
Problem M3.5: Fetch Pipelines [? Hours]

PC PC Generation

F1
ICache Access

F2

D1
Instruction Decode

D2

RN Rename/Reorder

RF Register File Read

EX Integer Execute

Problem M3.5.A Pipelining Subroutine Returns

Immediately after what pipeline stage does the processor know that it is executing a subroutine

return instruction?

D2

Immediately after what pipeline stage does the processor know the subroutine return address?

RF

How many pipeline bubbles are required when executing a subroutine return?

6

Problem M3.5.B Adding a BTB

A subroutine can be called from many different locations and thus a single subroutine return can

return to different locations. A BTB holds only the address of the last caller.

Problem M3.5.C Adding a Return Stack

Normally, instruction fetch needs to wait until the return instruction finishes the RF stage before

the return address is known. With the return stack, as soon as the return instruction is decoded in

D2, instruction fetch can begin fetching from the return address. This saves 2 cycles.

A return address is pushed after a JAL/JALR instruction is decoded in D2. A return address is

popped after a JR r31 instruction is decoded in D2.

Problem M3.5.D Return Stack Operation

A: JAL B

A+1:

A+2:

…

B: JR r31

B+1:

B+2:

…

instruction time

A PC F1 F2 D1 D2 RN RF EX

A+1 PC F1 F2 D1 D2 RN RF EX

A+2 PC F1 F2 D1 D2 RN RF EX

A+3 PC F1 F2 D1 D2 RN RF EX

A+4 PC F1 F2 D1 D2 RN RF EX

B PC F1 F2 D1 D2 RN RF EX

B+1 PC F1 F2 D1 D2 RN RF EX

B+2 PC F1 F2 D1 D2 RN RF EX

B+3 PC F1 F2 D1 D2 RN RF EX

B+4 PC F1 F2 D1 D2 RN RF EX

A+1 PC F1 F2 D1 D2 RN RF EX

Problem M3.5.E Handling Return Address Mispredicts

When a value is popped off the return stack after D2, it is saved for two cycles as part of the

pipeline state. After the RF stage of the return instruction, the actual r31 is compared against the

predicted return address. If the addresses match, then we are done. Otherwise we mux in the

correct program counter at the PC stage and kill the instructions in F1 and F2. Depending on how

fast the address comparison is assumed to be, you might also kill the instruction in D1. So there

is an additional 2 or 3 cycles lost on a return mispredict.

Problem M3.5.F Further Improving Performance

Ben should add a cache of the most recently encountered return instruction addresses. During F1,

the contents of the cache are looked up to see if any entries match the current program counter.

If so, then by the end of F1 (instead of D2) we know that we have a return instruction. We can

then use the return stack to supply the return address.

Problem M3.6: Managing Out-of-order Execution

Problem M3.6.A

Rename Table

R1 P4 P7

R2 P5 P8

R3 P6

R4 P0

Physical Regs

P0 8016 p

P1 6823 p

P2 8000 p

P3 7 p

P4 0 p

P5 8004 p

P6 8 p

P7

P8

P9

Free List

 P7

 P8

 P9

 P1

 P2

 …

Reorder Buffer (ROB)

→

use ex op p1 PR1 p2 PR2 Rd LPRd PRd

next to
commit

x x lw p P2 r1 P1 P4

x x addi p P2 r2 P2 P5

 x beqz p P4

 x x addi p P3 r3 P3 P6

next
available

→
x bne p P5 p P0

x lw p P5 r1 P4 P7

 x addi p P5 r2 P5 P8

x beqz P7

Problem M3.6.B

Rename Table

R1 P4

R2 P5

R3 P3

R4 P0

Physical Regs

P0 8016 p

P1

P2

P3 7 p

P4 0 p

P5 8004 p

P6

P7

P8

P9

Free List

P9

P1

P2

 P6

 P7

 P8

 …

Reorder Buffer (ROB)
 use ex op p1 PR1 p2 PR2 Rd LPRd PRd

next to
commit

 x bne p P5 p P0

next
available

Problem M3.6.C

Under what conditions, if any, might the loop execute at a faster rate on the in-order processor

compared to the out-of-order processor?

If the out-of-order processor frequently mispredicts either of the branches, it is likely to execute

the loop slower than the in-order processor. For this to be true, we must also assume that the

branch misprediction penalty of the out-of-order processor is sufficiently longer than the branch

resolution delay of the in-order processor, as is likely to be the case. The mispredictions may be

due to deficiencies in the out-of-order processor’s branch predictor, or the data-dependent branch

may be fundamentally unpredictable in nature.

Under what conditions, if any, might the loop execute at a faster rate on the out-of-order

processor compared to the in-order processor?

If the out-of-order processor predicts the branches with high enough accuracy, it can execute

more than one instruction per cycle, and thereby execute the loop at a faster rate than the in-order

processor.

Problem M3.7: Exceptions and Register Renaming

Problem M3.7.A Recovering from Exceptions

By the definition of a precise exception, an exception that occurs in the middle of an x86

instruction should cause the machine state to revert to the state that previously existed right

before the excepting instruction started executing. Thus a strategy to determine a precise state

would be to take snapshots of the RAT only on x86 instruction boundaries (either when the last

µop of an x86 instruction commits or right before the first µop of an x86 instruction is renamed).

Problem M3.7.B Minimizing Snapshots

Ben is correct. Since an exception causes the machine to revert to the state found on an x86

instruction boundary, all the temporary state used by the µops does not need to be kept. Thus, the

RAT only has to hold the rename mappings for the architectural registers, and not for T0-T7.

Problem M3.7.C Renaming Registers

There must be at least 17 physical registers for the Bentium 4 to work properly. 16 registers are

needed to hold the state of the machine at any given point in time (architectural and temporary

register values), and an extra one is needed to rename an additional register using the given

renaming algorithm to allow forward progress.

