
Name ________Solution_____________

Email ____________________@mit.edu

Page 1 of 14

Computer System Architecture

6.823 Quiz #3

April 24
th

, 2015

Professors Daniel Sanchez and Joel Emer

This is a closed book, closed notes exam.

 80 Minutes

 14 Pages

Notes:

 Not all questions are of equal difficulty, so look over the entire exam and

budget your time carefully.

 Please carefully state any assumptions you make.

 Show your work to receive full credit.

 Please write your name on every page in the quiz.

 You must not discuss a quiz's contents with other students who have not

yet taken the quiz.

Part A ________ 32 Points

Part B ________ 38 Points

Part C ________ 30 Points

TOTAL ________ 100 Points

Name ____________________________

Page 2 of 14

Part A: Network-on-chip (32 Points)

Question 1 (6 points)

Consider the router in Handout 10. Assume this router has one virtual channel per

physical link. Suppose two packets, A and B, are traversing the router. Both are routed to

output unit 2, as shown in the following waterfall diagram.

Before cycle 1, packet B’s head flit has finished RC and VA. In the following cycles,

packet B’s four flits traverse SA and ST without stalls. Packet A’s head flit completes

routing computation at cycle 1 and tries to allocate an output virtual channel starting at

cycle 2. Unfortunately, the only output virtual channel compatible with its route is

occupied by packet B, so packet A’s head flit fails to allocate a VC and is unable to make

progress until packet B’s tail flit releases the VC.

Fill in the following table showing the state of packet A’s input virtual channel.

Cycle G R O

1 R - -

2 V Output 2 -

3 V Output 2 -

4 V Output 2 -

5 V Output 2 -

6 A Output 2 VC1

7 A Output 2 VC1

8
A

Output 2 VC1

Name ____________________________

Page 3 of 14

Question 2 (8 points)

Suppose the router in Handout 10 is improved with speculative switch allocation. Head

flits attempt VC and switch allocation in the same cycle. If both succeed, the head flit

traverses the switch on the next cycle, as shown in the waterfall diagram below.

Consider the same scenario as in question 1, with packets A and B going to the same

output unit. Assume that non-speculative switch allocation requests are always

prioritized over speculative ones (i.e., those from flits without a VC). Fill in the

following waterfall diagram to show how packet A is routed.

Cycle 1 2 3 4 5 6 7 8

A: Head Flit RC - - -
VA

SA
ST

A: Body Flit 1 SA ST

A: Body Flit 2 SA ST

B: Body Flit 1 SA ST

B: Body Flit 2 - SA ST

B: Body Flit 3 - - SA ST

B: Tail Flit - - - SA ST

Name ____________________________

Page 4 of 14

Question 3 (10 points)

Consider the same speculative switch allocation optimization as in question 2.

Unfortunately, always prioritizing non-speculative switch allocation requests over

speculative ones increases the critical path too much, so we opt for a simpler switch

allocator that is oblivious to whether requests are speculative.

We want to analyze the performance of this simpler design under the following scenario:

 All packets in the router are single-flit packets.

 The probability that a packet successfully obtains a VC on its first try is 75%.

 The probability that a flit successfully allocates the switch on its first try is 80%.

 If a packet fails either virtual channel or switch allocation on its first try, it always

succeeds on its second try.

1) What percentage of allocated timeslots on the switch goes unused?

The switch is unused when the packet get the switch but not VC.

 0.25 * 0.8 = 0.2

2) What is the average latency to go through this speculative router?

If both VA and SA succeed, the latency is 3 cycle. Otherwise, it is 4 cycles

Average latency = 3 * 0.75 * 0.8 + 4 * (1 – 0.75 * 0.8) = 3.4 cycles

3) Briefly explain the effect of this optimization on network performance at both

very low loads and very high loads (near saturation).

For very low loads, the speculation almost always succeeds, so the average

latency is lower. For very high loads, the speculation fails frequently so the switch

is not highly utilized, and the average latency is higher.

Name ____________________________

Page 5 of 14

Question 4 (8 points)

Ben Bitdiddle wants to implement the Valiant routing algorithm, which routes each

packet through a randomly-chosen intermediate node. He uses routers with two virtual

channels per physical link. He decides to use X-Y routing between the source node and

intermediate node, and Y-X routing between the intermediate node and the destination

node. However, Alyssa points out this routing algorithm will not work without further

modification. Explain why this is the case and provide a solution for Ben.

Ben’s routing algorithm will cause deadlock

To solve this problem, Ben should allocate one virtual channel for X-Y routing, and

another for Y-X routing. Note that using X-Y only still causes deadlock since there will

be a forbidden turn when passing through the intermediate node.

 (Source -X-Y-intermediate node-X-Y-destination)

 ^^^^^^^^^^^^^^^^^^^^^^

 This is turn in Y-X routing

Unless the intermediate node has infinite buffer, using X-Y or Y-X only still deadlocks.

Name ____________________________

Page 6 of 14

Part B: Cache Coherence (38 Points)

Ben Bitdiddle is designing a snoopy-based, write-invalidate MSI protocol for write-back

caches. Under the standard MSI protocol, when a cache observes a Bus Read Exclusive

message (BusRdX), it has to invalidate its own copy of the cache block. Ben instead

proposes an optimization, called delayed invalidation, to potentially reduce the number of

read misses. The optimization works as follows:

Delayed invalidation: When a cache observes a Bus Read Exclusive message (BusRdX)

and it has a copy of the block in the Shared (S) state, the cache delays the invalidation of

the block until before a cache miss happens. In other words, the cache will treat any

subsequent requests from its own processor as if the BusRdX had not happened, until one

of those requests causes a miss. At that point, all pending invalidations are performed

before processing the miss.

Question 1 (14 Points)

Suppose processors P1 and P2 are have private, snoopy caches. Both caches are initially

empty. Consider the following sequence of accesses:

I0 P2: read A
I1 P1: write A
I2 P2: read A
I3 P1: write A

I4 P2: read A
I5 P2: read B
I6 P2: read A

Assume blocks A and B do not conflict in the cache. Compare Ben’s delayed invalidation

optimization with the standard MSI protocol by filling the states (on the next page) for

each cache block after each operation is done and calculate the number of misses in both

cases.

Name ____________________________

Page 7 of 14

Assume we use the standard MSI protocol. Fill in the following table.

Standard MSI Protocol

 Processor P1’s Cache Processor P2’s Cache

Initial State A: I B: I A: I B: I

After P2 reads A A: I B: I A: S B: I

After P1 writes A A: M B: I A: I B: I

After P2 reads A A: S B: I A: S B: I

After P1 writes A A: M B: I A: I B: I

After P2 reads A A: S B: I A: S B: I

After P2 reads B A: S B: I A: S B: S

After P2 reads A A: S B: I A: S B: S

How many misses occur in the two caches? 2 write misses + 4 read misses = 6 misses

Assume we adopt Ben’s delayed invalidation optimization. Fill in the following table. If

there is a delayed invalidation, write it in the invalidation queue (the “Inv Queue”

column). For example, “Inv L” means there is a delayed invalidation on block L.

MSI Protocol with Delayed Invalidation

 Processor P1’s Cache Processor P2’s Cache

 MSI state Inv Queue MSI state Inv Queue

Initial State A: I B: I A: I B: I

After P2 reads A A: I B: I A: S B: I

After P1 writes A A: M B: I A: S B: I Inv A

After P2 reads A A: M B: I A: S B: I Inv A

After P1 writes A A: M B: I A: S B: I Inv A

After P2 reads A A: M B: I A: S B: I Inv A

After P2 reads B A: M B: I A: I B: S

After P2 reads A A: S B: I A: S B: S

How many misses occur in the two caches? 1 write miss + 3 read misses = 4 misses

Name ____________________________

Page 8 of 14

Question 2 (6 Points)

Does Ben’s delayed invalidation optimization violate cache coherence rules? Please

explain your answer in one or two sentences.

No. There are two coherence rules:

(1) Write propagation: Writes eventually become visible to all processors.

 Yes. With delayed invalidation, writes from other processors become visible

when a local miss, either a read miss (I->S) or a write miss (I->M or S->M),

occurs.

(2) Write serialization: Writes to the same location are serialized, and all processors

see them in the same order.

 Yes. With delayed invalidation, all processors still see the same global

ordering of writes.

Question 3 (10 Points)

Suppose the original system guarantees sequential consistency. Does adding the delayed

invalidation optimization break sequential consistency? Please explain your answer in

one or two sentences. If your answer is yes, please provide a sequence of load/store

operations that violates sequential consistency.

No. The system is sequential consistent if the following conditions are met:

(1) The result of any execution is the same as if the operations of all the processors

were executed in some sequential order. In other words, all processors agree on a

global ordering of reads and writes.

 Yes. With delayed invalidation, the reads that happen before the invalidation

is processed can be seen as reads happening before the write that causes

BusRdX. Those reads hit in the cache and are not visible to other processors.

For example, in Question 1, all processors agree on a logical ordering:

I0 -> I2 -> I4 -> I1 -> I3 -> I5 -> I6.

(2) The operations of each individual processor appear in program order.

 Yes. Delayed invalidation only tries to re-order reads from other processors’

writes.

Name ____________________________

Page 9 of 14

Question 4 (8 Points)

Ben only applies delayed invalidation on cache blocks that are in the S state. When a

cache observes a Bus Read Exclusive message (BusRdX) and the associated cache block

is in the Modified (M) state, it sends out the data in response to a BusRdX message and

changes the cache state to Invalid (I).

Is it possible to delay invalidation when the cache block is in the Modified (M) state? If it

is not, please explain why. If it is possible, please describe how to make delayed

invalidations work when the block is in the M state. In other words, please describe the

actions the cache needs to take when the cache observes a BusRdX message, how to

handle subsequent read and write accesses if the invalidation is delayed, and when the

invalidation needs to be processed.

When observing a BusRdX message, change the cache state from M to S and send the

data value to the bus. The invalidation needs to be processed before processing any

subsequent read or write miss.

Name ____________________________

Page 10 of 14

Part C: Synchronization and Consistency (30 Points)

Please use Handout 14 to answer the questions in this part.

Question 1 (12 Points)

Ben designs an architecture that does not have the atomic compare-and-swap (CAS)

instruction but has load-reserve (LR) and store-conditional (SC) instructions.

Help Ben implement a Boolean compare-and-swap instruction BCAS old, new,

Imm(base) using load-reserve and store-conditional instructions:

LR rs, Imm(rt):

 <flag, addr> <1, rt + Imm>

 rs Memory[rt + Imm]

SC rs, Imm(rt):

 If <flag, addr> == <1, rt + Imm>:

 Memory[rt + Imm] rs

 rs 1 # Succeed
 Else:

 rs 0 # Fail

BCAS is a simplified CAS instruction that only deals with values 0 and 1. You can use

temporary registers (tmp1, tmp2, tmp3…) and any algorithmic, logical, memory,

and branch instructions in the MIPS instruction set.

BCAS old, new, Imm(base):

 LR tmp1, Imm(base) # load M[Imm+base] into tmp1

 BNE tmp1, old, fail # if tmp1 != old, go to fail

 MOV tmp2, new # copy new to tmp2

 SC tmp2, Imm(base) # try to store tmp2

 BNEZ tmp2, skip # check if SC succeeds

 NOR tmp1, tmp1, tmp1 # invert the value of tmp1

 (since M[Imm+base] is changed)

 fail: MOV old, tmp1 # copy tmp1 to old

 skip: NOP

Name ____________________________

Page 11 of 14

Question 1 Cont.

(This is an extra page in case you need more space for Question 1.)

Name ____________________________

Page 12 of 14

Question 2 (6 Points)

Suppose the hardware where the shared-memory queue from Handout 14 is executed has

a weak consistency model that relaxes all the orderings of reads and writes. Give an

example of memory orderings between the producer and consumer that would result in

incorrect behavior. Please fully explain your answer to get full credit.

Your memory ordering example should look something like:
P1, C2, P2, C4, P4, C5, C7, C9, C10

If the tail write is visible to the consumer before the message write, then we have a

problem. Thus any sequence that contains the subsequence:

P4, C7, P2

will read an invalid message.

Name ____________________________

Page 13 of 14

Question 3 (12 Points)

Please add the minimum number of memory fences (FENCEWR, FENCERW, FENCEWW,

or FENCERR) to the producer and consumer codes to ensure correctness with a weak

consistency model. Please explain your answer fully.

Code for producer to enqueue a message:

P1: LD R3, 0(R2) # get tail pointer

P2: ST R1, 0(R3) # write message to tail

P3: ADD R3, R3, 4 # update tail pointer

 FENCEWW # don’t update tail before writing message

P4: ST R3, 0(R2)

Code for consumer to dequeue a message:

C1: SpinLock: MOV R6, R0 # set R6 to 0

C2: CAS R6, R5, 0(R4) # try to acquire lock

C3: BNEZ R6, SpinLock

 FENCEWR # don’t read head pointer before getting lock

C4: LD R7, 0(R2) # get head pointer

C5: Retry: LD R8, 0(R3) # get tail pointer

C6: BEQ R7, R8, Retry # is there a message?

 FENCERR # don’t read message before tail is updated

C7: LD R1, 0(R7) # read message from queue

C8: ADD R7, R7, 4 # update head pointer

C9: ST R7, 0(R2)

 FENCEWW # don’t release lock before updating head

C10: ST R0, 0(R4) # release lock

Name ____________________________

Page 14 of 14

Question 3 Cont.

(This is an extra page in case you need more space for Question 3.)

