
Problem M3.5: Fetch Pipelines

Ben is designing a deeply-pipelined, single-issue, in-order MIPS processor. The first half of his

pipeline is as follows:

PC PC Generation

F1
ICache Access

F2

D1
Instruction Decode

D2

RN Rename/Reorder

RF Register File Read

EX Integer Execute

There are no branch delay slots and currently there is no branch prediction hardware

(instructions are fetched sequentially unless the PC is redirected by a later pipeline stage).

Subroutine calls use JAL/JALR (jump and link). These instructions write the return address

(PC+4) into the link register (r31). Subroutine returns use JR r31. Assume that PC Generation

takes a whole cycle and that you cannot bypass anything into the end of the PC Generation

phase.

Problem M3.5.A Pipelining Subroutine Returns

Immediately after what pipeline stage does the processor know that it is executing a subroutine

return instruction? Immediately after what pipeline stage does the processor know the subroutine

return address? How many pipeline bubbles are required when executing a subroutine return?

Problem M3.5.B Adding a BTB

Louis Reasoner suggests adding a BTB to speed up subroutine returns. Why doesn’t a standard

BTB work well for predicting subroutine returns?

Problem M3.5.C Adding a Return Stack

Instead of a BTB, Ben decides to add a return stack to his processor pipeline. This return stack

records the return addresses of the N most recent subroutine calls. This return stack takes no time

to access (it is always presenting a return address).

Explain how this return stack can speed up subroutine returns. Describe when and in which

pipeline stages return addresses are pushed on and popped off the stack.

Problem M3.5.D Return Stack Operation

Fill in the pipeline diagram below corresponding to the execution of the following code on the

return stack machine:

A: JAL B

A+1:

A+2:

…

B: JR r31

B+1:

B+2:

…

Make sure to indicate the instruction that is being executed. The first two instructions are

illustrated below. The crossed out stages indicate that the instruction was killed during those

cycles.

instruction time

A PC F1 F2 D1 D2 RN RF EX

A+1 PC F1 F2 D1 D2 RN RF EX

Problem M3.5.E Handling Return Address Mispredicts

If the return address prediction is wrong, how is this detected? How does the processor recover,

and how many cycles are lost (relative to a correct prediction)?

Problem M3.5.F Further Improving Performance

Describe a hardware structure that Ben could add, in addition to the return stack, to improve the

performance of return instructions so that there is usually only a one-cycle pipeline bubble when

executing subroutine returns (assume that the structure takes a full cycle to access).

 Problem M3.6: Managing Out-of-order Execution

This problem investigates the operation of a superscalar processor with branch prediction,

register renaming, and out-of-order execution. The processor holds all data values in a physical

register file, and uses a rename table to map from architectural to physical register names. A

free list is used to track which physical registers are available for use. A reorder buffer (ROB)

contains the bookkeeping information for managing the out-of-order execution (but, it does not

contain any register data values).

When a branch instruction is encountered, the processor predicts the outcome and takes a

snapshot of the rename table. If a misprediction is detected when the branch instruction later

executes, the processor recovers by flushing the incorrect instructions from the ROB, rolling

back the “next available” pointer, updating the free list, and restoring the earlier rename table

snapshot.

We will investigate the execution of the following code sequence (assume that there is no

branch-delay slot):

 loop: lw r1, 0(r2) # load r1 from address in r2

 addi r2, r2, 4 # increment r2 pointer

 beqz r1, skip # branch to “skip” if r1 is 0

 addi r3, r3, 1 # increment r3

 skip: bne r2, r4, loop # loop until r2 equals r4

The diagram for Question M3.5.A on the next page shows the state of the processor during the

execution of the given code sequence. An instance of each instruction in the loop has been issued

into the ROB (the beqz instruction has been predicted not-taken), but none of the instructions

have begun execution. In the diagram, old values which are no longer valid are shown in the

following format: . The rename table snapshots and other bookkeeping information for branch

misprediction recovery are not shown.

Problem M3.6.A

Assume that the following events occur in order (though not necessarily in a single cycle):

Step 1. The first three instructions from the next loop iteration (lw, addi, beqz) are written

into the ROB (note that the bne instruction has been predicted taken).

Step 2. All instructions which are ready after Step 1 execute, write their result to the physical

register file, and update the ROB. Note that this step only occurs once.

Step 3. As many instructions as possible commit.

Update the diagram below to reflect the processor state after these events have occurred.

Cross out any entries which are no longer valid. Note that the “ex” field should be marked

when an instruction executes, and the “use” field should be cleared when it commits. Be sure to

update the “next to commit” and “next available” pointers. If the load executes, assume that the

data value it retrieves is 0.

Rename Table

R1 P4

R2 P5

R3 P6

R4 P0

Physical Regs

P0 8016 p

P1 6823 p

P2 8000 p

P3 7 p

P4

P5

P6

P7

P8

P9

Free List

 P7

 P8

 P9

 …

Reorder Buffer (ROB)

→

use ex op p1 PR1 p2 PR2 Rd LPRd PRd

next to
commit

x lw p P2 r1 P1 P4

x addi p P2 r2 P2 P5

 x beqz P4

 x addi p P3 r3 P3 P6

next
available →

x bne P5 p P0

Problem M3.6.B

Assume that after the events from Question M3.6.A have occurred, the following events occur in

order:

Step 1. The processor detects that the beqz instruction has mispredicted the branch outcome,

and recovery action is taken to repair the processor state.

Step 2. The beqz instruction commits.

Step 3. The correct next instruction is fetched and is written into the ROB.

Fill in the diagram below to reflect the processor state after these events have occurred.

Although you are not given the rename table snapshot, you should be able to deduce the

necessary information from the diagram from Question M3.6.A. You do not need to show

invalid entries in the diagram, but be sure to fill in all the fields which have valid data, and

update the “next to commit” and “next available” pointers. Also make sure that the free list

contains all available registers.

Rename Table

R1

R2

R3

R4

Physical Regs

P0

P1

P2

P3

P4

P5

P6

P7

P8

P9

Free List

 …

Reorder Buffer (ROB)

use ex op p1 PR1 p2 PR2 Rd LPRd PRd

next to
commit

next
available

Problem M3.6.C

Consider (1) a single-issue, in-order processor with no branch prediction and (2) a multiple-

issue, out-of-order processor with branch prediction. Assume that both processors have the same

clock frequency. Consider how fast the given loop executes on each processor, assuming that it

executes for many iterations.

Under what conditions, if any, might the loop execute at a faster rate on the in-order processor

compared to the out-of-order processor?

Under what conditions, if any, might the loop execute at a faster rate on the out-of-order

processor compared to the in-order processor?

Problem M3.7: Exceptions and Register Renaming

Ben Bitdiddle has decided to start Bentel Corporation, a company specializing in high-end x86

processors to compete with Intel. His latest project is the Bentium 4, a superscalar, out-of-order

processor with register renaming and speculative execution.

The Bentium 4 has 8 architectural registers (EAX, EBX, ECX, EDX, ESP, EBP, EDI, and ESI).

In addition, the processor provides 8 internal registers T0-T7 not visible to the ISA that can be

used to hold intermediary values used by micro-operations (µops) generated by the microcode

engine. The microcode engine is the decode unit and is used to generate µops for all the x86

instructions. For example, the following register-memory x86 instruction might be translated into

the following RISC-like µops:

ADD Rd, Ra, offset(Rb)  LW T0, offset(Rb)

 ADD Rd, Ra, T0

All 16 µop-visible registers are renamed by the register allocation table (RAT) into a set of

physical registers (P0-Pn). There is a separate shadow map structure that takes a snapshot of the

RAT on a speculative branch in case of a misprediction. The block diagram for the front-end of

the Bentium 4 is shown below:

uops

x86 instructions

 ROM

 Engine

Uop Buffer

 Register

 Renaming

 Instruction

 Fetch

 dispatch window and

 execution cores

Decode

Note: The decode block is

actually replicated in the

Bentium 4 in order to decode

multiple instructions per cycle

(not shown in the diagram).

Problem M3.7.A Recovering from Exceptions

For the Bentium 4, if an x86 instruction takes an exception before it is committed, the machine

state is reset back to the precise state that existed right before the excepting instruction started

executing. This instruction is then re-executed after the exception is handled. Ben proposes that

the shadow map structure used for speculative branches can also be used to recover a precise

state in the event of an exception. Specify a strategy that can be implemented for taking the least

number of snapshots of the RAT that would still allow the Bentium 4 to implement precise

exception handling.

Problem M3.7.B Minimizing Snapshots

Ben further states that the shadow map structure does not need to take a snapshot of all the

registers in the Bentium 4 to be able to recover from an exception. Is Ben correct or not? If so,

state which registers do not need to be recorded and explain why they are not necessary, or

explain why all the registers are necessary in the snapshot.

Problem M3.7.C Renaming Registers

Assume that the Bentium 4 has the same register renaming scheme as the Pentium 4. What is the

minimum number of physical registers (P) that the Bentium 4 must have to allow register

renaming to work? Explain your answer.

