
 1 

Computer System Architecture  
6.823 Quiz #1 

March 10th, 2017 
Professors Daniel Sanchez and Joel Emer 

 
 

 
Name: ___________________________        

 
This is a closed book, closed notes exam. 

80 Minutes 
 18 Pages (+2 Scratch) 

 
Notes: 
• Not all questions are of equal difficulty, so look over the entire exam and 

budget your time carefully. 
• Please carefully state any assumptions you make. 
• Show your work to receive full credit. 
• Please write your name on every page in the quiz. 
• You must not discuss a quiz's contents with other students who have not yet 

taken the quiz. 
• Pages 19 and 20 are scratch pages. Use them if you need more space to answer 

one of the questions, or for rough work. 
 
 
  

 
    Part A  ________     25 Points 
   Part B  ________     35 Points 
   Part C  ________     40 Points 

 
TOTAL          ________  100 Points 



 2 

Part A: Self-modifying Code (25 points) 
 
In this question, you will implement linked-list operations using self-modifying code on an 
EDSACjr machine. The memory layout is shown in the figure on the right. You have access to 
the named memory locations as indicated. Linked-list nodes consist of two words: the first is an 
integer value, the second is an address pointing to the next node. _HEAD contains the address 
of the first node of the list (or _INVALID if it is empty). The next field of the last node is 
_INVALID. All valid addresses are positive. You may create new local and global labels as 
explained in the EDSACjr handout. 
 
 
Table A-1 shows the EDSACjr instruction set. 

 
 
 
You may also use the following macros if required. 
 
Macro Description 
STOREADR n Replace the address field of 

location n with the contents of the 
accumulator 

LOADADR  n Load the address field of location 
n into the accumulator 

 
 
 
 
 
  

Opcode Description Bit Representation 
ADD  n Accum ← Accum + M[n] 00001  n 
SUB  n Accum ← Accum - M[n] 10000  n 
STORE  n M[n] ← Accum 00010  n 
CLEAR Accum ← 0 00011  00000000000 
OR n Accum ← Accum | M[n] 00000  n 
AND  n Accum ← Accum & M[n] 00100  n 
SHIFTR n Accum ← Accum  shiftr  n 00101  n 
SHIFTL n Accum ← Accum  shiftl  n 00110  n 
BGE  n If  Accum ≥ 0 then PC ← n 00111  n 
BLT  n If  Accum < 0 then PC ← n 01000  n 
END Halt machine 01010  00000000000 

…..

Program	Code

Nodes	Space

…..

1_ONE
_TMP

0_ZERO

_HEAD

-1_INVALID



 3 

Question 1 (10 points) 
 
Write a macro for LISTPUSH, which pushes the node pointed to by the accumulator to the head 
of the list. LISTPUSH takes one argument, the memory address of the new node, which is 
available in the accumulator. As shown in the figure below, LISTPUSH stores the current 
_HEAD pointer in the new node’s next field, and updates the _HEAD pointer to point to the new 
node. Implement the macro using the EDSACjr instruction set and macros provided above. Do 
not refer to “value” or “next”; they are for illustration only. You need not worry about 
memory allocation; the new node’s address is provided in the accumulator.  
 

 
 
.macro LISTPUSH 
 STORE _TMP  ;; store accumulator (address of the new node) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
.end 



 4 

Question 2 (10 points) 
 
Write a macro for LISTPOP, which removes the node at the head of the list and stores its 
address in the accumulator, or stores _INVALID (-1) in the accumulator if the list is empty. 
Implement the macro using the EDSACjr instruction set and macros provided above. 
 
.macro LISTPOP 

CLEAR   ;; accumulator is not an input 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
.end 

 



 5 

Question 3 (5 points) 
 
Assume there exists a macro called FREE that takes an address as input in the accumulator and 
deallocates it (just like free(void* ptr) in C). Write a macro for LISTCLEAR, which uses 
the FREE macro and your LISTPOP macro to remove and deallocate all nodes in the list. 
Assume all valid node addresses are positive, or else a pointer is _INVALID (-1). Implement the 
macro using the EDSACjr instruction set and macros provided above.  
 
.macro LISTCLEAR 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
.end 
  



 6 

Part B: Virtual Memory 
 
Ben Bitdiddle purchases a new processor to run his 6.823 labs. The processor manual indicates 
that the machine is byte-addressed with 20-bit virtual addresses and 20-bit physical addresses. 
The following figure summarizes the 2-level page table structure and shows the breakdown of a 
virtual address in this system. The physical address of the base of the Level 1 page table 
(0x02000) is stored in the L1 Table Base Address register. The L1 and L2 page tables are located 
in physical memory. The size of both L1 and L2 page table entries is 4 bytes. Each entry of the 
L1 page table contains the physical address of the base of each Level 2 page table (a PTP), and 
each of the L2 page table entries holds the PTE of the data page. 
 

 
 
 
A PTE in L2 page tables can be broken into the following fields. (Don’t worry about status bits). 
 
31 20 19 16 15 0 

0 Physical Page Number (PPN) Status Bits 
 
A PTP in the L1 page table appears as follows. 
 
31 20 19   0 

0 Physical address of a L2 page table 
  

Virtual	Address

0x02000	(PA)

PTP

PTE

L1	Table

L2	Table

Physical	Address

L1	Index L2	Index Page	Offset
2 bits 2	bits									 16	bits

L1	Table	
Base	Address

PPN Offset



 7 

Question 1 (10 points) 
 
Assuming the initial memory state is as shown to the right, what 
is the physical page number (PPN) of virtual address (VA) 
0xB29A0? What is the physical address (PA)? Show and explain 
your work for full credit. For your convenience, we separate 
the page number from the offset with a colon “:”. 
 
Virtual Address 
 
0xB:29A0 = 0b 1011:0010100110100000 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
VPN 0xB => PPN __________________ 
 
 
 
 
 
 
 
 
 
 
VA 0xB29A0 => PA __________________ 
 

Address (PA)  
0x0:2000 0x0:2048 
0x0:2004 0x0:2010 
0x0:2008 0x0:2038 
0x0:200C 0x0:2028 
0x0:2010 0x1:0084 
0x0:2014 0x5:0DA8 
0x0:2018 0x6:11A0 
0x0:201C 0xB:9944 
0x0:2020 0xC:7FFF 
0x0:2024 0x4:B000 
0x0:2028 0x7:30B1 
0x0:202C 0xD:2E5C 
0x0:2030 0x3:A000 
0x0:2034 0x6:010C 
0x0:2038 0xA:74C0 
0x0:203C 0x8:A524 
0x0:2040 0x9:FFEE 
0x0:2044 0x2:93A4 
0x0:2048 0xA:74D0 
0x0:204C 0x3:FD40 

Snapshot of physical memory 



 8 

Unable to run Pin in his own environment, Ben’s friend, Alyssa P. Hacker, refers him to the 
Nested Paging handout to learn how to run his labs in a virtual machine (much to the TA’s 
dismay!) However, Ben is frustrated by the worst-case performance. Let’s find out why. 
 
 
Question 2 (4 Points) 
 
Ben starts his foray into virtualization by thinking about gPA=>hPA translation. 
 
a) Assuming Ben’s host physical memory has the same snapshot as in Question 1, what is the 

host physical address (hPA) of guest physical address (gPA) 0xB29A4? Explain. 
 
 
 
 

 
 

 
 
 
 
 
gPA 0xB29A4 => hPA _____________________  

 
 
b) Assuming no TLB, how many accesses to host physical memory are required to access the 

data associated with a gPA (i.e., perform the gPA=>hPA translation and fetch the data)? 
Explain. 

 
 
 
  



 9 

Question 3 (12 Points) 
 
Given a guest virtual address (gVA), the first step of a nested page 
table walk is to load the relevant guest L1 page table PTP. This 
provides the base gPA of the guest L2 table. Ben is shocked at how 
much work is required! 
 
a) Assume host physical memory is initialized as in Question 1 and 

as shown to the right, the Guest Table Base Address register holds 
0xB29A0 (a gPA), and the Host Table Base Address register holds 
0x02000 (a hPA). During a nested page table walk of guest virtual 
address (gVA) 0x61EAC, what are the contents of the guest L1 
page table PTP entry? For your convenience, we separate the 
page number from the offset with a colon “:”. 
 
Guest Virtual Address (gVA) 

 
0x6:1EAC = 0b 0110:0001111010101100 
 
 
 
 
 
 
 
 
 
 
Guest L1 Table PTP  =  ____________________ 

 
 
b) Assume no TLB.  Starting from some gVA, how many accesses to host physical memory are 

required to determine the guest L1 PTP entry of a guest virtual address (gVA)? Explain. 
 

  

Address (PA)  
0x0:2000 0x0:2048 
0x0:2004 0x0:2010 
0x0:2008 0x0:2038 
0x0:200C 0x0:2028 
0x0:2010 0x1:0084 

... ... 
0x2:2998 0xD:2E5C 
0x2:299C 0x3:A000 
0x2:29A0 0x6:010C 
0x2:29A4 0xA:74CC 
0x2:29A8 0x7:30B1 

... ... 
0x5:2994 0x6:11A0 
0x5:2998 0xB:F149 
0x5:299C 0xC:7BFF 
0x5:29A0 0x4:B020 
0x5:29A4 0xF:A120 

... ... 
0xA:299C 0x8:A624 
0xA:29A0 0x9:FEED 
0xA:29A4 0x2:93A4 
0xA:29A8 0xA:7440 
0xA:29AC 0x3:FD40 
Snapshot of host  
physical memory 



 10 

Question 4 (4 Points) 
 
For the 2-level nested page table in the Nested Paging handout, assuming no TLB, how many 
accesses to host physical memory are required to perform a guest memory access? (i.e. given a 
gVA, find its corresponding hPA and fetch the data). Explain. 
 
 
 
 
 

 
 
 

 
 

 
 
 
 
 
 

 
Question 5 (5 Points) 
 
For an M-level hierarchical guest page table and an N-level hierarchical host page table, 
assuming no TLB, how many accesses to host physical memory are required to perform a guest 
memory access? (i.e. given a gVA, find its corresponding hPA and fetch the data). Explain. 
 
  



 11 

Part C: ISA/Instruction Pipelining 
 
In this problem we study a pipelined implementation of BigMIPS. The BigMIPS ISA is given as 
a handout. 
 
Question 1: ISA Design (5 points) 
 
The BigMIPS ISA uses consecutive 32-bit registers to form a 64-bit base address for Load Word 
(LW) and Store Word (SW) instructions. Could the LW and SW instruction formats incorporate an 
arbitrary pair of source registers to form the base address? If yes, are there any consequences? If 
no, why not? (One to two sentence response.) 
 
 
 
 
 
 
 
  



 12 

 
Figure C.1: Updates to the MIPS Execute and Memory stages to support the BigMIPS ISA. 
 
 
Alyssa P. Hacker extends the classic 5-stage MIPS pipeline to implement the BigMIPS ISA. She 
first focuses on the Execute and Memory stages, shown in Figure C.1 (we’ll see the Decode 
stage next). The figure highlights Alyssa’s additions in blue. The figure shows how she builds a 
64-bit effective address for LW and SW in the Execute stage. Alyssa assumes the following about 
Execute-stage registers: 
 

• A holds (rs) 
• B holds the 32-bit extended offset 
• C holds (rs+1) 
• MD1 holds (rt), the data to store (Do not worry about getting data for stores for now) 
 

Alyssa adds a 64-bit adder that sums the base address and 64-bit extended offset. Register C (i.e. 
(rs+1)) makes up the 32 least significant bits (LSBs) of the base address. At the memory stage, 
Alyssa adds a 64-bit Memory Address register (MA). 
 
  



 13 

Question 2: Loads (7 points) 
 
Alyssa updates the Decode stage with a mux before rs2, as shown below. She wants your help to 
fill registers A, B, and C correctly. 

 
a) In the figure above, draw the datapath so that it handles BigMIPS loads (LW) and all other 

instructions except stores. Connect sources to the inputs of rs1, C, and the inputs to the 
mux before rs2 (the four thick red arrows). You are free to add combinational logic as 
necessary. 
 

 
b) Derive the select signal for the mux input to rs2, labeled as Reg2Src. 

  
You are allowed to use any internal signals (e.g., OpCode, IR, rd1, etc.) but not other 
control signals (ExtSel, etc.). 
 

 
 

 
 
 

 
 
 

 
Reg2Src =  ____________________________________ 

  

Imm
Ext

nop
D E

rs

rt

Reg2Src

IR

C

rd1

GPRs

rs1

rs2

ws
wd rd2

we

0
1 A

B

IR



 14 

Question 3: Three Ports for Stores (5 points) 
 
Alyssa’s previous Decode stage implementation works for loads, but she realizes that stores must 
read three registers! (Two to form a 64-bit address and one for the data). As a first prototype, she 
adds a third register read port to the register file: rs3 and rd3, as shown below. 

 
In the figure above, draw the completed datapath for a store. Assume the signals from Question 2 
are already designed correctly to form a 64-bit effective address. Connect sources to the inputs of 
rs3 and MD1 (the two thick red arrows). You are free to add combinational logic as necessary. 
 
 
 
 
 
 
 
 

Imm
Ext

nop
E

rs

rt

IR

C

rd1

GPRs

rs1
rs2

ws
wd

rd2

we

A

B

MD1

Assume
Designed

AD

rs3

rd3IR

D



 15 

Question 4: Three-Ported BigMIPS Resource Usage (8 Points) 
 
Consider the following BigMIPS code sequence:  I1   LW  R7, 8(R2) 

I2   LW  R5, 24(R6) 
I3  ADD   R1, R5, R7 
I4  SW  R1, 8(R8) 

 
Complete the instruction flow diagram for this sequence of instructions. Assume used registers have been properly initialized. Assume 
full bypassing and correct stall logic to handle all features of BigMIPS. Use arrows to show forwarding of values from one stage to 
another. (In case you need it, page 21 has an extra/scratch instruction flow diagram.) 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

I1 F D E M W               

I2                    

I3                    

I4                    

I5                    

I6                    



 16 

Alyssa finds that a third register read port is too expensive. Ben Bitdiddle suggests an ISA 
solution that doesn’t need the third port. He replaces the Store Word instruction with two new 
instructions and adds a new register, SMA, that is part of architectural state. The new instructions 
and their formats are described in the table below. 
 
 
Instruction Format and Description 
Store Word 
Address 

SWADDR offset(rs) 
 
    SMA ß ((rs) << 32 | (rs+1)) + SignExt64(offset) 
 
Calculate the 64-bit effective address as in the BigMIPS LW instruction. Load 
this address into register SMA. rs must be even. 

Store Word 
Data 

SWDATA rt 
 
    Mem[(SMA)] ß rt 
 
Store the contents of register rt at the location addressed by SMA. 

For Questions 5 and 6, assume that Reg2Src is updated appropriately for SWADDR and SWDATA. 
 
 
 
The figure to the right shows Ben’s changes to the 
Execute and Memory stages. The MA register of 
Figure C.1 is renamed to LMA. The SMA register is 
updated after the Execute stage of SWADDR. However, 
when SWDATA reaches the Memory stage, the SMA 
register must hold the address produced from the last 
SWADDR instruction. This behavior can be achieved 
through the Enable bit of the SMA register, SMAen. 
 
With distinct memory address registers for loads and 
stores, Ben inserts a mux before the address field of 
the Data Memory, controlled by signal MemAddrSrc. 
 
 
 
  

IRIR

MD2

wdata

addr

wdata

rdata
Data 
Memory

we

E M

LMA

en

MD1

SMAen

SMA64bit

+
0
1

MemAddrSrc



 17 

Question 5: Two Instructions for Stores (7 Points) 
 
a) Derive the SMAen signal. Specify OpCodeZ to indicate reading from the Z-stage IR register 

(e.g. OpCodeD when reading the Decode stage IR register). 
 
 
 
 
 
 
 
 
 
 
 

SMAen =  ____________________________________ 
 
 
b) Derive the MemAddrSrc signal. Specify OpCodeZ to indicate reading from the Z-stage IR 

register (e.g. OpCodeD when reading the Decode stage IR register). Full credit will be given 
for use of “don’t care” (*) when appropriate. 

 
 
 
 
 
 
 
 
 

 
MemAddrSrc = Case OpCode______ 
 
__________________  => 0 
 
__________________  => 1 
 
__________________  => * 
 

 



 18 

Question 6: Split-Store BigMIPS Resource Usage (8 Points) 
 
We port the instruction sequence from Question 4 to use SWADDR and SWDATA: 
  I1   LW   R7, 8(R2) 

I2  SWADDR  8(R8) 
I3   LW   R5, 24(R6) 
I4  ADD    R1, R5, R7 
I5  SWDATA  R1 
 

Complete the instruction flow diagram for this sequence of instructions. Assume used registers have been properly initialized. Assume 
full bypassing and correct stall logic to handle all features of BigMIPS. Use arrows to show forwarding of values from one stage to 
another. (In case you need it, page 21 has an extra/scratch instruction flow diagram.) 
 
 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

I1 F D E M W               

I2                    

I3                    

I4                    

I5                    

I6                    



 19 

Scratch Space  
 
Use these extra pages if you run out of space or for your own personal notes. We will not grade 
this unless you tell us explicitly in the earlier pages. 



 20 

Extra Instruction Flow Diagram  
 
Use this as scratch space or if you need a new one to answer one of the questions in Part C. 
 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

I1                    

I2                    

I3                    

I4                    

I5                    

I6                    

I7                    

I8                    

 


