
Problem M3.5: Fetch Pipelines [? Hours] 

 

 

PC PC Generation 

F1 
ICache Access 

F2 

D1 
Instruction Decode 

D2 

RN Rename/Reorder 

RF Register File Read 

EX Integer Execute 

 

Problem M3.5.A Pipelining Subroutine Returns 

 

Immediately after what pipeline stage does the processor know that it is executing a subroutine 

return instruction?   

D2 

 

Immediately after what pipeline stage does the processor know the subroutine return address?  

RF 

 

How many pipeline bubbles are required when executing a subroutine return? 

6 

 

 

 

Problem M3.5.B Adding a BTB 

 

A subroutine can be called from many different locations and thus a single subroutine return can 

return to different locations. A BTB holds only the address of the last caller. 

 

 

 

Problem M3.5.C Adding a Return Stack 

 

Normally, instruction fetch needs to wait until the return instruction finishes the RF stage before 

the return address is known. With the return stack, as soon as the return instruction is decoded in 

D2, instruction fetch can begin fetching from the return address. This saves 2 cycles. 

 

A return address is pushed after a JAL/JALR instruction is decoded in D2. A return address is 

popped after a JR r31 instruction is decoded in D2. 

  



Problem M3.5.D Return Stack Operation 

 
A: JAL B 

A+1: 

A+2: 

… 

 

B: JR r31 

B+1: 

B+2: 

… 

 
instruction    time             

A PC F1 F2 D1 D2 RN RF EX           

A+1  PC F1 F2 D1 D2 RN RF EX          

A+2   PC F1 F2 D1 D2 RN RF EX         

A+3    PC F1 F2 D1 D2 RN RF EX        

A+4     PC F1 F2 D1 D2 RN RF EX       

B      PC F1 F2 D1 D2 RN RF EX      

B+1       PC F1 F2 D1 D2 RN RF EX     

B+2        PC F1 F2 D1 D2 RN RF EX    

B+3         PC F1 F2 D1 D2 RN RF EX   

B+4          PC F1 F2 D1 D2 RN RF EX  

A+1           PC F1 F2 D1 D2 RN RF EX 

 

 

 

Problem M3.5.E Handling Return Address Mispredicts 

 

When a value is popped off the return stack after D2, it is saved for two cycles as part of the 

pipeline state. After the RF stage of the return instruction, the actual r31 is compared against the 

predicted return address. If the addresses match, then we are done. Otherwise we mux in the 

correct program counter at the PC stage and kill the instructions in F1 and F2. Depending on how 

fast the address comparison is assumed to be, you might also kill the instruction in D1. So there 

is an additional 2 or 3 cycles lost on a return mispredict. 

 

 

 

Problem M3.5.F Further Improving Performance 

Ben should add a cache of the most recently encountered return instruction addresses. During F1, 

the contents of the cache are looked up to see if any entries match the current program counter.  

If so, then by the end of F1 (instead of D2) we know that we have a return instruction. We can 

then use the return stack to supply the return address. 

 

 

 



Problem M3.6: Managing Out-of-order Execution 

 

Problem M3.6.A 

 

 
 

Rename Table 

R1 P4 P7 

R2 P5 P8 

R3 P6  

R4 P0   

 

Physical Regs 

P0 8016 p 

P1 6823 p 

P2 8000 p 

P3 7 p 

P4 0 p 

P5 8004 p 

P6 8 p 

P7   

P8   

P9   

 

Free List 

 P7 

 P8 

 P9 

 P1 

 P2 

  

 …
 

  
 

Reorder Buffer (ROB) 
 

→ 

use ex op p1 PR1 p2 PR2 Rd LPRd PRd 

next to 
commit 

x x lw p P2   r1 P1 P4 

x x addi p P2   r2 P2 P5 

  x  beqz p P4      

  x x addi p P3   r3 P3 P6 

next 
available 

→ 
x  bne p P5 p P0    

x  lw p P5   r1 P4 P7 

 x  addi p P5   r2 P5 P8 

 

 

x  beqz  P7      

           

 

  



Problem M3.6.B  

 
 

Rename Table 

R1 P4   

R2 P5   

R3 P3   

R4 P0   

 

Physical Regs 

P0 8016 p 

P1   

P2   

P3 7 p 

P4 0 p 

P5 8004 p 

P6   

P7   

P8   

P9   

 

Free List 

P9 

P1 

P2 

 P6 

 P7 

 P8 

  

  

  

 …
 

  
 

Reorder Buffer (ROB) 
  use ex op p1 PR1 p2 PR2 Rd LPRd PRd 

next to 
commit 

          

          

            

  x  bne p P5 p P0    

next 
available  

          

          

           

            

            

  



Problem M3.6.C  

 

Under what conditions, if any, might the loop execute at a faster rate on the in-order processor 

compared to the out-of-order processor? 

 

If the out-of-order processor frequently mispredicts either of the branches, it is likely to execute 

the loop slower than the in-order processor. For this to be true, we must also assume that the 

branch misprediction penalty of the out-of-order processor is sufficiently longer than the branch 

resolution delay of the in-order processor, as is likely to be the case. The mispredictions may be 

due to deficiencies in the out-of-order processor’s branch predictor, or the data-dependent branch 

may be fundamentally unpredictable in nature. 

 

 

Under what conditions, if any, might the loop execute at a faster rate on the out-of-order 

processor compared to the in-order processor? 

 

If the out-of-order processor predicts the branches with high enough accuracy, it can execute 

more than one instruction per cycle, and thereby execute the loop at a faster rate than the in-order 

processor. 

 



Problem M3.7: Exceptions and Register Renaming  

 

Problem M3.7.A Recovering from Exceptions 

 

By the definition of a precise exception, an exception that occurs in the middle of an x86 

instruction should cause the machine state to revert to the state that previously existed right 

before the excepting instruction started executing. Thus a strategy to determine a precise state 

would be to take snapshots of the RAT only on x86 instruction boundaries (either when the last 

µop of an x86 instruction commits or right before the first µop of an x86 instruction is renamed). 

 

 

 

Problem M3.7.B Minimizing Snapshots 

 

Ben is correct. Since an exception causes the machine to revert to the state found on an x86 

instruction boundary, all the temporary state used by the µops does not need to be kept. Thus, the 

RAT only has to hold the rename mappings for the architectural registers, and not for T0-T7. 

 

 

 

Problem M3.7.C Renaming Registers 

There must be at least 17 physical registers for the Bentium 4 to work properly. 16 registers are 

needed to hold the state of the machine at any given point in time (architectural and temporary 

register values), and an extra one is needed to rename an additional register using the given 

renaming algorithm to allow forward progress. 

 

 

 

 


