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Computer System Architecture  
6.823 Quiz #2 
April 1st, 2016 

Professors Daniel Sanchez and Joel Emer 
 
 

 
Name: _______Solutions______________        

 
This is a closed book, closed notes exam. 

80 Minutes 
 14 Pages (+2 Scratch) 

 
Notes: 
• Not all questions are of equal difficulty, so look over the entire exam and 

budget your time carefully. 
• Please carefully state any assumptions you make. 
• Please write your name on every page in the quiz. 
• You must not discuss a quiz's contents with other students who have not yet 

taken the quiz. 
• Pages 15 and 16 are scratch pages. Use them if you need more space to answer 

one of the questions, or for rough work. 
 
 
  

 
    Part A  ________     20 Points 
   Part B  ________     44 Points 
   Part C  ________     16 Points 
   Part D  ________     20 Points 

 
TOTAL          ________  100 Points 
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Part A: Complex Pipelining (20 points) 
 
Ben Bitdiddle is designing a processor with a complex pipeline, shown below: 

The processor has the following characteristics: 
• Issues at most one instruction per cycle. 
• Branch addresses are known at the end of the B stage. 
• Branch conditions (taken / not taken) are known at the end of the R stage. 
• Branches go through the pipeline without any stalls or queueing delays. 

 
For this question, assume there are no control flow instructions other than conditional branches 
(i.e., no unconditional jumps, jump register, etc).   
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Question 1 (5 points) 
 
Ben adds a branch history table (BHT) 
to the pipeline as shown right. With 
this addition, fetches work as follows. 
The A stage fetches the instruction at 
PC+4 by default. In the B stage 
(Branch Address Calc/Begin Decode), 
a conditional branch instruction 
(BEQZ/BNEZ) looks up the BHT. If a 
branch is predicted to be taken, later 
instructions are flushed and the PC is 
redirected to the calculated branch 
target address. 

 
 
 
Fill in the table below. First, list all the possible predictions made by the BHT (one per row). 
Then, fill in each cell with the branch misprediction penalty (in instruction fetches wasted) for 
each combination of prediction and actual branch outcome. 
 

 Misprediction penalty if branch outcome is 
BHT Prediction Taken Not Taken 

 
Taken 

 
Not Taken 
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7 
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Question 2 (10 points) 
 
To improve performance further, Ben 
decides to add a branch target buffer 
(BTB) as well. The BTB holds entry_PC, 
target_PC pairs for branches predicted to 
be taken. Assume that, if the branch is 
taken, the target_PC predicted by the BTB 
is always correct for this question (i.e., 
there is no aliasing). 
 
On a BTB lookup, if there is a match with 
the current PC, the PC is redirected to the 
target_PC stored the BTB, unless the PC 
is redirected by an older instruction. 
 
Fill in the table below. First, list all the 
possible combinations of predictions 
made by the BTB and BHT (one per row). Then, fill in each cell with the branch misprediction 
penalty (in instruction fetches wasted) for each combination of predictions and actual branch 
outcome. 
 

 Misprediction penalty if branch outcome is 
BTB+BHT Predictions Taken Not Taken 
BTB: Hit, BHT: Taken 

BTB: Miss, BHT: Taken 
BTB: Miss, BHT: Not Taken 
BTB: Hit, BHT: Not Taken 

 
 
 

Full credit even if last case is missing. 
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Question 3 (5 points) 
 
Alyssa P. Hacker designs a BTB that 
can have its prediction in stage F1 (one 
cycle earlier than Ben’s BTB), but is 
smaller (i.e., has fewer entries) than 
Ben’s BTB, and thus misses more often. 
Your job is to find when this is a good 
tradeoff, i.e., when the BTB’s lower 
latency compensates for its lower 
accuracy. 
 
As in Question 2, the BTB holds 
entry_PC, target_PC pairs for branches 
predicted to be taken. Assume that, if 
the branch is taken, the target_PC 
predicted by the BTB is always correct 
for this question (i.e., no aliasing). 
 
On your benchmark suite, you find that: 
• When Ben’s BTB hits (i.e., predicts 

that the branch is taken), the branch is always taken. 
• The only inaccuracy incurred by Alyssa’s BTB is that, because of its smaller capacity, it 

suffers from capacity misses, predicting not-taken for a fraction F of the branches that Ben’s 
BTB (correctly) predicts taken. 

 
For what range of values of F is Alyssa’s faster but less accurate BTB a better choice? 
 
Based on the specifications in the problem, the only scenarios leading to different latencies in 
Ben’s and Alyssa’s case are: 

a) BTB hit in Ben’s processor and Alyssa’s processor: 2 cycle penalty (Ben), 1 cycle 
penalty (Alyssa). 

b) BTB hit in Ben’s processor and BTB miss in Alyssa’s processor: 2 cycle penalty (Ben), 4 
cycle penalty (Alyssa) [note that the branch is actually taken in this case]. 

All other scenarios result in similar penalties in both Ben’s and Alyssa’s processors. 
 
We want:  
F x 4 + (1-F) x 1 <= 2 
F <= 1/3  
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Part B: Out-of-order Processing (44 points) 
 
Question 1 (30 points) 
 
This question uses the out-of-order machine described in the quiz 2 handout.  We describe events 
that affect the initial state shown in the handout. Label each event with one of the actions listed 
in the handout. If you pick a label with a blank (_____), you also have to fill in the blank using 
the choices (i—v) listed below. If you pick R. Illegal action, state why it is an illegal action. 

 
Example: Assume P6 is available. Instruction I14 is issued and its effective address matches 
load buffer entry 4. 
Answer: (L, iv): Check the correctness of a speculation on memory address and find an incorrect 
speculation. (You can simply write L, iv) 
 

a) Instruction I12 is issued and reads store buffer entry 3. 
(B, v): Satisfy a dependence on memory value by bypassing a speculative value 

 
 
 
 

b) Assume P6 is available. Instruction I14 is issued and its effective address matches load 
buffer entry 1. 
(K, iv): Check the correctness of a speculation on memory address and find a correct 
speculation 
 

 
 
 

c) Instruction I14 is issued and its effective address does not match any entry in the load 
buffer. 
(K, iv): Check the correctness of a speculation on memory address and find a correct 
speculation 

 
 
 

d) Instruction I19 hits in the BTB and reads entry 1.  
(E, ii): Satisfy a dependence on PC value by speculation using a dynamic prediction 

 
 
 

e) Instruction I18 updates the global history register from 00010110 to 00101100 (shift in 
a 0 from the right). 
(I, iii): Speculatively update a prediction on branch direction using greedy value 
management. G: Write a speculative value using greedy value management is also 
acceptable. 
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f) Assume all instructions through I7 have committed. I8 commits and returns P12 to the 
free list. 
Q: Commit correctly speculated instruction, and free log associated with greedily updated 
values 

 
 
 
 

g) Assume all instructions through I8 have committed.  I9 commits and returns P1 and P4 
to the free list.  
R: Illegal operation. P1 cannot be returned to the free list. 

 
 
 
 
 

h) Assume all instructions through I9 have committed.  I10 commits and updates the 
speculative bit of entry 3 in the store buffer. 
P: Commit correctly speculated instruction, and mark lazily updated values as non-
speculative 

 
 
 
 

i) Assume the value of P5 is now available, I11 is issued and discovers the branch was 
predicted incorrectly. The global history register is updated from 00010110 to 
00000101 (i.e., right shift by 2 bits). 
N: Abort speculative action and cleanup greedily managed values 

 
 
 
 
 

j) Assume the value of P5 is now available, I11 is issued and discovers the branch was 
predicted incorrectly. Entry 4 in the store buffer is cleared. 
M: Abort speculative action and cleanup lazily managed values 
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Question 2 (14 points) 
 
For SW instructions, the pre-dispatch stage checks for empty slots in the store buffer. If it does 
not find an empty slot, the pipeline stalls. If it finds a slot, that slot is reserved for the SW 
instruction and the instruction proceeds to the dispatch stage and is inserted into the ROB.  
 
The table below lists several statistics for SW instructions as they move through the pipeline. 
 
Frequency of SW instructions 0.2 
Average waiting time in ROB before execute 10 cycles 
Average execute time (ie. writing to store buffer) 1 cycle 
Average waiting time after execute, before commit 9 cycles 
Average waiting time in store buffer, after commit 10 cycles 
 
Assume an infinite-size ROB for this question. 
 

a) What is the minimum number of slots required in the store buffer to make sure that SW 
instructions entering the pre-dispatch stage do not limit the throughput of the system? 

 
Using Little’s Law, the minimum size is : 0.2 x (10 + 1 + 9 + 10) = 6 

 
 
 
 
 
 
 
 
 
 
 
 

b) On average, for what fraction of time does a reserved store buffer slot contain valid data?  
(1 + 9 + 10) / (10 + 1 + 9 + 10) = 2 / 3 
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c) Now, suppose instructions are dispatched to ROB without waiting for a store buffer slot. 
Instead, a store buffer slot is assigned when a SW instruction is issued from the ROB. 
What is the minimum number of slots required in the store buffer to ensure that SW 
instructions do not limit the throughput of the machine? 
 
Using Little’s Law: 0.2 x ( 1 + 9 + 10 ) = 4 
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Part C: Reliability (16 points) 
 
Question 1 (10 points) 
 
Indicate whether the following intervals in the lifetime of a bit in a cache are ACE, unACE, or 
unknown. Assume that reads and writes originate from ACE instructions. Assume that each 
cache line holds a single byte, and memory is byte-addressed. 
 
 
 
 

 Write-through cache Write-back cache 

Fill-to-Read ACE ACE 

Read-to-Read ACE ACE 

Write-to-Write unACE unACE 

Read-to-Write unACE unACE 

Write-to-Read ACE 
 

ACE 

Write-to-Evict unACE ACE 
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Question 2 (6 points) 
 
What change (increase, decrease, or stay the same, and why) do you expect in the following 
scenarios, to the: 
 

a) AVF of store buffer when a single-thread out-of-order processor is enhanced to support 
SMT? 
Assuming store buffer size is kept constant: Increases. Utilization of store buffer 
increases. 

 
 
 
 
 
 

b) AVF of write-through cache if miss rate increases? 
Decreases. Lines are evicted, so less likely that an error will propagate to an ACE event. 

 
 
 
 
 
 
 
 
 
 

c) AVF of ROB, if branch predictor accuracy decreases? 
Decreases. ACE instructions are resident in the ROB for smaller periods of time 
(instructions are likely to be aborted more on average). 
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Part D: Multithreading (20 points) 
 
For this problem, we are interested in evaluating the effectiveness of multithreading on the 
following code, which computes the sum of all the elements of an array. 
 

int A[N]; 
… 
int sum = 0; 
for (int i = 0; i < N; i++) 
  sum += A[i]; 

 
Here is the corresponding MIPS assembly code: 
 

;; Assume: 
;; R1 holds value of sum; initialized to 0 
;; R2 holds number of iterations remaining; initialized to N 
;; R3 holds address of A[i]; initialized to base address of A 
 
loop: ld R4, 0(R3) 
 add R1, R1, R4 
 addi R2, R2, -1 
 addi R3, R3, 4 
 bnez R2, loop  

  
 
Assume the following:  
• The processor can issue one instruction per cycle. 
• All instructions except loads execute in a single cycle. 
• The end-of-loop branch is always predicted correctly. 
• Our system does not have a cache. Each load accesses main memory and takes 30 cycles. 
• The load/store unit is fully pipelined. 
• After the processor issues a load, it can continue executing instructions until it reaches an 

instruction that depends on the result of an outstanding load.  
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Question 1 (5 points) 
 
How many cycles does it take to execute one iteration of the loop in steady-state for a single-
threaded processor? 
 
34 cycles 
 
 
 
 
 
 
 
 
 
 
 
Question 2 (5 points) 
 
Now consider a simple multithreaded pipeline. Threads are switched every cycle using a fixed 
round-robin schedule. If a thread cannot issue an instruction on its turn, a bubble is inserted into 
the pipeline.  
 
Each thread executes the code above. What is the minimum number of threads we need to fully 
utilize the processor? (i.e., no pipeline bubbles in steady state) 
 
30 threads. To hide the latency of the load operation of a particular thread we require at least 29 
other threads.  
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Question 3 (10 points) 
 
Reorder the original code sequence to minimize the number of threads needed to fully utilize the 
multithreaded pipeline. How many threads do you need? 
 
 
Original core sequence: Write reordered code sequence: 
 
loop: ld R4, 0(R3) 
 add R1, R1, R4 
 addi R2, R2, -1 
 addi R3, R3, 4 
 bnez R2, loop  

 
loop: ld R4, 0(R3) 
 addi R2, R2, -1 
 addi R3, R3, 4 

add R1, R1, R4 
 bnez R2, loop 
 
 
 
 
 
 
 
 

 
 
The two addi instructions are independent of the ld instruction, and may be executed without 
waiting for the result of the load. The cycles at which the different instructions are executed is 
shown below. To hide the latency between the ld and add instruction, we require: 
 
3N + 1 >= 30 + 1 
N >= 10 
 
loop: ld R4, 0(R3)    1 
 addi R2, R2, -1   1+N 
 addi R3, R3, 4    1+2N 

add R1, R1, R4   1+3N 
 bnez R2, loop    1+4N 
 
 
 
 
Number of threads needed to fill the pipeline with reordered code: _10_____ 
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Scratch Space 
 
Use these extra pages if you run out of space or for your own personal notes. We will not grade 
this unless you tell us explicitly in the earlier pages. 
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