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Computer System Architecture  

6.823 Quiz #3 

April 24
th

, 2015 

Professors Daniel Sanchez and Joel Emer 
 

 

This is a closed book, closed notes exam. 

 

 80 Minutes 

  14 Pages 

 
Notes: 

 Not all questions are of equal difficulty, so look over the entire exam and 

budget your time carefully. 

 Please carefully state any assumptions you make. 

 Show your work to receive full credit. 

 Please write your name on every page in the quiz. 

 You must not discuss a quiz's contents with other students who have not 

yet taken the quiz. 

 

 

Part A ________       32 Points 

Part B ________       38 Points 

Part C ________       30 Points 

 

 

 

 

 

TOTAL        ________  100 Points
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Part A: Network-on-chip (32 Points) 
 

Question 1 (6 points) 
 

Consider the router in Handout 10. Assume this router has one virtual channel per 

physical link. Suppose two packets, A and B, are traversing the router. Both are routed to 

output unit 2, as shown in the following waterfall diagram. 

  

 
 

 

Before cycle 1, packet B’s head flit has finished RC and VA. In the following cycles, 

packet B’s four flits traverse SA and ST without stalls. Packet A’s head flit completes 

routing computation at cycle 1 and tries to allocate an output virtual channel starting at 

cycle 2. Unfortunately, the only output virtual channel compatible with its route is 

occupied by packet B, so packet A’s head flit fails to allocate a VC and is unable to make 

progress until packet B’s tail flit releases the VC. 

 

Fill in the following table showing the state of packet A’s input virtual channel. 

  

Cycle G R O 

1 R - - 

2 V Output 2 - 

3 V Output 2 - 

4 V Output 2 - 

5 V Output 2 - 

6 A Output 2 VC1 

7 A Output 2 VC1 

8 
A 

 
Output 2 VC1 
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Question 2 (8 points) 
 

Suppose the router in Handout 10 is improved with speculative switch allocation. Head 

flits attempt VC and switch allocation in the same cycle. If both succeed, the head flit 

traverses the switch on the next cycle, as shown in the waterfall diagram below. 

 

 
 

 

Consider the same scenario as in question 1, with packets A and B going to the same 

output unit. Assume that non-speculative switch allocation requests are always 

prioritized over speculative ones (i.e., those from flits without a VC). Fill in the 

following waterfall diagram to show how packet A is routed. 

 

Cycle 1 2 3 4 5 6 7 8 

A: Head Flit RC - - - 
VA 

SA 
ST   

A: Body Flit 1      SA ST  

A: Body Flit 2       SA ST 

B: Body Flit 1 SA ST       

B: Body Flit 2 - SA ST      

B: Body Flit 3 - - SA ST     

B: Tail Flit - - - SA ST    
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Question 3 (10 points) 

 
Consider the same speculative switch allocation optimization as in question 2. 

Unfortunately, always prioritizing non-speculative switch allocation requests over 

speculative ones increases the critical path too much, so we opt for a simpler switch 

allocator that is oblivious to whether requests are speculative. 

 

We want to analyze the performance of this simpler design under the following scenario: 

 All packets in the router are single-flit packets. 

 The probability that a packet successfully obtains a VC on its first try is 75%. 

 The probability that a flit successfully allocates the switch on its first try is 80%. 

 If a packet fails either virtual channel or switch allocation on its first try, it always 

succeeds on its second try. 

 

 

1) What percentage of allocated timeslots on the switch goes unused? 

 

 

The switch is unused when the packet get the switch but not VC. 

  

 0.25 * 0.8 = 0.2 

 

 

2) What is the average latency to go through this speculative router? 

 

If both VA and SA succeed, the latency is 3 cycle. Otherwise, it is 4 cycles 

 

Average latency  = 3 * 0.75 * 0.8 + 4 * (1 – 0.75 * 0.8) = 3.4 cycles 

 

 

 

 

 

3) Briefly explain the effect of this optimization on network performance at both 

very low loads and very high loads (near saturation). 

 

For very low loads, the speculation almost always succeeds, so the average 

latency is lower. For very high loads, the speculation fails frequently so the switch 

is not highly utilized, and the average latency is higher. 
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Question 4 (8 points) 

 
Ben Bitdiddle wants to implement the Valiant routing algorithm, which routes each 

packet through a randomly-chosen intermediate node. He uses routers with two virtual 

channels per physical link. He decides to use X-Y routing between the source node and 

intermediate node, and Y-X routing between the intermediate node and the destination 

node. However, Alyssa points out this routing algorithm will not work without further 

modification. Explain why this is the case and provide a solution for Ben. 

 

Ben’s routing algorithm will cause deadlock 

 

To solve this problem, Ben should allocate one virtual channel for X-Y routing, and 

another for Y-X routing. Note that using X-Y only still causes deadlock since there will 

be a forbidden turn when passing through the intermediate node.   

 

 ( Source -X-Y-intermediate node-X-Y-destination ) 

          ^^^^^^^^^^^^^^^^^^^^^^ 

   This is turn in Y-X routing 

 

Unless the intermediate node has infinite buffer, using X-Y or Y-X only still deadlocks. 
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Part B: Cache Coherence (38 Points) 
 

Ben Bitdiddle is designing a snoopy-based, write-invalidate MSI protocol for write-back 

caches. Under the standard MSI protocol, when a cache observes a Bus Read Exclusive 

message (BusRdX), it has to invalidate its own copy of the cache block. Ben instead 

proposes an optimization, called delayed invalidation, to potentially reduce the number of 

read misses. The optimization works as follows:  

 

Delayed invalidation: When a cache observes a Bus Read Exclusive message (BusRdX) 

and it has a copy of the block in the Shared (S) state, the cache delays the invalidation of 

the block until before a cache miss happens. In other words, the cache will treat any 

subsequent requests from its own processor as if the BusRdX had not happened, until one 

of those requests causes a miss. At that point, all pending invalidations are performed 

before processing the miss.   
 

Question 1 (14 Points) 
 

Suppose processors P1 and P2 are have private, snoopy caches. Both caches are initially 

empty. Consider the following sequence of accesses:  

 
I0   P2: read   A 
I1   P1: write  A  
I2   P2: read   A  
I3   P1: write  A 

I4   P2: read   A  
I5   P2: read   B 
I6   P2: read   A  

 

Assume blocks A and B do not conflict in the cache. Compare Ben’s delayed invalidation 

optimization with the standard MSI protocol by filling the states (on the next page) for 

each cache block after each operation is done and calculate the number of misses in both 

cases. 
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Assume we use the standard MSI protocol. Fill in the following table.  

 

Standard MSI Protocol 

 Processor P1’s Cache Processor P2’s Cache 

Initial State A: I  B: I A: I  B: I 

After P2 reads A A: I B: I A: S B: I 

After P1 writes A A: M B: I A: I B: I 

After P2 reads A A: S B: I A: S B: I 

After P1 writes A A: M B: I A: I B: I 

After P2 reads A A: S B: I A: S B: I 

After P2 reads B A: S B: I A: S B: S 

After P2 reads A A: S B: I A: S B: S 
 

How many misses occur in the two caches?  2 write misses + 4 read misses = 6 misses 

 

 

 

Assume we adopt Ben’s delayed invalidation optimization. Fill in the following table. If 

there is a delayed invalidation, write it in the invalidation queue (the “Inv Queue” 

column). For example, “Inv L” means there is a delayed invalidation on block L.  

 

MSI Protocol with Delayed Invalidation 

 Processor P1’s Cache Processor P2’s Cache 

 MSI state Inv Queue MSI state Inv Queue 

Initial State A: I  B: I  A: I  B: I  

After P2 reads A A: I B: I  A: S B: I  

After P1 writes A A: M B: I  A: S B: I  Inv A 

After P2 reads A A: M B: I  A: S B: I  Inv A 

After P1 writes A A: M B: I  A: S B: I  Inv A 

After P2 reads A A: M B: I  A: S B: I  Inv A 

After P2 reads B A: M B: I  A: I B: S   

After P2 reads A A: S B: I  A: S B: S  
 

How many misses occur in the two caches?  1 write miss + 3 read misses = 4 misses 
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Question 2 (6 Points) 
 

Does Ben’s delayed invalidation optimization violate cache coherence rules? Please 

explain your answer in one or two sentences.  

 

No. There are two coherence rules:  

 

(1) Write propagation: Writes eventually become visible to all processors.  

 

 Yes. With delayed invalidation, writes from other processors become visible 

when a local miss, either a read miss (I->S) or a write miss (I->M or S->M), 

occurs.   

 

(2) Write serialization: Writes to the same location are serialized, and all processors 

see them in the same order.  

 

 Yes. With delayed invalidation, all processors still see the same global 

ordering of writes.  

 

 

Question 3 (10 Points) 
 

Suppose the original system guarantees sequential consistency. Does adding the delayed 

invalidation optimization break sequential consistency? Please explain your answer in 

one or two sentences. If your answer is yes, please provide a sequence of load/store 

operations that violates sequential consistency. 

 

No. The system is sequential consistent if the following conditions are met: 

 

(1) The result of any execution is the same as if the operations of all the processors 

were executed in some sequential order. In other words, all processors agree on a 

global ordering of reads and writes.  

 

 Yes. With delayed invalidation, the reads that happen before the invalidation 

is processed can be seen as reads happening before the write that causes 

BusRdX.  Those reads hit in the cache and are not visible to other processors.  

For example, in Question 1, all processors agree on a logical ordering:   

I0 -> I2 -> I4 -> I1 -> I3 -> I5 -> I6.  

 

(2) The operations of each individual processor appear in program order.  

 

 Yes. Delayed invalidation only tries to re-order reads from other processors’ 

writes.  
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Question 4 (8 Points) 
 

Ben only applies delayed invalidation on cache blocks that are in the S state. When a 

cache observes a Bus Read Exclusive message (BusRdX) and the associated cache block 

is in the Modified (M) state, it sends out the data in response to a BusRdX message and 

changes the cache state to Invalid (I).   

 

Is it possible to delay invalidation when the cache block is in the Modified (M) state? If it 

is not, please explain why. If it is possible, please describe how to make delayed 

invalidations work when the block is in the M state. In other words, please describe the 

actions the cache needs to take when the cache observes a BusRdX message, how to 

handle subsequent read and write accesses if the invalidation is delayed, and when the 

invalidation needs to be processed. 

 

 

When observing a BusRdX message, change the cache state from M to S and send the 

data value to the bus. The invalidation needs to be processed before processing any 

subsequent read or write miss.  
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Part C: Synchronization and Consistency (30 Points) 
 

Please use Handout 14 to answer the questions in this part.  

 

Question 1 (12 Points) 
 

Ben designs an architecture that does not have the atomic compare-and-swap (CAS) 

instruction but has load-reserve (LR) and store-conditional (SC) instructions.  

 

Help Ben implement a Boolean compare-and-swap instruction BCAS old, new, 

Imm(base) using load-reserve and store-conditional instructions: 

 
LR rs, Imm(rt): 

 <flag, addr>  <1, rt + Imm> 

 rs  Memory[rt + Imm] 
 

SC rs, Imm(rt): 

 If <flag, addr> == <1, rt + Imm>: 

  Memory[rt + Imm]  rs 

          rs  1                 # Succeed 
 Else: 

          rs  0                 # Fail 
  
BCAS is a simplified CAS instruction that only deals with values 0 and 1. You can use 

temporary registers (tmp1, tmp2, tmp3…) and any algorithmic, logical, memory, 

and branch instructions in the MIPS instruction set.   

 
BCAS old, new, Imm(base): 

         LR   tmp1, Imm(base)  # load M[Imm+base] into tmp1 

         BNE  tmp1, old, fail  # if tmp1 != old, go to fail 

         MOV  tmp2, new        # copy new to tmp2 

         SC   tmp2, Imm(base)  # try to store tmp2  

         BNEZ tmp2, skip       # check if SC succeeds 

         NOR  tmp1, tmp1, tmp1 # invert the value of tmp1  

                                 (since M[Imm+base] is changed) 

  fail:  MOV  old,  tmp1       # copy tmp1 to old 

  skip:  NOP 
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Question 1 Cont. 

 
(This is an extra page in case you need more space for Question 1.) 
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Question 2 (6 Points) 
 

Suppose the hardware where the shared-memory queue from Handout 14 is executed has 

a weak consistency model that relaxes all the orderings of reads and writes. Give an 

example of memory orderings between the producer and consumer that would result in 

incorrect behavior. Please fully explain your answer to get full credit.  

 

Your memory ordering example should look something like: 
P1, C2, P2, C4, P4, C5, C7, C9, C10 

 

 

If the tail write is visible to the consumer before the message write, then we have a 

problem. Thus any sequence that contains the subsequence: 

 
P4, C7, P2 

 

will read an invalid message. 
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Question 3 (12 Points) 
 

Please add the minimum number of memory fences (FENCEWR, FENCERW, FENCEWW, 

or FENCERR) to the producer and consumer codes to ensure correctness with a weak 

consistency model. Please explain your answer fully. 

 

Code for producer to enqueue a message: 

 
P1: LD  R3, 0(R2) # get tail pointer 
 
 

P2: ST  R1, 0(R3) # write message to tail 
 
 

P3: ADD R3, R3, 4 # update tail pointer 

    FENCEWW # don’t update tail before writing message 
 

P4: ST  R3, 0(R2)  
 

 

Code for consumer to dequeue a message: 

 
C1: SpinLock: MOV  R6, R0        # set R6 to 0 
 
 

C2:           CAS  R6, R5, 0(R4) # try to acquire lock 
 
 

C3:       BNEZ R6, SpinLock 

    FENCEWR # don’t read head pointer before getting lock 
 

C4:           LD   R7, 0(R2)    # get head pointer 

 
 

C5: Retry:    LD   R8, 0(R3)    # get tail pointer 

 
 

C6:      BEQ  R7, R8, Retry # is there a message? 

    FENCERR # don’t read message before tail is updated 
 

C7:           LD   R1, 0(R7)    # read message from queue 

 
 

C8:       ADD  R7, R7, 4    # update head pointer 

 
 

C9:       ST   R7, 0(R2)      

    FENCEWW # don’t release lock before updating head 
 

C10:          ST   R0, 0(R4)     # release lock 

 

  



Name ____________________________ 

 

Page 14 of 14 

 

Question 3 Cont. 

 
(This is an extra page in case you need more space for Question 3.) 
 


