, the 

ALU takes three pipeline stages (E1, E2, and E3), and status flags are updated in stage 

E3. Table C-3 describes each stage, and Figure C-4 shows the datapath of this 6-stage 

pipelined architecture, highlighting the differences with a conventional MIPS pipeline. 

Note that this implementation does not have any data bypass paths. 

 

Stage Description 

Fetch and Decode 

Stage (FD) 

Fetch an instruction from the instruction memory, decode the 

instruction, and fetch the register values from the register file. 

The status flag checking for conditional jumps is also done in 

this stage.  

Execute Stage 1 (E1) 
The first stage of the execution phase.  Generate partial results 

and store them in the pipeline registers.  

Execute Stage 2 (E2) 
The second stage of the execution phase.  Generate partial 

results and store them in the pipeline registers.  

Execute Stage 3 (E3) 
The final stage of the execution phase.  Final results are 

generated and flag registers get updated if necessary.  

Memory Stage (M) Perform load/store from/to the data memory if necessary.   

Writeback Stage (WB) Write to the register file if necessary.  

Table C-3. HAL 180 pipeline stages. 
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Data 
Memory

addr rdata

wdata

we

Instruction 
Memory

addr inst

rs1
rs2

ws
wd

rd1

rd2

clk

GPRs

weclk

clk

ADD

0x4

A

MD1

B

MD2 MD3 MD4

Y

PC

IR

R

FD E1 E2 E3 M W

3-stage 
pipelined ALU

IR IRIRIR
nop

Stall

SF
we

ZF
we

brTaken Flag
Check

Figure C-4. HAL 180 6-Stage pipelined implementation. 
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Part C: Status Flags (35 Points) 
 

Question 1 (12 points) 
 

Write the HAL 180 assembly for the following program. For maximum credit, use the 

minimum number of comparison and jump instructions. 

 

 
 

Assume variables a, b, and c are stored in registers R1, R2, and R3 respectively.  
 

 CMP R1, R2 

 JL _L1 

 JG _L2 

 XOR R3, R3 

 JMP _L3 

_L1: XOR R3, R2 

 JMP _L3 

_L2: XOR R3, R1 

_L3: XOR R1, R1 

 XOR R2, R2 

(You get full grades if you have better answer) 

  

if (a < b) { 
    c = c XOR b; 
} else if (a > b) { 
    c = c XOR a; 
} else { 
    c = 0; 
} 
a = 0; 
b = 0; 
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Question 2 (10 points)   
 

Ben’s HAL 180 6-stage pipeline (Figure C-4) stalls to avoid data hazards through 

registers, but does not yet handle hazards due to status flags. To illustrate why this is 

problematic, consider the following instruction sequence: 

   

I0:  ADD R1, R2 Set SF = 1 ZF = 0  

I1:  JG _L2 Not Taken   

I2:  XOR R1, R3 Set ZF = 0   

I3:  JL _L2 Taken    

I4: _L1: SUB R1, R2     

I5: _L2: ADD R3, R1     

 

Assume that when the program start, R1 = -1, R2 = -2, R3 = -3, and all the status flags 

are zero. Fill out the following instruction flow diagram to incur the minimum amount of 

stalls while maintaining correct operation (i.e., use stalls to respect both data and status 

flag dependences). Use “X”s to denote pipeline bubbles.  

 

 

 

 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 

FD I0 I1 I1 I1 I1 I2 I2 I3 I5 I5 

E1  I0 X X X I1 X I2 I3 X 

E2   I0 X X X I1 X I2 I3 

E3    I0 X X X I1 X I2 

M     I0 X X X I1 X 

W      I0 X X X I1 
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Question 3 (6 points) 
 

Let’s fix Ben’s implementation by extending the existing stall control signal, which 

already works for register hazards, to also stall on status flag hazards. 

 

First, derive the stall conditions for the different jumps: JMPstall, JLstall, and JGstall. 

Use OpcodeX(Y) to indicate the condition when the instruction in X stage is Y. Y can 

be a specific instruction or an instruction class (see Table C-2). For example:  

 

OpcodeFD(JG):  if the instruction in the FD stage is a JG instruction. 

OpcodeE1(Logic):  if the instruction in the E1 stage belongs to the logical 

instruction class (e.g. OR). 

OpcodeE2(CMP|Arith):  if the instruction in the E2 stage is a CMP instruction or 

belongs to the arithmetic instruction class. 

 

 

JMPstall =  0 
 

 

 

JGstall = OpcodeE1(logic|Arith|CMP)|OpcodeE2(logic|Arith|CMP)| 

OpcodeE3(logic|Arith|CMP) 

 

 

JLstall =  OpcodeE1(Arith|CMP)|OpcodeE2(Arith|CMP)| 

OpcodeE3(Arith|CMP) 

 

 
  

 

Finally, write down the new stall signal (stall’) by using the old stall signal (stall) 

and stall conditions you derive. 

 

 

stall’ = stall | (OpcodeFD(JL) & JLstall) |  

(OpcodeFD(JG) & JGstall)|  
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Question 4 (7 points) 

 
Does this 6-stage pipeline add more challenges to precise exception handling? If so, 

please explain. 

 

Yes. Since the status flags are set in E3 stages, you will need some mechanism to roll 

back in order to handle exceptions after E3 stages. 


