
Problem M3.5: Fetch Pipelines 

 

Ben is designing a deeply-pipelined, single-issue, in-order MIPS processor. The first half of his 

pipeline is as follows: 

 

PC PC Generation 

F1 
ICache Access 

F2 

D1 
Instruction Decode 

D2 

RN Rename/Reorder 

RF Register File Read 

EX Integer Execute 

 

There are no branch delay slots and currently there is no branch prediction hardware 

(instructions are fetched sequentially unless the PC is redirected by a later pipeline stage).  

Subroutine calls use JAL/JALR (jump and link). These instructions write the return address 

(PC+4) into the link register (r31). Subroutine returns use JR r31. Assume that PC Generation 

takes a whole cycle and that you cannot bypass anything into the end of the PC Generation 

phase. 

 

Problem M3.5.A Pipelining Subroutine Returns 

 

Immediately after what pipeline stage does the processor know that it is executing a subroutine 

return instruction? Immediately after what pipeline stage does the processor know the subroutine 

return address? How many pipeline bubbles are required when executing a subroutine return?  

 

 

 

Problem M3.5.B Adding a BTB 

 

Louis Reasoner suggests adding a BTB to speed up subroutine returns. Why doesn’t a standard 

BTB work well for predicting subroutine returns? 

 

  



Problem M3.5.C Adding a Return Stack 

 

Instead of a BTB, Ben decides to add a return stack to his processor pipeline. This return stack 

records the return addresses of the N most recent subroutine calls. This return stack takes no time 

to access (it is always presenting a return address). 

Explain how this return stack can speed up subroutine returns. Describe when and in which 

pipeline stages return addresses are pushed on and popped off the stack. 
 
 

 

Problem M3.5.D Return Stack Operation 

 

Fill in the pipeline diagram below corresponding to the execution of the following code on the 

return stack machine: 

 
A: JAL B 

A+1: 

A+2: 

… 

 

B: JR r31 

B+1: 

B+2: 

… 

 

Make sure to indicate the instruction that is being executed. The first two instructions are 

illustrated below. The crossed out stages indicate that the instruction was killed during those 

cycles. 

 
instruction    time             

A PC F1 F2 D1 D2 RN RF EX           

A+1  PC F1 F2 D1 D2 RN RF EX          

                   

                   

                   

                   

                   

                   

                   

                   

                   

                   

 

  



Problem M3.5.E Handling Return Address Mispredicts 

 

If the return address prediction is wrong, how is this detected? How does the processor recover, 

and how many cycles are lost (relative to a correct prediction)?   

 

 

Problem M3.5.F Further Improving Performance 

 

Describe a hardware structure that Ben could add, in addition to the return stack, to improve the 

performance of return instructions so that there is usually only a one-cycle pipeline bubble when 

executing subroutine returns (assume that the structure takes a full cycle to access). 

 



 Problem M3.6: Managing Out-of-order Execution 

 

This problem investigates the operation of a superscalar processor with branch prediction, 

register renaming, and out-of-order execution. The processor holds all data values in a physical 

register file, and uses a rename table to map from architectural to physical register names. A 

free list is used to track which physical registers are available for use. A reorder buffer (ROB) 

contains the bookkeeping information for managing the out-of-order execution (but, it does not 

contain any register data values). 

 

When a branch instruction is encountered, the processor predicts the outcome and takes a 

snapshot of the rename table. If a misprediction is detected when the branch instruction later 

executes, the processor recovers by flushing the incorrect instructions from the ROB, rolling 

back the “next available” pointer, updating the free list, and restoring the earlier rename table 

snapshot. 

 

We will investigate the execution of the following code sequence (assume that there is no 

branch-delay slot): 

 
    loop:  lw    r1, 0(r2)    # load r1 from address in r2 

           addi  r2, r2, 4    # increment r2 pointer 

           beqz  r1, skip     # branch to “skip” if r1 is 0 

           addi  r3, r3, 1    # increment r3  

    skip:  bne   r2, r4, loop # loop until r2 equals r4 

 

The diagram for Question M3.5.A on the next page shows the state of the processor during the 

execution of the given code sequence. An instance of each instruction in the loop has been issued 

into the ROB (the beqz instruction has been predicted not-taken), but none of the instructions 

have begun execution. In the diagram, old values which are no longer valid are shown in the 

following format: . The rename table snapshots and other bookkeeping information for branch 

misprediction recovery are not shown. 

 

 
  



Problem M3.6.A  

 

Assume that the following events occur in order (though not necessarily in a single cycle): 

Step 1. The first three instructions from the next loop iteration (lw, addi, beqz) are written 

into the ROB (note that the bne instruction has been predicted taken). 

Step 2. All instructions which are ready after Step 1 execute, write their result to the physical 

register file, and update the ROB. Note that this step only occurs once. 

Step 3. As many instructions as possible commit. 

Update the diagram below to reflect the processor state after these events have occurred.  

Cross out any entries which are no longer valid. Note that the “ex” field should be marked 

when an instruction executes, and the “use” field should be cleared when it commits.  Be sure to 

update the “next to commit” and “next available” pointers. If the load executes, assume that the 

data value it retrieves is 0.   

 
 

Rename Table 

R1 P4  

R2 P5  

R3 P6  

R4 P0   

 

Physical Regs 

P0 8016 p 

P1 6823 p 

P2 8000 p 

P3 7 p 

P4   

P5   

P6   

P7   

P8   

P9   

 

Free List 

 P7 

 P8 

 P9 

  

  

  

 …
 

  
 

Reorder Buffer (ROB) 
 

→ 

use ex op p1 PR1 p2 PR2 Rd LPRd PRd 

next to 
commit 

x  lw p P2   r1 P1 P4 

x  addi p P2   r2 P2 P5 

  x  beqz  P4      

  x  addi p P3   r3 P3 P6 

next 
available → 

x  bne  P5 p P0    

          

           

            

            

  



Problem M3.6.B  

 

Assume that after the events from Question M3.6.A have occurred, the following events occur in 

order: 

Step 1. The processor detects that the beqz instruction has mispredicted the branch outcome, 

and recovery action is taken to repair the processor state.   

Step 2. The beqz instruction commits. 

Step 3. The correct next instruction is fetched and is written into the ROB. 

 

Fill in the diagram below to reflect the processor state after these events have occurred.  

Although you are not given the rename table snapshot, you should be able to deduce the 

necessary information from the diagram from Question M3.6.A. You do not need to show 

invalid entries in the diagram, but be sure to fill in all the fields which have valid data, and 

update the “next to commit” and “next available” pointers. Also make sure that the free list 

contains all available registers. 

 
 

Rename Table 

R1   

R2   

R3   

R4    

 

Physical Regs 

P0   

P1   

P2   

P3   

P4   

P5   

P6   

P7   

P8   

P9   

 

Free List 

  

  

  

  

  

  

 …
 

  
 

Reorder Buffer (ROB) 
 

 

use ex op p1 PR1 p2 PR2 Rd LPRd PRd 

next to 
commit 

          

          

            

            

next 
available  

          

          

           

            

            



Problem M3.6.C  

 

Consider (1) a single-issue, in-order processor with no branch prediction and (2) a multiple-

issue, out-of-order processor with branch prediction. Assume that both processors have the same 

clock frequency. Consider how fast the given loop executes on each processor, assuming that it 

executes for many iterations. 

 

Under what conditions, if any, might the loop execute at a faster rate on the in-order processor 

compared to the out-of-order processor? 

 

 

 

 

 

Under what conditions, if any, might the loop execute at a faster rate on the out-of-order 

processor compared to the in-order processor? 



Problem M3.7: Exceptions and Register Renaming 

 

Ben Bitdiddle has decided to start Bentel Corporation, a company specializing in high-end x86 

processors to compete with Intel.  His latest project is the Bentium 4, a superscalar, out-of-order 

processor with register renaming and speculative execution.     

 

The Bentium 4 has 8 architectural registers (EAX, EBX, ECX, EDX, ESP, EBP, EDI, and ESI).  

In addition, the processor provides 8 internal registers T0-T7 not visible to the ISA that can be 

used to hold intermediary values used by micro-operations (µops) generated by the microcode 

engine. The microcode engine is the decode unit and is used to generate µops for all the x86 

instructions. For example, the following register-memory x86 instruction might be translated into 

the following RISC-like µops: 

 

ADD Rd, Ra, offset(Rb)      LW    T0, offset(Rb) 

      ADD  Rd, Ra, T0 

 

All 16 µop-visible registers are renamed by the register allocation table (RAT) into a set of 

physical registers (P0-Pn). There is a separate shadow map structure that takes a snapshot of the 

RAT on a speculative branch in case of a misprediction. The block diagram for the front-end of 

the Bentium 4 is shown below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

uops 

x86 instructions 

     

     ROM 

    Engine 

Uop Buffer 

   Register 

  Renaming 

 

 Instruction 

     Fetch 

 dispatch window and 

       execution cores 

Decode  

Note: The decode block is 

actually replicated in the 

Bentium 4 in order to decode 

multiple instructions per cycle  

(not shown in the diagram). 



Problem M3.7.A Recovering from Exceptions 

 

For the Bentium 4, if an x86 instruction takes an exception before it is committed, the machine 

state is reset back to the precise state that existed right before the excepting instruction started 

executing. This instruction is then re-executed after the exception is handled. Ben proposes that 

the shadow map structure used for speculative branches can also be used to recover a precise 

state in the event of an exception. Specify a strategy that can be implemented for taking the least 

number of snapshots of the RAT that would still allow the Bentium 4 to implement precise 

exception handling. 

 

 

 

Problem M3.7.B Minimizing Snapshots 

 

Ben further states that the shadow map structure does not need to take a snapshot of all the 

registers in the Bentium 4 to be able to recover from an exception. Is Ben correct or not? If so, 

state which registers do not need to be recorded and explain why they are not necessary, or 

explain why all the registers are necessary in the snapshot. 

 

 

 

Problem M3.7.C Renaming Registers 

 

Assume that the Bentium 4 has the same register renaming scheme as the Pentium 4. What is the 

minimum number of physical registers (P) that the Bentium 4 must have to allow register 

renaming to work?  Explain your answer. 

  

 

 


