
6.823
Handout #13

 1

 6.823 Computer System Architecture
 Single-producer/Multi-consumer Shared-Memory Queues

http://csg.csail.mit.edu/6.823/

This handout describes the implementation of a shared-memory queue that supports a single
producer thread and multiple consumer threads. For simplicity, we assume the queue has infinite
space. The queue uses the atomic compare-and-swap (CAS) instruction, defined as follows:

CAS old, new, Imm(base) atomically loads the value at the effective memory address
and compares it with the value stored in register old. If both values are equal, it updates the
memory location with the value stored in register new. If both values are not equal, it updates the
value in old with the value loaded from memory.

The queue stores single-word messages. The code for producer and consumers are shown below,
with memory operations highlighted in bold.

Code for producer to enqueue a message:

R1 – contains message to enqueue
R2 – contains address of the tail pointer of the queue

P1: LD R3, 0(R2) # get tail pointer	
P2: ST R1, 0(R3) # write message to tail	
P3: ADD R3, R3, 4 # update tail pointer
P4: ST R3, 0(R2)	

Code for consumer to dequeue a message:

R1 – contains dequeued message after code finishes
R2 – contains address of the head pointer of the queue
R3 – contains address of the tail pointer of the queue
R4 – contains address of the head pointer write lock
R5 – contains value 1

C1: SpinLock: MOV R6, R0 # set R6 to 0	
C2: CAS R6, R5, 0(R4) # try to acquire lock	
C3: BNEZ R6, SpinLock
C4: LD R7, 0(R2) # get head pointer
C5: Retry: LD R8, 0(R3) # get tail pointer
C6: BEQ R7, R8, Retry # is there a message?
C7: LD R1, 0(R7) # read message from queue
C8: ADD R7, R7, 4 # update head pointer
C9: ST R7, 0(R2)
C10: ST R0, 0(R4) # release lock

