
Name _______Solution______________

Email ____________________@mit.edu

Page 1 of 17

Computer System Architecture

6.823 Quiz #2

April 3
th

, 2015

Professors Daniel Sanchez and Joel Emer

This is a closed book, closed notes exam.

 80 Minutes

 17 Pages

Notes:

 Not all questions are of equal difficulty, so look over the entire exam and

budget your time carefully.

 Please carefully state any assumptions you make.

 Show your work to receive full credit.

 Please write your name on every page in the quiz.

 You must not discuss a quiz's contents with other students who have not

yet taken the quiz.

Part A ________ 26 Points

Part B ________ 32 Points

Part C ________ 30 Points

Part D ________ 12 Points

TOTAL ________ 100 Points

Name ____________________________

Page 2 of 17

Part A: Branch Prediction (26 points)

Ben Bitdiddle is designing a processor with the complex pipeline illustrated below:

The processor has the following characteristics:

 Issues at most one instruction per cycle.

 Branch addresses are known at the end of the B stage (Branch Address

Calc/Begin Decode).

 Branch conditions (taken/not taken) are known at the end of the R stage (Register

File Read).

 Branches always go through the pipeline without any stalls or queuing delays.

Ben’s target program is shown below:

Suppose the following:

The MODi (modulo-immediate) instruction is defined as follows:
MODi Rd Rs imm: Rd <- Rs Mod imm

for(int i = 0; i <= 1000000; i++)
{
 if(i % 2 == 0) //Branch B1
 { //Not taken
 (Do something A)
 }
 if(i % 4 == 0) //Branch B2
 { //Not taken
 (Do something B)
 }
} //Branch LP

ANDi R1 0

LOOP:MODi R2 R1 2

 BNE R2 M4 // B1
 (Do something A)

 … …

M4: MODi R3 R1 4

 BNE R3 END // B2
 (Do something B)

 … …

END: SUBi R4 R1 1000000

 BNE R4 LOOP // LP

 … …

Name ____________________________

Page 3 of 17

Question 1 (3 points)

In steady state, what is the probability for each branch in the code to be taken/not taken

on average? Fill in the table below.

Branch
Probability to be

taken

Probability to be

not taken

B1 0.5 0.5

B2 0.75 0.25

LP ~1 ~0

Question 2 (3 points)

In steady state, how many cycles per iteration are lost on average if the processor always

speculates that every branch is not taken (i.e., next PC is PC+4)?

Penalty for miss prediction = 6 cycles

6 * 0.5 + 6 * 0.75 + 6 * 1 = 13.5

Name ____________________________

Page 4 of 17

Question 3 (5 points)

Ben designs a static branch predictor to improve performance. This predictor always

predicts not taken for forward jumps and taken for backward jumps. The prediction

is available at the end of the B stage. In steady state, how many cycles per iteration are

lost on average?

Penalty for miss prediction = 6 cycles

Penalty for correct prediction for taken = 3 cycles

6 * 0.5 + 6 * 0.75 + 3 * 1 = 10.5

Name ____________________________

Page 5 of 17

Question 4 (7 points)

To improve performance further, Ben designs a dynamic branch predictor with local

branch history registers and 1-bit counters.

Each local branch history registers store the last several outcomes of a single branch

(branches B1, B2 and LP in our case). By convention, the most recent branch outcome is

the least significant bit, and so on. The predictor uses the local history of the branch to

index a table of 1-bit counters. It predicts not taken if the corresponding 1-bit counter is

0, and taken if it is 1. Assume local branch history registers are always correct.

How many bits per branch history register do we need to perform perfect prediction in

steady state?

4 bits

B1: 01 => 0

 10 => 1

B2: 0001 => 0

 0010 => 0

 0100 => 0

 1000 => 1

LP: (all pattern) => 1

(Using 3 bits will have collision for pattern 010 of B1 and B2)

Local branch

history registers

B1 …101

B2 …001

LP …000

1-bit counters

Addr Prediction

…000 0

…001 1

…010 0

…011 0

…100 1

…101 1

…110 0

…111 0

 …

 …
 …

 …

Indexing

Name ____________________________

Page 6 of 17

Question 5-1 (4 points)

The local-history predictor itself is a speculative structure. That is, for subsequent

predictions to be accurate, the predictor has to be updated speculatively.

Explain what guess the local history update function should use.

Guess the prediction is correct and use the prediction to update history register

Question 5-2 (5 points)

Ben wants to design the data management policy (i.e., how to manage the speculative

data in different structures of the predictor) for the local-history branch predictor to work

well. Use a couple of sentences to answer the following questions.

1) What data management policies should be applied to each structure?

Greedy update for history registers and lazy update for 1-bit predictors

2) For your selected data management policies, is there any challenge for the

recovery mechanism when there is misspeculation? If so, what are the challenges?

Recovery mechanism for history registers will be hard. We need to record all the

information (PC, execution order) about branches that speculatively update the

history registers and roll back the history register with the information

sequentially.

Name ____________________________

Page 7 of 17

Part B: Speculative Execution and Recovery (32 points)

You are given an out-of-order processor that

 Issues at most one instruction per cycle

 Commits at most one instruction per cycle

 Uses an unified physical register file

Question 1 (6 points)

Consider the following code sequence:

 Addr
I0 (0x24) lw r2, (r4), #0
I1 (0x28) addi r2, r2, #16
I2 (0x2C) lw r3, (r4), #4
I3 (0x30) blez r3, L1
I4 (0x34) addi r4, r2, #8
I5 (0x38) mul r1, r2, r3
I6 (0x3C) addi r3, r2, #8
I7 (0x40) L1: add r2, r1, r3

Assume the branch instruction (blez) is not taken. Fill out the table below to identify all

Read-After-Write (RAW), Write-After-Read (WAR), and Write-After-Write (WAW)

dependencies in the above sequence.

 I0 I1 I2 I3 I4 I5 I6 I7

I0 -

I1
WAW

RAW
-

I2

 -

I3 RAW -

I4 WAR RAW WAR -

I5 RAW RAW -

I6 RAW WAW WAR WAR -

I7 WAW

WAR

WAR

RAW

WAR

RAW
-

Older Instruction

Younger

Instruction

Name ____________________________

Page 8 of 17

In Questions 2 through 4, you should update the state of the processor when different

events happen. The starting state in each question is the same, and the event specified in

each question is the ONLY event that takes place for that question. The starting state is

shown in the different structures: renaming table, physical registers, free list, two-bit

branch predictor, global history buffer, and reorder buffer (ROB).

Note the following conventions:

 The valid bit for any entry is represented by “1”.

 The valid bit can be cleared by crossing it out.

 In the ROB, the “ex” field should be marked with “1” when an instruction

starts execution, and the “use” field should be cleared when it commits. Be

sure to update the “next to commit” and “next available” pointers, if necessary.

 Fill out the “after” fields in all the tables. Write new values in these boxes if

the values change due to the event specified in the question. You do not have

to repeat the values if they do not change due to the event.

In Questions 2 through 4, we will use the same code sequence as in Question 1:

 Addr
I0 (0x24) lw r2, (r4), #0
I1 (0x28) addi r2, r2, #16
I2 (0x2C) lw r3, (r4), #4
I3 (0x30) blez r3, L1
I4 (0x34) addi r4, r2, #8
I5 (0x38) mul r1, r2, r3
I6 (0x3C) addi r3, r2, #8
I7 (0x40) L1: add r2, r1, r3

The starting state of the processor is as follows:

 Instructions I0-I4 are already in the ROB.

 I0 (lw) has already finished execution.

 I1 (addi) and I2 (lw) have started executing but have not finished yet.

 I3 (blez) has been predicted to be Not-Taken by the branch predictor.

 I5 (mul) has completed the decode stage.

 I6 (addi) has completed the Fetch Stage.

 The next PC is set to 0x40, which is the PC of I7 (add).

Name ____________________________

Page 9 of 17

Question 2 (6 points)

The following figure shows the starting state of the processor. Suppose the decoded

instruction I5 (mul) is now inserted into the ROB. Update the diagram to reflect the

processor state after this event has occurred.

Reorder Buffer (ROB)

use ex op p1 PR1 p2 PR2 Rd LPRd PRd

1 1 lw 1 P3 r2 P1 P4

1 1 addi 1 P4 r2 P4 P5

1 1 lw 1 P3 r3 P2 P6

1 blez P6

1 addi P5 r4 P3 P7

1 mul P5 P6 r1 P0 P8

Free List

P8

P9

P10

Fetched Inst. Queue

PC Inst.

0x3C I6 (addi)

Prediction Counter

Index Before After

000 11

001 00

010 11

011 01

100 10

101 11

110 01

111 00

Decoded Inst. Queue

Inst.

I5 (mul)

Next PC to be fetched

Before After

0x40

Branch Global History

Before After

0010110

Rename Table (Latest)

Name Before After

R1 P0 P8

R2 P5

R3 P6

R4 P7

Rename Table
(Snapshot 1)

Valid

1

Name Before After

R1 P0

R2 P5

R3 P6

R4 P3

Physical Registers

Name Value Valid

P0 45 1

P1 2 1

P2 -3 1

P3 100 1

P4 20 1

P5

P6

P7

P8

P9

P10

Next to

commit

Next

available

Name ____________________________

Page 10 of 17

Question 3 (8 points)

Start from the same processor state, shown below. Suppose now I1 (addi) has completed

execution. Commit as many instructions as possible. Update the diagram to reflect the

processor state after I1 execution completes and as many instructions as possible have

committed. Again, assume no other events take place.

Reorder Buffer (ROB)

use ex op p1 PR1 p2 PR2 Rd LPRd PRd

1 1 lw 1 P3 r2 P1 P4

1 1 addi 1 P4 r2 P4 P5

1 1 lw 1 P3 r3 P2 P6

1 blez P6

1 addi 1 P5 r4 P3 P7

Free List

P8

P9

P10

P1

P4

Fetched Inst. Queue

PC Inst.

0x3C I6 (addi)

Prediction Counter

Index Before After

000 11

001 00

010 11

011 01

100 10

101 11

110 01

111 00

Decoded Inst. Queue

Inst.

I5 (mul)

Next PC to be fetched

Before After

0x40

Branch Global History

Before After

0010110

Rename Table (Latest)

Name Before After

R1 P0

R2 P5

R3 P6

R4 P7

Rename Table
(Snapshot 1)

Valid

1

Name Before After

R1 P0

R2 P5

R3 P6

R4 P3

Physical Registers

Name Value Valid

P0 45 1

P1 2 1

P2 -3 1

P3 100 1

P4 20 1

P5 36 1

P6

P7

P8

P9

P10

Next to

commit

Next

available

Name ____________________________

Page 11 of 17

Question 4 (12 points)

Start from the same processor state, shown below. Suppose instruction I2 (lw) triggers an

ALU overflow exception. Restore the architectural and microarchitectural state to recover

from misspeculation. The exception handler for the processor is at address 0x8C (control

is transferred to the exception handler after recovery). You do not need to worry about

the number of cycles taken by recovery. Show the processor state after recovery.

Reorder Buffer (ROB)

use ex op p1 PR1 p2 PR2 Rd LPRd PRd

1 1 lw 1 P3 r2 P1 P4

1 1 addi 1 P4 r2 P4 P5

1 1 lw 1 P3 r3 P2 P6

1 blez P6

1 addi P5 r4 P3 P7

Free List

P8

P9

P10

P7

P6

Fetched Inst. Queue

PC Inst.

0x3C I6 (addi)

Prediction Counter

Index Before After

000 11

001 00

010 11

011 01

100 10

101 11

110 01

111 00

Decoded Inst. Queue

Inst.

I5 (mul)

Next PC to be fetched

Before After

0x40 0x8c

Branch Global History

Before After

0010110 ?001011

Rename Table (Latest)

Name Before After

R1 P0

R2 P5

R3 P6 P2

R4 P7 P3

Rename Table
(Snapshot 1)

Valid

1

Name Before After

R1 P0

R2 P5

R3 P6

R4 P3

Physical Registers

Name Value Valid

P0 45 1

P1 2 1

P2 -3 1

P3 100 1

P4 20 1

P5

P6

P7

P8

P9

P10

Next to

commit

Next

available

Name ____________________________

Page 12 of 17

Part C: Out-of-order Execution (30 points)

You are given an out-of-order processor with unlimited decode, issue, commit bandwidth.

The processor’s ISA has 16 architectural registers. To achieve an efficient design, you are

asked to calculate the average occupancy of various structures for different

implementation alternatives. We will use the following code:

The above pseudo code can be unrolled (thus eliminating branches) and translated into

the following instruction sequence, with four instructions per iteration:

I0 addi r1, r1, #1
I1 lw r2, (r1), #0
I2 addi r2, r2, #1
I3 sw r2, (r1), #0
I4 addi r1, r1, #1
I5 lw r2, (r1), #0
I6 addi r2, r2, #1
I7 sw r2, (r1), #0

Below are two different diagrams that show the cycles at which instructions are decoded,

issued, and committed in steady state (use the one you find more convenient). First, the

following table shows these cycles for the instructions in the Nth loop iteration:

Instruction Number Opcode Decode Issue Commit

4N addi N N+1 N+5

4N+1 lw N N+2 N+5

4N+2 addi N N+4 N+5

4N+3 sw N N+5 N+6

For example, instruction I8 (addi) is decoded at cycle 2, issued at cycle 3, and committed

at cycle 7. Second, the waterfall diagram on the next page also describes how instructions

are scheduled in steady state:

while(true) {
 i = i + 1

 A[i] = A[i]+1
}

Name ____________________________

Page 13 of 17

Time: N N+1 N+2 N+3 N+4 N+5 N+6 N+7

I4N (addi) D I C

I4N+1 (lw) D I C

I4N+2 (addi) D I C

I4N+3 (sw) D I C

I4N+4 (addi) D I C

I4N+5 (lw) D I C

I4N+6 (addi) D I C

I4N+7 (sw) D I C

Hint: To answer these questions, you do not need to derive the instruction

scheduling for more iterations.

Question 1 (6 points)

Assume store instructions spend 5 cycles on average in the store buffer. In steady state,

how many store buffer entries are in use on average?

Throughput: 1 store per cycle

Average latency: 5 cycles

Little’s Law: 5 * 1 = 5 (entries)

Question 2 (6 points)

Assume we have a reorder buffer (ROB) that holds data values as described in lecture. It

works as follows:

 At decode stage: an instruction is decoded and written to the ROB. The

 instruction grabs an ROB entry at the beginning of the cycle.

 At issue stage: the instruction enters the execution pipeline.

 At commit stage: the instruction leaves the ROB at the end of the cycle.

In steady state, how many ROB entries are in use on average?

Throughput: 4 (instructions per cycle)

Average latency: (6+6+6+7)/4 = 25/4 (cycles)

Little’s Law: 25/4 * 4 = 25 (entries)

Name ____________________________

Page 14 of 17

Question 3 (6 points)

Assume we have the same ROB as in Question 2. Suppose all load instructions miss in

the cache. As a result, the issue stage for the addi and sw instructions after each lw

instruction is delayed by 100 cycles, and the commit stage for every instruction is also

delayed by 100 cycles.

In steady state, how many ROB entries are in use on average?

Throughput: 4 (instructions per cycle)

Average latency: (106+106+106+107)/4 = 425/4 (cycles)

Little’s Law: 425/4 * 4 = 425 (entries)

Question 4 (6 points)

Assume every load hits in the cache again. Instead of storing data in the ROB, we use a

unified physical register file to hold all speculative and non-speculative copies of the 16

architectural registers. If an instruction needs a new physical register, it grabs an entry in

the physical register file at the beginning of the decode stage and releases the previously

mapped physical register at the end of the commit stage.

In steady state, how many physical registers are in use on average?

Store instructions do not need to allocate physical registers.

Initially mapped physical registers (16) + additional ones allocated by renaming

= 16 + (6+6+6)/3*3 = 16+18 = 34

Name ____________________________

Page 15 of 17

Question 5 (6 points)

A lot of logic in the ROB is dedicated to decide when an instruction is ready to issue. To

simplify the ROB implementation, we decide to have a separate, smaller issue queue to

handle instructions waiting to be issued. This way, when an instruction is issued, it does

not continue to occupy an “expensive” slot with issue logic:

 At decode stage: an instruction is decoded. The instruction grabs an ROB entry as

well as an entry in the issue queue at the beginning of the cycle.

 At issue stage: the instruction leaves the issue queue at the end of the cycle.

 At commit stage: the instruction leaves the ROB at the end of the cycle.

Assume every load hits in the cache. In steady state, how many issue queue entries are in

use on average?

Throughput: 4 (instructions per cycle)

Average latency: (2+3+5+6)/4 = 4 (cycles)

Little’s Law: 4 * 4 = 16 (entries)

Name ____________________________

Page 16 of 17

Part D: Multithreading (12 points)

Consider the following instruction sequence.

 addi r3, r0, 256
loop: lw f1, r1, #0
 lw f2, r2, #0
 mul f3, f1, f2
 sw f3, r2, #0
 addi r1, r1, #4
 addi r2, r2, #4
 addi r3, r3, #-1
 bnez r3, loop

Assume that memory operations take 4 cycles (i.e., if instruction I1 starts execution at

cycle N, then instructions that depend on the result of I1 can only start execution at or

after cycle N+4); multiply instructions take 6 cycles; and all other operations take 1

cycle. Assume the multiplier and memory are pipelined (i.e., they can start a new request

every cycle). Also assume perfect branch prediction.

Question 1 (3 points)

Suppose the processor performs fine-grained multithreading with fixed round-robin

switching: the processor switches to the next thread every cycle, and if the instruction of

the next thread is not ready, it inserts a bubble into the pipeline. What is the minimum

number of threads required to fully utilize the processor every cycle while running this

code?

6 threads to cover the latency between mul and sw

4

Name ____________________________

Page 17 of 17

Question 2 (9 points)

Suppose the processor performs coarse-grained multithreading, i.e. the processor only

switches to another thread when there is a L2 cache miss. Will the following three

metrics increase or decrease, compared to fixed round-robin switching? Use a couple of

sentences to answer the following questions.

1) Compared to fixed round-robin switching, will the number of threads needed for the

highest achievable utilization increase or decrease? Why?

It will decrease because the processor will switch less frequently and stall for instructions

with long latency (e.g. mul).

2) Compared to fixed round-robin switching, will the highest achievable pipeline

utilization increase or decrease? Why?

It will decrease because the processor will stall for instructions with long latency (e.g.

mul) and insert bubbles into pipeline.

3) Compared to fixed round-robin switching, will cache hit rate increase or decrease?

Why?

It will increase since there will be less threads competing the cache capacity.

