
Name ____________________________

Page 1 of 18

Computer System Architecture

6.823 Quiz #1
March 6, 2015

Professors Daniel Sanchez and Joel Emer

This is a closed book, closed notes exam.

 80 Minutes

 18 Pages

Notes:

 Not all questions are of equal difficulty, so look over the entire exam and

budget your time carefully.

 Please carefully state any assumptions you make.

 Please write your name on every page in the quiz.

 You must not discuss a quiz's contents with other students who have not

yet taken the quiz.

Part A ________ 27 Points

Part B ________ 38 Points

Part C ________ 35 Points

TOTAL ______ 100 Points

Name ____________________________

Page 2 of 18

Part A: Self-Modifying Code (27 Points)

In this problem we will use and extend the EDSACjr instruction set from Handout 1,

shown in Table A-1.

Opcode Description

ADD n Accum Accum + M[n]

SUB n Accum Accum - M[n]

LD n Accum M[n]

ST n M[n] Accum

CLEAR Accum 0

OR n Accum Accum | M[n]

AND n Accum Accum & M[n]

SHIFTR n Accum Accum shiftr n

SHIFTL n Accum Accum shiftl n

BGE n If Accum ≥ 0 then PC n

BLT n If Accum < 0 then PC n

END Halt machine

Table A-1. EDSACjr Instruction Set

Question 1 (15 Points)

Write a program that loops over an n-item array and replaces each item with its absolute

value, as shown in the following pseudo-code:

Part of the program is already written for you, and to simplify your job you can assume

the loop will be executed only once. The memory map on the next page shows the

memory contents before the program starts. Array A is stored in memory in a contiguous

manner, starting from location A. Memory locations N, I, and ONE hold the values of n, i,

and 1, respectively. If you need to, you can use additional memory locations for your own

variables. You should label each variable and define its initial value.

for (i = 0; i < n; i++)

 A[i] = |A[i]|

Name ____________________________

Page 3 of 18

 Memory: Program:

 …

A A[0]

 A[1]

 …

 A[n-1]

 …

ONE 1

N n

I 0

TMP 0

loop: LD I

 SUB N

 BGE done

I1: LD A

 BGE cont

 ST TMP

 CLEAR

 SUB TMP

I2: ST A

cont: LD I1

 ADD ONE

 ST I1

 LD I2

 ADD ONE

 ST I2

 LD I

 ADD ONE

 ST I

 BGE loop

done: END

Name ____________________________

Page 4 of 18

Question 2 (12 Points)

Tired of writing self-modifying code, Ben Bitdiddle decides to extend EDSACjr to

support indirect addressing. However, because registers are expensive, Ben does not want

to add an index register. Instead, he implements the indirect addressing instructions

shown in Table A-2. To execute an indirect addressing instruction, the new architecture

first reads the target address from memory and then loads/stores the data from/to memory.

Opcode Description

ADDind n Accum Accum + M[M[n]]

SUBind n Accum Accum – M[M[n]]

LDind n Accum M[M[n]]

STind n M[M[n]] Accum

Table A-2. Additional Indirect Addressing Instructions

Using the instructions in Table A-1 and Table A-2, rewrite the program from Question 1

without using self-modifying code. As before, you can use additional memory locations

for your own variables. You should label each variable and define its initial value.

Name ____________________________

Page 5 of 18

 Memory: Program:

loop: LD I

 SUB N

 BGE done

 LDind IDX

 BGE cont

 CLEAR

 SUBind IDX

 STind IDX

cont: LD IDX

 ADD ONE

 ST IDX

 LD I

 ADD ONE

 ST I

 BGE loop

done: END

 …

A A[0]

 A[1]

 …

 A[n-1]

 …

ONE 1

N n

I 0

IDX A

Name ____________________________

Page 6 of 18

Part B: Caches and Virtual Memory (38 pts)

Question 1 (13 points)

Consider a reference stream that repetitively loops over four addresses, A, B, C, and D

(ABCDABCDABCD….). We will study how different replacement policies perform on

this reference stream, using a small, 2-entry, fully-associative cache.

1. Find out how the cache performs with LRU replacement. Fill the table below to show

the cache contents over time, and note whether each access is a hit or a miss. Then,

compute the long-term miss ratio (i.e., discounting cache warm-up). (3 points)

Access 0 1 2 3 4 5 6 7 8 9 10 11

Address A B C D A B C D A B C D

Entry 1 - A A C C A A C C A A C

Entry 2 - - B B D D B B D D B B

Hit? N N N N N N N N N N N N

 What is the long-term miss ratio under LRU? 100%

2. Find out how the cache performs under optimal replacement. This cache cannot

bypass accesses, i.e., on every miss, it must replace an existing block and insert

the new block. Fill the time diagram below, and find the long-term hit rate. (5 points)

Access 0 1 2 3 4 5 6 7 8 9 10 11

Address A B C D A B C D A B C D

Entry 1 - A A A A A B C C C C C

Entry 2 - - B C D D D D D A B B

Hit? N N N N Y N N Y N N Y N

 What is the long-term miss ratio under optimal replacement? 66% (2/3)

Name ____________________________

Page 7 of 18

3. In the example, is there a simple policy that, without knowing the future, performs as

well as the optimal one? If so, which one? (5 points)

 Yes, MRU (Most Recently Used)

Question 2 (9 points)

Consider a byte addressing system with 16-bit virtual and physical addresses. The

system has a cache with the following properties:

 8 sets with 128 bytes per block

 4-way set-associative organization

 Virtually-indexed, physically-tagged

1. Suppose we use 256-byte pages. Where in the cache can virtual address 0xABCD

live? Please use crosses (X) to mark its possible locations in the diagram below.

 (The binary representation of 0xABCD is 1010 1011 1100 1101.) (3 points)

Index
Cache Contents

Way 0 Way 1 Way 2 Way 3

0

1

2

3

4

5

6

7 X X X X

 bit 15 0

 Virtual address: 1010 1011 1100 1101

 Index: 111 (bit 9-7)

Name ____________________________

Page 8 of 18

2. As before, suppose we use 256-byte pages. Where in the cache can physical address

0xABCD live? Please use crosses (X) to mark its possible locations. (3 points)

Index
Cache Contents

Way 0 Way 1 Way 2 Way 3

0

1 X X X X

2

3 X X X X

4

5 X X X X

6

7 X X X X

 bit 15 0

 Physical address: 1010 1011 1100 1101

 Virtual address: xxxx xxxx 1100 1101

 Index: xx1 (bit 9-7)

3. Suppose we use 1024-byte pages instead. Where in the cache can physical address

0xABCD live? Please use crosses (X) to mark its possible locations. (3 points)

Index
Cache Contents

Way 0 Way 1 Way 2 Way 3

0

1

2

3

4

5

6

7 X X X X

 bit 15 0

 Physical address: 1010 1011 1100 1101

 Virtual address: xxxx xx11 1100 1101

 Index: 111 (bit 9-7)

Name ____________________________

Page 9 of 18

Question 3 (16 points)

We’d like our memory system to support two page sizes: 256-byte small pages and

1024-byte large pages. A common approach to support multiple page sizes is to use

separate TLBs, one for each page size. Instead, to reduce area overheads, we will use a

single TLB to cache translations of both small and large pages, shown in Figure B-1. The

TLB has 8 sets and 2 ways. The L bit denotes whether the cached PTE is for a large page.

V = valid bit L = large page bit (set to 1 when a large page is stored)

PPN = physical page number

Way 0 Way 1

V L Tag PPN V L Tag PPN
0

1

2

3

4

5

6

7

Each TLB access consists of three steps. First, the TLB checks for a small-page match,

using the tag and index bits shown in Figure B-2. Second, if it does not find a small-page

match, it checks for a large-page match, using the tag and index bits in Figure B-3. Third,

if the second lookup misses as well, it results in a TLB miss and a page table walk.

VPN Offset

7 0 10 8

Figure B-2. Tag and index bits for small (256-byte) pages.

Figure B-1. TLB for multiple page sizes.

Figure B-3. Tag and index bits for large (1024-byte) pages.

3-bit index 5-bit tag

VPN Offset

9 0 10

3-bit index

5-bit tag

15 11

15 11

 Pad two zeros 0 0

Name ____________________________

Page 10 of 18

Assume virtual address 0xABBA translates to physical address 0x47BA.

1. If virtual address 0xABBA belongs to a small (256-byte) page, fill in the fields of

the TLB entry, and mark all possible TLB locations it can be in. (3 points)

TLB entry Possible locations

L Tag PPN

0 10101 0x47

0xABBA = 1010 1011 1011 1010

0x47BA = 0100 0111 1011 1010

VPN = 1010 1011

PPN = 0100 0111

Page offset = 1011 1010

Index to TLB = 011 (from VPN bit 8-10)

Tag = 10101 (from VPN bit 11-15)

2. If virtual address 0xABBA belongs to a large (1024-byte) page, fill in the fields of

the TLB entry, and mark all possible TLB locations it can be in. (3 points)

TLB entry Possible locations

L Tag PPN

1 10101 0100 01

0xABBA = 1010 1011 1011 1010

0x47BA = 0100 0111 1011 1010

VPN = 1010 10

PPN = 0100 01

Page offset = 11 1011 1010

Index to TLB = 000 (from VPN bit 10 + 00)

Tag = 10101 (from VPN bit 11-15)

 Way 0 Way 1

0

1

2

3 X X

4

5

6

7

 Way 0 Way 1

0 X X

1

2

3

4

5

6

7

Name ____________________________

Page 11 of 18

3. What is the reach of this TLB? (TLB reach = maximum amount of memory

accessible without TLB misses) (4 points)

2*2*1K page + 6*2*256 page = 7K

4. This TLB has a utilization problem for large pages. Explain why it happens and how

to solve it. (6 points)

Problem: Padding zeros limits large pages to locate only in entry 0 and 4.

Do not pad index bits with 00 for large pages but use the first 3 bits from the VPN of

large pages.

Fixed reach: 8*2*1K page = 16K

Name ____________________________

Page 12 of 18

HAL 180 ISA and 6-Stage Pipelined Implementation

Inspired by how the IBM 360 uses condition codes, Ben Bitdiddle designs the HAL 180

architecture, which features two flag registers. Table C-1 describes these flags.

Name Description

Sign Flag (SF) Stores 1 if the result of the last arithmetic or comparison

instruction was negative, 0 if it was non-negative

Zero Flag (ZF) Stores 1 if the result of the last arithmetic, logical, or

comparison instruction was zero, and 0 if it was non-zero

Table C-1. HAL 180 status flags.

Table C-2 summarizes the different instruction types and the flags they read or write. The

SF and ZF columns have an “R” when the instruction reads the status flag, a “W” if it

writes the flag (and does not read it), or a blank if the instruction does not affect the status

flag. For example, JL (jump if less than) reads SF; ADD writes all flags; and JMP

(unconditional jump) does not affect any flag. Some instructions, like CMP, write the

status flags but do not return any result.

Instruction Description SF ZF

Arithmetic Instructions

ADD s1, s2 s1 s1 + s2 W W

SUB s1, s2 s1 s1 - s2 W W

MUL s1, s2 s1 s1 × s2 W W

Logical Instructions

AND s1, s2 s1 s1 & s2 W

OR s1, s2 s1 s1 | s2 W

XOR s1, s2 s1 s1 ^ s2 W

Comparison Instructions

CMP s1, s2 temp s1 - s2 W W

Jump Instructions

JMP target jump to the address specified by target

JL target jump to target if SF == 1 R

JG target jump to target if SF == 0 and ZF == 0 R R

Memory Instructions

LD s1, s2 s1 M[s2]

ST s1, s2 M[s1] s2

Table C-2. HAL 180 instruction set.

Name ____________________________

Page 13 of 18

Ben also designs a 6-stage pipelined implementation of the HAL 180. In this pipeline, the

ALU takes three pipeline stages (E1, E2, and E3), and status flags are updated in stage

E3. Table C-3 describes each stage, and Figure C-4 shows the datapath of this 6-stage

pipelined architecture, highlighting the differences with a conventional MIPS pipeline.

Note that this implementation does not have any data bypass paths.

Stage Description

Fetch and Decode

Stage (FD)

Fetch an instruction from the instruction memory, decode the

instruction, and fetch the register values from the register file.

The status flag checking for conditional jumps is also done in

this stage.

Execute Stage 1 (E1)
The first stage of the execution phase. Generate partial results

and store them in the pipeline registers.

Execute Stage 2 (E2)
The second stage of the execution phase. Generate partial

results and store them in the pipeline registers.

Execute Stage 3 (E3)
The final stage of the execution phase. Final results are

generated and flag registers get updated if necessary.

Memory Stage (M) Perform load/store from/to the data memory if necessary.

Writeback Stage (WB) Write to the register file if necessary.

Table C-3. HAL 180 pipeline stages.

Name ____________________________

Page 14 of 18

Data
Memory

addr rdata

wdata

we

Instruction
Memory

addr inst

rs1
rs2

ws
wd

rd1

rd2

clk

GPRs

weclk

clk

ADD

0x4

A

MD1

B

MD2 MD3 MD4

Y

PC

IR

R

FD E1 E2 E3 M W

3-stage
pipelined ALU

IR IRIRIR
nop

Stall

SF
we

ZF
we

brTaken Flag
Check

Figure C-4. HAL 180 6-Stage pipelined implementation.

Name ____________________________

Page 15 of 18

Part C: Status Flags (35 Points)

Question 1 (12 points)

Write the HAL 180 assembly for the following program. For maximum credit, use the

minimum number of comparison and jump instructions.

Assume variables a, b, and c are stored in registers R1, R2, and R3 respectively.

 CMP R1, R2

 JL _L1

 JG _L2

 XOR R3, R3

 JMP _L3

_L1: XOR R3, R2

 JMP _L3

_L2: XOR R3, R1

_L3: XOR R1, R1

 XOR R2, R2

(You get full grades if you have better answer)

if (a < b) {
 c = c XOR b;
} else if (a > b) {
 c = c XOR a;
} else {
 c = 0;
}
a = 0;
b = 0;

Name ____________________________

Page 16 of 18

Question 2 (10 points)

Ben’s HAL 180 6-stage pipeline (Figure C-4) stalls to avoid data hazards through

registers, but does not yet handle hazards due to status flags. To illustrate why this is

problematic, consider the following instruction sequence:

I0: ADD R1, R2 Set SF = 1 ZF = 0

I1: JG _L2 Not Taken

I2: XOR R1, R3 Set ZF = 0

I3: JL _L2 Taken

I4: _L1: SUB R1, R2

I5: _L2: ADD R3, R1

Assume that when the program start, R1 = -1, R2 = -2, R3 = -3, and all the status flags

are zero. Fill out the following instruction flow diagram to incur the minimum amount of

stalls while maintaining correct operation (i.e., use stalls to respect both data and status

flag dependences). Use “X”s to denote pipeline bubbles.

 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9

FD I0 I1 I1 I1 I1 I2 I2 I3 I5 I5

E1 I0 X X X I1 X I2 I3 X

E2 I0 X X X I1 X I2 I3

E3 I0 X X X I1 X I2

M I0 X X X I1 X

W I0 X X X I1

Name ____________________________

Page 17 of 18

Question 3 (6 points)

Let’s fix Ben’s implementation by extending the existing stall control signal, which

already works for register hazards, to also stall on status flag hazards.

First, derive the stall conditions for the different jumps: JMPstall, JLstall, and JGstall.

Use OpcodeX(Y) to indicate the condition when the instruction in X stage is Y. Y can

be a specific instruction or an instruction class (see Table C-2). For example:

OpcodeFD(JG): if the instruction in the FD stage is a JG instruction.

OpcodeE1(Logic): if the instruction in the E1 stage belongs to the logical

instruction class (e.g. OR).

OpcodeE2(CMP|Arith): if the instruction in the E2 stage is a CMP instruction or

belongs to the arithmetic instruction class.

JMPstall = 0

JGstall = OpcodeE1(logic|Arith|CMP)|OpcodeE2(logic|Arith|CMP)|

OpcodeE3(logic|Arith|CMP)

JLstall = OpcodeE1(Arith|CMP)|OpcodeE2(Arith|CMP)|

OpcodeE3(Arith|CMP)

Finally, write down the new stall signal (stall’) by using the old stall signal (stall)

and stall conditions you derive.

stall’ = stall | (OpcodeFD(JL) & JLstall) |

(OpcodeFD(JG) & JGstall)|

Name ____________________________

Page 18 of 18

Question 4 (7 points)

Does this 6-stage pipeline add more challenges to precise exception handling? If so,

please explain.

Yes. Since the status flags are set in E3 stages, you will need some mechanism to roll

back in order to handle exceptions after E3 stages.

