
Name _______Solution______________ 

 

Email ____________________@mit.edu 

 

Page 1 of 17 

  

Computer System Architecture  

6.823 Quiz #2 

April 3
th

, 2015 

Professors Daniel Sanchez and Joel Emer 
 

 

This is a closed book, closed notes exam. 

 

 80 Minutes 

  17 Pages 

 
Notes: 

 Not all questions are of equal difficulty, so look over the entire exam and 

budget your time carefully. 

 Please carefully state any assumptions you make. 

 Show your work to receive full credit. 

 Please write your name on every page in the quiz. 

 You must not discuss a quiz's contents with other students who have not 

yet taken the quiz. 

 

 

Part A ________       26 Points 

Part B ________       32 Points 

Part C ________       30 Points 

Part D ________       12 Points 

 

 

 

TOTAL        ________  100 Points
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Part A: Branch Prediction (26 points) 
 

Ben Bitdiddle is designing a processor with the complex pipeline illustrated below: 

 

 
 

The processor has the following characteristics:  

 

 Issues at most one instruction per cycle. 

 Branch addresses are known at the end of the B stage (Branch Address 

Calc/Begin Decode). 

 Branch conditions (taken/not taken) are known at the end of the R stage (Register 

File Read). 

 Branches always go through the pipeline without any stalls or queuing delays. 

 

Ben’s target program is shown below:  

 

 

 

 

 

 

 

 

 

 

Suppose the following: 

 

 

 

The MODi (modulo-immediate) instruction is defined as follows:  
MODi Rd Rs imm: Rd <- Rs Mod imm 

 

  

for(int i = 0; i <= 1000000; i++) 
{  
    if(i % 2 == 0) //Branch B1 
    { //Not taken 
       (Do something A) 
    } 
    if(i % 4 == 0) //Branch B2 
    { //Not taken 
       (Do something B) 
    } 
} //Branch LP 
 

ANDi R1 0 

LOOP:MODi R2 R1 2 

 BNE  R2 M4 // B1 
 (Do something A) 

 … … 

M4: MODi R3 R1 4 

 BNE  R3 END // B2 
 (Do something B) 

 … …  

END: SUBi R4 R1 1000000 

 BNE  R4 LOOP // LP 

 … … 
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Question 1 (3 points) 
 

In steady state, what is the probability for each branch in the code to be taken/not taken 

on average?  Fill in the table below. 

 

Branch 
Probability to be 

taken 

Probability to be 

not taken 

B1 0.5 0.5 

B2 0.75 0.25 

LP ~1 ~0 

 

 

 

 

 

 

 

 

 

 

 

Question 2 (3 points) 
 

In steady state, how many cycles per iteration are lost on average if the processor always 

speculates that every branch is not taken (i.e., next PC is PC+4)? 

 

Penalty for miss prediction = 6 cycles 

 

6 * 0.5 + 6 * 0.75 + 6 * 1 = 13.5 
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Question 3 (5 points) 
 

Ben designs a static branch predictor to improve performance. This predictor always 

predicts not taken for forward jumps and taken for backward jumps. The prediction 

is available at the end of the B stage. In steady state, how many cycles per iteration are 

lost on average? 

 

Penalty for miss prediction = 6 cycles 

 

Penalty for correct prediction for taken = 3 cycles 

 

6 * 0.5 + 6 * 0.75 + 3 * 1 = 10.5 

  

  



Name ____________________________ 

 

Page 5 of 17 

 

Question 4 (7 points) 
 

To improve performance further, Ben designs a dynamic branch predictor with local 

branch history registers and 1-bit counters. 

  

Each local branch history registers store the last several outcomes of a single branch 

(branches B1, B2 and LP in our case).  By convention, the most recent branch outcome is 

the least significant bit, and so on. The predictor uses the local history of the branch to 

index a table of 1-bit counters. It predicts not taken if the corresponding 1-bit counter is 

0, and taken if it is 1. Assume local branch history registers are always correct.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

How many bits per branch history register do we need to perform perfect prediction in 

steady state? 

 

4 bits 

 

B1:  01 => 0 

 10 => 1 

B2:  0001 => 0 

 0010 => 0 

 0100 => 0 

 1000 => 1 

LP:  (all pattern) => 1 

 

(Using 3 bits will have collision for pattern 010 of B1 and B2) 
 

  

Local branch 

history registers 

B1 …101 

B2 …001 

LP …000 

 

1-bit counters 

Addr Prediction 

…000 0 

…001 1 

…010 0 

…011 0 

…100 1 

…101 1 

…110 0 

…111 0 

  … 

  … 
    … 

    … 

 

Indexing 
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Question 5-1 (4 points) 
 

The local-history predictor itself is a speculative structure. That is, for subsequent 

predictions to be accurate, the predictor has to be updated speculatively.  

 

Explain what guess the local history update function should use. 

 

Guess the prediction is correct and use the prediction to update history register 

 

 

 

 

 

 

 

 

Question 5-2 (5 points) 
 

Ben wants to design the data management policy (i.e., how to manage the speculative 

data in different structures of the predictor) for the local-history branch predictor to work 

well. Use a couple of sentences to answer the following questions. 

 

1) What data management policies should be applied to each structure?  

 

 

Greedy update for history registers and lazy update for 1-bit predictors 

 

 

 

 

 

2) For your selected data management policies, is there any challenge for the 

recovery mechanism when there is misspeculation? If so, what are the challenges?  

 

Recovery mechanism for history registers will be hard. We need to record all the 

information (PC, execution order) about branches that speculatively update the 

history registers and roll back the history register with the information 

sequentially. 
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Part B: Speculative Execution and Recovery (32 points) 

 
You are given an out-of-order processor that 

 

 Issues at most one instruction per cycle 

 Commits at most one instruction per cycle 

 Uses an unified physical register file 
 

Question 1 (6 points) 
 

Consider the following code sequence: 

 
     Addr 
I0  (0x24)      lw     r2, (r4), #0 
I1  (0x28)      addi   r2, r2,   #16 
I2  (0x2C)      lw     r3, (r4), #4 
I3  (0x30)      blez   r3, L1 
I4  (0x34)      addi   r4, r2, #8 
I5  (0x38)      mul    r1, r2, r3 
I6  (0x3C)      addi   r3, r2, #8 
I7  (0x40)  L1: add    r2, r1, r3  

 

Assume the branch instruction (blez) is not taken. Fill out the table below to identify all 

Read-After-Write (RAW), Write-After-Read (WAR), and Write-After-Write (WAW) 

dependencies in the above sequence.  

 

 I0 I1 I2 I3 I4 I5 I6 I7 

I0 - 
 

 
      

I1 
WAW 

RAW 
-      

 

 

I2 
 

 
 -     

 

 

I3   RAW -    
 

 

I4 WAR RAW WAR  -   
 

 

I5  RAW RAW   -  
 

 

I6  RAW WAW WAR  WAR - 
 

 

I7  WAW  
 

 
WAR 

WAR 

RAW 

WAR 

RAW 
- 

Older Instruction 

Younger 

Instruction 
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In Questions 2 through 4, you should update the state of the processor when different 

events happen. The starting state in each question is the same, and the event specified in 

each question is the ONLY event that takes place for that question.  The starting state is 

shown in the different structures: renaming table, physical registers, free list, two-bit 

branch predictor, global history buffer, and reorder buffer (ROB). 

 

Note the following conventions: 

 

 The valid bit for any entry is represented by “1”.  

 The valid bit can be cleared by crossing it out. 

 In the ROB, the “ex” field should be marked with “1” when an instruction 

starts execution, and the “use” field should be cleared when it commits. Be 

sure to update the “next to commit” and “next available” pointers, if necessary. 

 Fill out the “after” fields in all the tables. Write new values in these boxes if 

the values change due to the event specified in the question. You do not have 

to repeat the values if they do not change due to the event. 

 

In Questions 2 through 4, we will use the same code sequence as in Question 1:  

     Addr 
I0  (0x24)      lw     r2, (r4), #0 
I1  (0x28)      addi   r2, r2,   #16 
I2  (0x2C)      lw     r3, (r4), #4 
I3  (0x30)      blez   r3, L1 
I4  (0x34)      addi   r4, r2, #8 
I5  (0x38)      mul    r1, r2, r3 
I6  (0x3C)      addi   r3, r2, #8 
I7  (0x40)  L1: add    r2, r1, r3  

The starting state of the processor is as follows:  

 

 Instructions I0-I4 are already in the ROB.  

 I0 (lw) has already finished execution. 

 I1 (addi) and I2 (lw) have started executing but have not finished yet.  

 I3 (blez) has been predicted to be Not-Taken by the branch predictor.  

 I5 (mul) has completed the decode stage. 

 I6 (addi) has completed the Fetch Stage.  

 The next PC is set to 0x40, which is the PC of I7 (add).  
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Question 2 (6 points) 
 

The following figure shows the starting state of the processor. Suppose the decoded 

instruction I5 (mul) is now inserted into the ROB. Update the diagram to reflect the 

processor state after this event has occurred. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reorder Buffer (ROB) 

use ex op p1 PR1 p2 PR2 Rd LPRd PRd 

1 1 lw 1 P3   r2 P1 P4 

1 1 addi 1 P4   r2 P4 P5 

1 1 lw 1 P3   r3 P2 P6 

1  blez  P6      

1  addi  P5   r4 P3 P7 

1  mul  P5  P6 r1 P0 P8 

          

          

          

          

          

 

Free List 

P8 

P9 

P10 

 

 

 

 

 

 

 

 

 

Fetched Inst. Queue 

PC Inst. 

0x3C I6 (addi) 

  

 

Prediction Counter 

Index Before After 

000 11  

001 00  

010 11  

011 01  

100 10  

101 11  

110 01  

111 00  

 

Decoded Inst. Queue 

Inst. 

I5 (mul) 

 

 
Next PC to be fetched 

Before After 

0x40  

 

Branch Global History 

Before After 

0010110  

 

Rename Table (Latest) 

Name Before After 

R1 P0 P8 

R2 P5  

R3 P6  

R4 P7  

 
Rename Table  
(Snapshot 1) 

Valid 

1 

Name Before After 

R1 P0  

R2 P5  

R3 P6  

R4 P3  

 

Physical Registers 

Name Value Valid 

P0 45 1 

P1 2 1 

P2 -3 1 

P3 100 1 

P4 20 1 

P5   

P6   

P7   

P8   

P9   

P10   

 

Next to 

commit 

Next 

available 
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Question 3 (8 points) 
 

Start from the same processor state, shown below. Suppose now I1 (addi) has completed 

execution. Commit as many instructions as possible. Update the diagram to reflect the 

processor state after I1 execution completes and as many instructions as possible have 

committed. Again, assume no other events take place. 

 

 

 

 

 
 

 

 

 

 

 

 

 

  

Reorder Buffer (ROB) 

use ex op p1 PR1 p2 PR2 Rd LPRd PRd 

1 1 lw 1 P3   r2 P1 P4 

1 1 addi 1 P4   r2 P4 P5 

1 1 lw 1 P3   r3 P2 P6 

1  blez  P6      

1  addi 1 P5   r4 P3 P7 

          

          

          

          

          

          

 

Free List 

P8 

P9 

P10 

P1 

P4 

 

 

 

 

 

 

 

Fetched Inst. Queue 

PC Inst. 

0x3C I6 (addi) 

  

 

Prediction Counter 

Index Before After 

000 11  

001 00  

010 11  

011 01  

100 10  

101 11  

110 01  

111 00  

 

Decoded Inst. Queue 

Inst. 

I5 (mul) 

 

 
Next PC to be fetched 

Before After 

0x40  

 

Branch Global History 

Before After 

0010110  

 

Rename Table (Latest) 

Name Before After 

R1 P0  

R2 P5  

R3 P6  

R4 P7  

 
Rename Table  
(Snapshot 1) 

Valid 

1 

Name Before After 

R1 P0  

R2 P5  

R3 P6  

R4 P3  

 

Physical Registers 

Name Value Valid 

P0 45 1 

P1 2 1 

P2 -3 1 

P3 100 1 

P4 20 1 

P5 36 1 

P6   

P7   

P8   

P9   

P10   

 

Next to 

commit 

Next 

available 
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Question 4 (12 points) 
 

Start from the same processor state, shown below. Suppose instruction I2 (lw) triggers an 

ALU overflow exception. Restore the architectural and microarchitectural state to recover 

from misspeculation. The exception handler for the processor is at address 0x8C (control 

is transferred to the exception handler after recovery). You do not need to worry about 

the number of cycles taken by recovery. Show the processor state after recovery. 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Reorder Buffer (ROB) 

use ex op p1 PR1 p2 PR2 Rd LPRd PRd 

1 1 lw 1 P3   r2 P1 P4 

1 1 addi 1 P4   r2 P4 P5 

1 1 lw 1 P3   r3 P2 P6 

1  blez  P6      

1  addi  P5   r4 P3 P7 

          

          

          

          

          

          

 

Free List 

P8 

P9 

P10 

P7 

P6 

 

 

 

 

 

 

 

Fetched Inst. Queue 

PC Inst. 

0x3C I6 (addi) 

  

 

Prediction Counter 

Index Before After 

000 11  

001 00  

010 11  

011 01  

100 10  

101 11  

110 01  

111 00  

 

Decoded Inst. Queue 

Inst. 

I5 (mul) 

 

 
Next PC to be fetched 

Before After 

0x40 0x8c 

 

Branch Global History 

Before After 

0010110 ?001011 

 

Rename Table (Latest) 

Name Before After 

R1 P0  

R2 P5  

R3 P6 P2 

R4 P7 P3 

 
Rename Table  
(Snapshot 1) 

Valid 

1 

Name Before After 

R1 P0  

R2 P5  

R3 P6  

R4 P3  

 

Physical Registers 

Name Value Valid 

P0 45 1 

P1 2 1 

P2 -3 1 

P3 100 1 

P4 20 1 

P5   

P6   

P7   

P8   

P9   

P10   

 

Next to 

commit 

Next 

available 
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Part C: Out-of-order Execution (30 points) 
 

You are given an out-of-order processor with unlimited decode, issue, commit bandwidth. 

The processor’s ISA has 16 architectural registers. To achieve an efficient design, you are 

asked to calculate the average occupancy of various structures for different 

implementation alternatives.  We will use the following code: 

 

 

 

 

 

 

The above pseudo code can be unrolled (thus eliminating branches) and translated into 

the following instruction sequence, with four instructions per iteration: 

 
I0    addi   r1, r1,   #1 
I1    lw     r2, (r1), #0 
I2    addi   r2, r2,   #1 
I3    sw     r2, (r1), #0 
I4    addi   r1, r1,   #1 
I5    lw     r2, (r1), #0 
I6    addi   r2, r2,   #1 
I7    sw     r2, (r1), #0 
  

 

Below are two different diagrams that show the cycles at which instructions are decoded, 

issued, and committed in steady state (use the one you find more convenient). First, the 

following table shows these cycles for the instructions in the Nth loop iteration: 

 

Instruction Number Opcode Decode Issue Commit 

4N addi N N+1 N+5 

4N+1 lw N N+2 N+5 

4N+2 addi N N+4 N+5 

4N+3 sw N N+5 N+6 

 

For example, instruction I8 (addi) is decoded at cycle 2, issued at cycle 3, and committed 

at cycle 7. Second, the waterfall diagram on the next page also describes how instructions 

are scheduled in steady state: 

  

while(true) {  
    i = i + 1 

    A[i] = A[i]+1 
}  
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Time:  N N+1 N+2 N+3 N+4 N+5 N+6 N+7 

I4N     (addi) D I    C   

I4N+1 (lw) D  I   C   

I4N+2 (addi) D    I C   

I4N+3 (sw) D     I C  

I4N+4 (addi)  D I    C  

I4N+5 (lw)  D  I   C  

I4N+6 (addi)  D    I C  

I4N+7 (sw)  D     I C 

 

Hint: To answer these questions, you do not need to derive the instruction 

scheduling for more iterations. 

 

 

Question 1 (6 points) 
 

Assume store instructions spend 5 cycles on average in the store buffer. In steady state, 

how many store buffer entries are in use on average? 

 

Throughput: 1 store per cycle 

Average latency: 5 cycles 

 

Little’s Law: 5 * 1 = 5 (entries) 

 

 

 

 

Question 2 (6 points) 
 

Assume we have a reorder buffer (ROB) that holds data values as described in lecture. It 

works as follows: 

 At decode stage: an instruction is decoded and written to the ROB. The 

                                instruction grabs an ROB entry at the beginning of the cycle.  

 At issue stage: the instruction enters the execution pipeline.  

 At commit stage: the instruction leaves the ROB at the end of the cycle.  

 

In steady state, how many ROB entries are in use on average? 

 

Throughput: 4 (instructions per cycle) 

Average latency: (6+6+6+7)/4 = 25/4 (cycles) 

 

Little’s Law: 25/4 * 4 = 25 (entries) 
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Question 3 (6 points) 
 

Assume we have the same ROB as in Question 2. Suppose all load instructions miss in 

the cache. As a result, the issue stage for the addi and sw instructions after each lw 

instruction is delayed by 100 cycles, and the commit stage for every instruction is also 

delayed by 100 cycles. 

 

In steady state, how many ROB entries are in use on average? 

 

Throughput: 4 (instructions per cycle) 

Average latency: (106+106+106+107)/4 = 425/4 (cycles) 

 

Little’s Law: 425/4 * 4 = 425 (entries) 

 

 

 

 

 

 

 

 

 

 

Question 4 (6 points) 
 

Assume every load hits in the cache again. Instead of storing data in the ROB, we use a 

unified physical register file to hold all speculative and non-speculative copies of the 16 

architectural registers. If an instruction needs a new physical register, it grabs an entry in 

the physical register file at the beginning of the decode stage and releases the previously 

mapped physical register at the end of the commit stage.    

 

In steady state, how many physical registers are in use on average? 

 

Store instructions do not need to allocate physical registers. 

 

Initially mapped physical registers (16) + additional ones allocated by renaming 

= 16 + (6+6+6)/3*3 = 16+18 = 34 
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Question 5 (6 points) 
 

A lot of logic in the ROB is dedicated to decide when an instruction is ready to issue. To 

simplify the ROB implementation, we decide to have a separate, smaller issue queue to 

handle instructions waiting to be issued. This way, when an instruction is issued, it does 

not continue to occupy an “expensive” slot with issue logic: 

 At decode stage: an instruction is decoded. The instruction grabs an ROB entry as 

well as an entry in the issue queue at the beginning of the cycle.   

 At issue stage: the instruction leaves the issue queue at the end of the cycle.  

 At commit stage: the instruction leaves the ROB at the end of the cycle.  

 

Assume every load hits in the cache. In steady state, how many issue queue entries are in 

use on average? 

 

Throughput: 4 (instructions per cycle) 

Average latency: (2+3+5+6)/4 = 4 (cycles) 

 

Little’s Law: 4 * 4 = 16 (entries) 
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Part D: Multithreading (12 points) 
 

Consider the following instruction sequence. 

 
      addi   r3, r0, 256 
loop: lw     f1, r1, #0 
      lw     f2, r2, #0 
      mul    f3, f1, f2 
      sw     f3, r2, #0 
      addi   r1, r1, #4 
      addi   r2, r2, #4 
      addi   r3, r3, #-1 
      bnez   r3, loop  
 

Assume that memory operations take 4 cycles (i.e., if instruction I1 starts execution at 

cycle N, then instructions that depend on the result of I1 can only start execution at or 

after cycle N+4); multiply instructions take 6 cycles; and all other operations take 1 

cycle. Assume the multiplier and memory are pipelined (i.e., they can start a new request 

every cycle). Also assume perfect branch prediction.  

 

 

Question 1 (3 points) 
 

Suppose the processor performs fine-grained multithreading with fixed round-robin 

switching: the processor switches to the next thread every cycle, and if the instruction of 

the next thread is not ready, it inserts a bubble into the pipeline. What is the minimum 

number of threads required to fully utilize the processor every cycle while running this 

code? 

 

6 threads to cover the latency between mul and sw 

4 
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Question 2 (9 points) 
 

Suppose the processor performs coarse-grained multithreading, i.e. the processor only 

switches to another thread when there is a L2 cache miss. Will the following three 

metrics increase or decrease, compared to fixed round-robin switching? Use a couple of 

sentences to answer the following questions. 
 

 

1) Compared to fixed round-robin switching, will the number of threads needed for the 

highest achievable utilization increase or decrease? Why? 

 

It will decrease because the processor will switch less frequently and stall for instructions 

with long latency (e.g. mul). 

 

 

 

 

 

 

 

2) Compared to fixed round-robin switching, will the highest achievable pipeline 

utilization increase or decrease? Why? 

 

It will decrease because the processor will stall for instructions with long latency (e.g. 

mul) and insert bubbles into pipeline. 

 

 

 

 

 

 

 

 

 

3) Compared to fixed round-robin switching, will cache hit rate increase or decrease? 

Why?  

 

It will increase since there will be less threads competing the cache capacity. 

 


