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Computer System Architecture  
6.823 Quiz #2 
April 7th, 2017 

Professors Daniel Sanchez and Joel Emer 
 
 

 
Name: ___________________________        

 
This is a closed book, closed notes exam. 

85 Minutes 
13 Pages (+2 Scratch) 

 
Notes: 
• Not all questions are of equal difficulty, so look over the entire exam and 

budget your time carefully. 
• Please carefully state any assumptions you make. 
• Show your work to receive full credit. 
• Please write your name on every page in the quiz. 
• You must not discuss a quiz's contents with other students who have not yet 

taken the quiz. 
• Pages 14 and 15 are scratch pages. Use them if you need more space to answer 

one of the questions, or for rough work. 
 
 
  

    Part A  ________     25 Points 
    Part B  ________     30 Points 
   Part C  ________     20 Points 
   Part D  ________     25 Points 

 
TOTAL          ________  100 Points 
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Part A: Complex Pipelining (25 points) 
 
Consider the following MIPS instruction sequence. An equivalent sequence of C-like pseudocode 
is also provided. F1, F2, and F3 are floating point registers. 
 
I1: 
I2: 
I3: 
I4: 
I5: 
I6: 
I7: 

L.D   F2, 0(R2)  
L.D   F1, 0(R1)  
L.D   F2, 4(R1)  
MUL.D  F3, F1, F2 
ADD.D  F1, F2, F2 
S.D  F3, 0(R2) 
S.D        F1, 4(R1) 

; F2 = *r2; 
; F1 = *r1; 
; F2 = *(r1+4); 
; F3 = F1 x F2; 
; F1 = F2 + F2; 
; *r2 = F3; 
; *(r1+4) = F1; 

 
Question 1 (4 points) 
 
Fill out the table below to identify all Read-After-Write (RAW), Write-After-Read (WAR), and 
Write-After-Write (WAW) dependencies in the above sequence. Do not worry about memory 
dependencies for this question. The dependency between I3 and I4 is already filled in for you. 
 

 Earlier (Older) Instructions 

C
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st
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 I1 I2 I3 I4 I5 I6 I7 

I1 -       

I2  -      

I3   -     

I4   RAW -    

I5     -   

I6      -  

I7       - 

  



 3 

Question 2 (9 Points) 
 
Calculate the number of cycles this code sequence would take to execute from issue of I1 to the 
issue of I7, inclusive, on a single-issue in-order pipelined machine. The machine uses a 
scoreboard and has no bypassing (as in Lecture 8). The floating point multiplier, adder, and 
load/store units are fully pipelined, so issue is never stalled by a busy functional unit (FU). The 
FUs latch their inputs. Assume that functional units have latencies as shown in the table below. 
Register write-back takes one additional cycle. Ignore write-back conflicts. I1 misses, but all 
other memory operations hit. 
 

Operation Load/Store that hits Load/Store that misses Multiplies Adds 
Latency 2 cycles 6 cycles 4 cycles 2 cycles 

 
You may fill out the timing chart below to help you find the answer. Filling out the chart can give 
you partial credit. It is initialized for you below with the issue and completion/write-back cycles 
of I1. 
 

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
Instruction 

issue or 
writeback 

I1      I1          

 
Cycle 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 

Instruction 
issue or 

writeback 
                

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Number of cycles from issue of I1 to issue of I7, inclusive ___________ 
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Question 3 (12 Points) 
 
Manually rename registers in the code sequence to eliminate all WAR and WAW dependences, 
and reorder the instructions in the code sequence to minimize execution time. You may use 
register names from F1 to F7. Show the new instruction sequence and give the number of cycles 
this sequence takes to execute on the scoreboarded in-order pipeline. Partial credit will be given 
for solutions with improved, but sub-optimal timing. 
 
Original instruction sequence Register-renamed and reordered sequence 
 
I1: 
I2: 
I3: 
I4: 
I5: 
I6: 
I7: 

 
L.D   F2, 0(R2) 
L.D   F1, 0(R1)  
L.D   F2, 4(R1)       
MUL.D  F3, F1, F2 
ADD.D  F1, F2, F2 
S.D  F3, 0(R1) 
S.D        F1, 4(R1) 

 
I1’: 
 
 
I2’: 
 
 
I3’:  
 
 
I4’:  
 
 
I5’: 
 
 
I6’: 
 
 
I7’: 
 

 
 
 

 
You may fill out the timing chart below to help you find the answer, and for partial credit. 

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Instruction 
issue or 

writeback 
                

 
 
 
Number of cycles from issue of I1 to issue of I7, inclusive ___________ 
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Part B: Out-of-Order Processing (30 points) 
 
 
This question uses the out-of-order Data-in-ROB machine described in the Quiz 2 Handout.  We 
describe events that affect the initial state shown in the handout. Label each event with one of the 
actions listed in the handout. If you pick a label with a blank (_____), you also have to fill in the 
blank using the choices (i—v) listed below. If you pick “R. Illegal action”, state why it is an 
illegal action. If in doubt, state your assumptions. 

 
Example: Assume T11 data becomes available. Instruction I12 is issued and its effective 
address matches load buffer entry 4. Answer: (L, iv): Check the correctness of a speculation on 
memory address and find an incorrect speculation. (You can simply write L, iv) 
 
 
a) Instruction I8 finishes execution and replaces T10’s src1 tag with data, and sets the p1 bit. 
 
 
 
 
b) Instruction I8 finishes execution and writes back the new value of R4 to T8’s dest data 

field, and sets its pd bit. 
 

 
 
 
 
c) Instruction I17 is dispatched to ROB entry T17. The instruction will write register R6, so tag 

T17 is written into the R6 entry of the rename table, and the valid bit is set. 
 
 
 
 
 
d) Instruction I17 is dispatched to ROB entry T17. The instruction’s first operand is register 

R3, so value 3980 is copied from the register file into T17’s src1 field, and the p1 bit is set. 
 

 
 
 
 

e) Instruction I18 has no entry in the BTB, so PC 0xc0 is fetched for I19. 
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f) Assume T11 data becomes available and the processor’s divider unit is unpipelined (i.e. it 
can work on only one instruction at a time). Instruction I13 is not issued until the divide 
finishes. 

 
 
 
 
 
 
 
g) Assume all instructions through I6 have committed. I7 commits and writes 4000 into the R2 

entry of the register file. 
  

 
 
 
 
 
 
h) Assume all instructions through I7 have committed. I8 commits and replaces T10’s src1 

tag with a data value and sets T10’s p1 bit.  
 
 
 
 
 
 
 

i) Assume T13 data becomes available, I14 is issued, and the branch is found to be predicted 
correctly as not taken. The relevant branch prediction counter is decremented (unless it is 
already 0). 
 
 

 
 

 
 
 

j) Assume instruction I11 encodes an address offset of 4 (not shown in the figure). I11 is 
issued, writes address 4004 into entry 3 of the load buffer, sets the corresponding valid bit, 
and loads data from the cache. 
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Part C: Multithreading (20 points) 
 
In this problem you will evaluate the throughput improvement of multithreading on the 
following code, which computes the per-element product of two arrays: 
 

float A[1024], B[1024], P[1024]; 
… 
for (int i = 0; i < 1024; i++) 
  P[i] = A[i] * B[i]; 

 
Here is the corresponding MIPS assembly code: 
 

;; Assume: 
;; R1 holds address of A[i]; initialized to base address of A 
;; 4096(R1) holds address of B[i], based on offset from A[i] 
;; 8192(R1) holds address of P[i], based on offset from A[i] 
;; R2 holds number of iterations remaining; initialized to N 
 

I1: loop: lw.s F1, 0(R1) 
I2:  lw.s F2, 4096(R1) 
I3:  mul.s F3, F1, F2 
I4:  sw.s  F3, 8192(R1) 
I5:  addi R1, R1, 4 
I6:  addi R2, R2, -1 
I7:  bnez R2, loop  
  
You run this code on a single-issue in-order processor. Assume the following:  
• The processor can fetch and issue one instruction per cycle. 
• If an instruction cannot be issued due to a data dependency, the processor stalls. 
• Loads/stores take 4 cycles (i.e., if instruction I1 starts execution at cycle N, then instructions 

that depend on the result of I1 can only start execution at or after cycle N+4); multiplies take 
3 cycles; and all other instructions execute in 1 cycle. 

• The load/store unit and multiplier are fully pipelined (i.e., can start a new request each cycle). 
• The end-of-loop branch is always predicted correctly. 
  



 8 

Question 1 (5 Points) 
 
Suppose the code runs on a multithreaded processor that performs fixed switching: the processor 
switches to the next thread every cycle (round-robin), and if the instruction of the next thread is 
not ready, it inserts a bubble into the pipeline. What is the minimum number of threads required 
to fully utilize the processor every cycle while running this code? Explain. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Question 2 (5 Points) 
 
Now suppose the multithreaded processor performs data-dependent switching: the processor 
only switches to another thread when an instruction cannot execute due to a data dependence. If 
no threads have a ready instruction, the processor inserts a bubble into the pipeline. What is the 
minimum number of threads required to fully utilize the processor every cycle while running this 
code? Explain. 
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Question 3 (10 Points) 
 
Assume the fixed-switching policy of Question 1. Reorder and edit the sequence of 
instructions to minimize the number of threads that fully utilize the multithreaded pipeline. How 
many threads do you need? Explain. 
 
Partial credit will be given for solutions with a reduced, but sub-optimal number of threads. 
 
Original instruction sequence Write a reordered and edited sequence 
 
loop: lw.s F1, 0(R1) 

lw.s F2, 4096(R1) 
 mul.s F3, F1, F2 
 sw.s  F3, 8192(R1) 
 addi R1, R1, 4 
 addi R2, R2, -1 
 bnez R2, loop  
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Number of threads needed to fill the pipeline with reordered code: ________ 
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Part D: Centralized vs. Decentralized Issue (25 points) 
 

 
This problem focuses on the issue logic of a superscalar out-of-order machine. You will explore 
the tradeoffs between a centralized issue buffer (left) and decentralized reservation stations 
(right). In both designs, an issue buffer entry is allocated when each instruction is decoded and is 
freed when the instruction is dispatched to a functional unit. The decentralized design (right), 
introduced by Tomasulo in the IBM 360/91, distributes the issue buffer entries around the 
processor, with one set of entries per functional unit. In such a design, the distributed entries are 
called “reservation stations”. Do not worry about instruction commit or speculative buffering; 
you will focus on stages from entry allocation to instruction dispatch and completion. 
  
The following applies to both designs. Your desired average throughput is 1.5 instructions per 
cycle. Consider a stream of floating point instructions that consists of 2/3 adds and 1/3 
multiplies. For this stream, you observe that the average latency of an instruction from allocation 
in issue buffer to functional unit completion is 12 cycles. The processor’s adder and multiplier 
are each fully pipelined. Once an instruction is dispatched to the functional unit, both the adder 
and multiplier take 3 cycles.  
 

Type of operation Stream instruction ratio FU latency 
Add 2/3 3 cycles 
Multiply 1/3 3 cycles 

 
 

Average throughput Average total latency  
1.5 instructions per cycle 12 cycles 

  

Mult

p data p data1
2

p data1
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data load
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< t, result >
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Question 1 (8 points) 
 
Consider the centralized issue buffer. In steady state, how many issue buffer entries are in use on 
average? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Average issue buffer entries used _______________ 
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Question 2 (9 points) 
 
Now consider the decentralized design. You observe that the average latency of add instructions 
from allocation to completion is 14 cycles for the stream of interest. How many reservation 
station entries are in use, on average, at each functional unit (adder, multiplier) in steady state? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Average Adder reservation station entries  

Average Multiplier reservation station entries  
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Question 3 (4 points) 
 
Again consider the decentralized design. Suppose we run an instruction stream symmetric to the 
original. It is comprised of 1/3 adds and 2/3 multiplies, and the average latency of multiply 
instructions from allocation to functional unit completion is 14 cycles. How many reservation 
station entries are in use, on average, at each functional unit (adder, multiplier) in steady state? 
For full and/or partial credit, explain your reasoning. 
 
 
 
 
 
 
 
 
 
 

Average Adder reservation station entries  

Average Multiplier reservation station entries  
 
  
 
 
Question 4 (4 points) 
 
Qualitatively, name one advantage and one disadvantage of the distributed reservation station 
design over the centralized issue buffer. Explain. 
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Scratch Space 
 
Use these extra pages if you run out of space or for your own personal notes. We will not grade 
this unless you tell us explicitly in the earlier pages. 
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