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Computer System Architecture  
6.823 Quiz #4 

May 11th, 2016 
Professors Daniel Sanchez and Joel Emer 

 
 

 
Name: ______Solutions_________        

 
This is a closed book, closed notes exam. 

80 Minutes 
 15 Pages (+2 Scratch) 

 
Notes: 
• Not all questions are of equal difficulty, so look over the entire exam and 

budget your time carefully. 
• Please carefully state any assumptions you make. 
• Please write your name on every page in the quiz. 
• You must not discuss a quiz's contents with other students who have not yet 

taken the quiz. 
• Pages 16 and 17 are scratch pages. Use them if you need more space to answer 

one of the questions, or for rough work. 
 
 
  

 
    Part A  ________    32 Points 

     Part B    ________    32 Points 
Part C     ________    21 Points 
Part D     ________    15 Points 

 
TOTAL          ________  100 Points 
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Part A: VLIW Processors (32 points) 
 
In this question, we will examine the execution of the code below on a single-issue in-order 
processor and a VLIW processor. 
 

;; for (i = 0; i < N; i++) 
;;    Y[i] = Y[i] + A*X[i]; 
 
;; Initial values: 
;;  f1 := A 
;;  r1 := &X[0] and r2 = &Y[0] 
;;  r3 := &X[N] (first address after vector X) 

I1:  loop: ld f0, 0(r1) 
I2:        fmul f2, f0, f1 
I3:        ld f3, 0(r2) 
I4:        fadd f4, f2, f3 
I5:        st f4, 0(r2) 
I6:        addi r1, r1, 4 
I7:        addi r2, r2, 4 
I8:        bne r1, r3, loop 
 
 
Question 1 (5 points) 
 
The code above runs on an in-order, single-issue processor with perfect branch prediction and 
full bypassing. ALU (integer) operations have a 1-cycle latency (so, thanks to bypassing, 
consecutive dependent ALU operations execute without stalling), loads have a 2-cycle latency, 
and floating-point operations have a 3-cycle latency. How many cycles will the processor stall 
per loop iteration? 
 
I1àI2: 1 cycle 
I3àI4: 1 cycle (overlaps with I2 à I3 dependency) 
I4àI5: 2 cycles 
Total: 4 cycles 
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Question 2 (5 points) 
 
Assume the in-order processor has appropriate support for software pipelining (e.g., a rotating 
register file). If you applied software pipelining to the original loop, what is the minimum 
number of iterations that you would need to overlap to remove all stalls in steady-state 
operation? 
 
3 iterations, or 2 iterations (with some code reordering). 
 
 
 
 
 
 
 
 
 
 
 
 

 
Question 3 (8 points) 
 
Write VLIW code for the original instruction sequence, assuming the 3-operation VLIW format 
shown below. The VLIW architecture has the same fixed delays as the in-order processor (1/2/3 
cycles for ALU/memory/floating-point operations, respectively), and has no stall logic. You may 
reorder and modify the code. For full credit, your implementation should use the minimum 
number of VLIW instructions. 
 
Inst. ALU/Branch Unit Memory Unit Floating Point Unit 
1 loop: addi r1, r1, 4 ld f0, 0(r1)  
2 addi r2, r2, 4 ld f3, 0(r2)  
3   fmul f2, f0, f1 
4    
5    
6   fadd f4, f2, f3 
7    
8    
9 bne r1, r3, loop st f4, -4(r2)  
10    
11    
12    
13    
14    
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Question 4 (10 points) 
 
Apply loop unrolling to the VLIW code to eliminate all stalls. Unroll the fewest number of 
iterations required to cover any latencies. Whatever degree of unrolling you choose, assume it 
divides the number of loop iterations exactly. 
 
Inst. ALU/Branch Unit Memory Unit Floating Point Unit 
1  ld f0, 0(r1)  
2  ld f5, 4(r1)  
3  ld f7, 8(r1) fmul f2, f0, f1 
4 addi r1, r1, 12 ld f3, 0(r2) fmul f9, f5, f1 
5  ld f6, 4(r2) fmul f10, f7, f1 
6  ld f8, 8(r2) fadd f4, f2, f3 
7 addi r2, r2, 12  fadd f11, f9, f6 
8   fadd f12, f10, f8 
9  st f4, -12(r2)  
10  st f11, -8(r2)  
11 bne r1, r3, loop st f12, -4(r2)  
12    
13    
14    
 
 
 
Question 5 (4 points) 
 
Assume the VLIW processor has appropriate support for software pipelining (e.g., a rotating 
register file). What is the maximum throughput, in cycles per iteration, that the VLIW processor 
could achieve by applying software pipelining to the original loop? 
 
3 VLIW instructions per iteration.  
Each iteration of the loop has 3 memory operations, and we can issue 1 memory op per VLIW 
instruction. Hence we need at least 3 instructions per iteration. 
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Part B: Vector Processors (32 points) 
 
We will analyze the performance of a vector processor with the following features: 

• Single-issue, in-order execution 
• Scalar instructions execute on a 5-stage, fully-bypassed pipeline 
• 32 vector registers, 32 elements per vector register 
• Four vector lanes, with one ALU and one load-store unit per lane. Both take four cycles, 

are fully pipelined, and can process vector elements from independent instructions at the 
same time (the vector register file has enough ports per lane to feed both functional units) 

• No support for vector chaining 

 
The processor can issue a single (scalar or vector) instruction per cycle. Once it issues, a vector 
instruction uses the lanes’ ALUs or load-store units for as many consecutive cycles as needed to 
produce all of its results. A vector instruction stalls if either its functional unit is unavailable, or 
if it depends on the result of a prior instruction, in which case it stalls until the prior instruction 
finishes writing back all of its elements. The vector register file has enough ports to keep the 
vector ALUs and load-store units fully utilized. The processor implements the MIPS ISA plus 
the following vector instructions: 
 
Instruction Meaning 
setvlr Rs Set vector length register (VLR) to the value in Rs 
lv Vt, Rs Load vector register Vt starting at address in Rs 
sv Vt, Rs Store vector register Vt starting at address in Rs 
add.vv Vd, Vs, Vt Add elements in Vs, Vt, and store result in Vd 
mul.vv Vd, Vs, Vt Multiply  elements in Vs, Vt, and store result in Vd 
add.vs Vd, Vs, Rt Add Rt to each element in Vs, and store result in Vd 
mul.vs Vd, Vs, Rt Multiply each element in Vs by Rt, and store result in Vd 

addr
inst

Inst
Memory

0x4
Add

PC

Register	
File

Vector	
Register	
File

Scalar	
Load	Store	

Unit

Vector Load-Store Unit
Vector ALU

M1 M2 M3 M4

X1 X2 X3 X4

Scalar ALU
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Question 1 (8 points) 
 
Vectorize the scalar code below, assuming the X and Y arrays do not overlap. Assume that N is a 
multiple of the maximum vector length. Assume integers are 4-bytes. 
 

;; for (i = 0; i < N; i++) 
;;    Y[i] = Y[i] + A*X[i]; 
 
;; Initial values: 
;;  r10 := A 
;;  r1 := &X[0] and r2 = &Y[0] 
;;  r3 := &X[N] (first address after vector X) 

I1:  loop: ld r11, 0(r1) 
I2:        mul r12, r10, r11 
I3:        ld r13, 0(r2) 
I4:        add r14, r12, r13 
I5:        st r14, 0(r2) 
I6:        addi r1, r1, 4 
I7:        addi r2, r2, 4 
I8:        bne r1, r3, loop 
 
Provide equivalent vector code. For full credit, your code should execute as quickly as possible. 
  
  addi r20, r0, 32  ;; set r20 to 32 
  setvlr r20   ;; use all 32 vector elements 
Version 1: 
 loop: lv v1, r1 
   mul.vs v2, v1, r10 
   lv v3, r2 
  add.vv v4, v2, v3 
  sv v4, r2 
   addi r1, r1, 128 
  addi r2, r2, 128 
  bne r1, r3 loop 
Version 2: 

loop: lv v1, r1 
   lv v3, r2 

mul.vs v2, v1, r10 
  add.vv v4, v2, v3 
  sv v4, r2 
   addi r1, r1, 128 
  addi r2, r2, 128 
  bne r1, r3 loop 
 
The second version takes 1 cycle lesser to execute. Full credit awarded for both versions.  
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Question 2 (6 points) 
 
What is the throughput in cycles per iteration in steady state? 
 
45 / 44 cycles (depending on version of code) 
 
There’s a 12-cycle latency between dependent instructions (32/4 + 3 cycles for FU latency + 1 
cycle for writeback). The scalar instructions overlap with the last SV and are hence not shown.  
 
Instruction Iteration i Iteration (i+1) 
lv 0 45 
mul.vs 12  
lv 13  
add.vv 25  
sv 37  
 
A similar analysis can be performed for the second version of code sequence (in Question 1), and 
we arrive at 44 cycle latency. (0 – 8 – 12 – 24 – 36 (-- 44) are the corresponding issue cycles for 
the different instructions). 
 
 
 
Question 3 (6 points) 
 
Suppose we add chaining support to the processor. With chaining, a vector instruction that 
depends on a previous instruction can start execution if the first set of elements it processes is 
either already written to the vector register file or is available in the writeback stage (we add the 
requisite bypass paths). What is the throughput in cycles per iteration in steady state? 
 
24 / 25 cycles 
 
Now there is only a 4-cycle latency between dependent instructions.  
Instruction Iteration i Iteration (i+1) 
lv 0 24 
mul.vs 4  
lv 8  
add.vv 12  
sv 16  
 
For the second version of code sequence, a similar analysis yields the following sequence of 
issue cycles: 0 – 8 – 9 – 13 – 17 (– 25).  
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Question 4 (12 points) 
 
State whether each of the loops below can be vectorized on our vector processor. If the code 
would require the vector processor to have additional features to be vectorizable, specify these 
features. If the code cannot be vectorized, state your reasoning. 
 
All loops below operate on integer arrays A[N], B[N], and C[N]. These arrays do not overlap. 
 

a) for (int i = 0; i < N; i++) 
  A[i] = A[i+1] + B[i]; 
 
Yes, the code can be vectorized. 
 
 
 
 
 
 

 
 
 
 

b) for (int i = 0; i < N; i++) 
  A[i] = A[i-1] / B[i]; 
 
No, the code cannot be vectorized. The dependence on the computed value [i-1] forces 
serialization. 
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c) for (int i = 0; i < N; i++) 
  if (A[i] > 0)  
    C[i] = A[i] + B[i]; 
 
Yes, the code can be vectorized with additional support for masking. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

d) for (int i = 0; i < N; i++) 
  C[i] = A[i] + A[B[i]]; 
 
Yes, the code can be vectorized with additional support for gather. 
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Part C: Trace Scheduling and Predication (21 points) 
 
In this question, we will study the tradeoffs between trace scheduling and predication. We will 
use the MIPS code sequence shown below. 
 

    ;; if (x != 0) c += b; 
    ;; else c += 10; 
 I0: ld r1, 0(r11)   ;; r1 := x 
 I1: ld r2, 0(r12)   ;; r2 := c 
 I2: bne r1, I5    ;; x != 0 ? 
 I3: addi r2, r2, 10   ;; c += 10 
 I4: j end 
 I5: ld r3, 0(r13)   ;; r3 := b    
 I6: add r2, r2, r3   ;; c += b 
end: … 

 
 
 
Question 1 (5 points) 
 
A trace scheduling compiler optimizes the above code sequence, leveraging that the branch I2 is 
rarely taken. The optimized trace is shown below. Write the compensation code for this trace. 
 
 I1: ld r2, 0(r12) 
 I0: ld r1, 0(r11) 
 I3: addi r2, r2, 10 
 I2: bne r1, compensation  
end: … 
 
 
 
 
 
 
 
 
 
 

Trace A 

compensation:  
   ld r3, 0(r13) 
   subi r2, r2, 10 
   add r2, r2, r3 
 
 
 
 
 
 
 
 
    j end 
 
 

Compensation A 
There are other possible code sequences. Full credit was provided r2 was decremented by 10, 
and then the off-branch instructions were correctly performed. 
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Question 2 (6 points) 
 
Instead of performing trace scheduling, the compiler decides to emit predicated code for the 
given code sequence. We extend the MIPS ISA with a single predicate register, p, new 
instructions to set p, and extend all opcodes to support predicated variants of all ALU and 
memory instructions, as shown below: 
 
Instruction Meaning 
setpeq rs Set predicate register p to 1 if rs == 0, or set p to 0 otherwise 
setpne rs Set predicate register p to 1 if rs != 0, or p to 0 otherwise 
(p) instruction If predicate register p is 1, then execute the instruction. 
(!p) instruction If predicate register p is 0, then execute the instruction. 
 
Rewrite the original code sequence to leverage predication. For full credit, use the minimum 
number of instructions. 
 
ld r1, 0(r11) 
ld r2, 0(r12) 
setpeq r1 
(!p) ld r3, 0(r13) 
(p) addi r2, r2, 10 
(!p) add r3, r2, r3 

 
    
 

There are other possible code sequences. Full credit was given for correct functionality.  
 
Depending on the code sequence, the answers to the next question will vary. Credit given 
accordingly. 
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Question 3 (10 points) 
 
Consider the standard 5-stage MIPS pipeline: fully bypassed, with a one-cycle load-use stall, 
where branches are predicted not taken, and branches are resolved in the ALU stage. 
 
We extend this pipeline to support predication by maintaining the predicate register p in the 
ALU stage. setpeq and setpne update p eagerly in the ALU stage, and predicated instructions 
that should not be executed are turned to noops as they traverse the ALU stage. 

 
Please answer the following questions: 

 
a) (2 points) How many cycles does the trace-scheduled code in Question 1 take to execute in 

this processor, if branch I2 is not taken? 
 
There are no pipeline stalls. So we take 4 + (5-1) = 8 cycles. 
 
 
 
 
 

b) (3 points) How many cycles does your trace-scheduled code in Question 1 take to execute in 
this processor, if branch I2 is taken? 
 
The provided code sequence has no pipeline stalls (or bubbles), except for the mis-predicted 
branch (which leads to a 2 cycle bubble). Hence, we have 7 + (5-1) + 2 = 13 cycles. 

 
 
 
 

c) (3 points) How many cycles does your predicated code in Question 2 take to execute in this 
processor? 
 
The provided code sequence has no pipeline stalls (or bubbles). Hence 6 + (5-1) = 10 cycles. 
 
 
 
 
 

d) (2 points) How frequently does branch I2 need to be taken for the predicated code to be faster 
than the trace-scheduled code? 
 
Suppose the branch is taken with probability p. Then, we want: 
8(1-p) + 13 p > 10   =>  p > 0.4. Therefore, the branch has to be taken > 40% of the time. 
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Part D: Transactional Memory (15 points) 
 
You are designing a hardware transactional memory (HTM) system that uses pessimistic 
concurrency control (i.e., on each load/store, the HTM checks for conflicting accesses to the 
same address made by other transactions). Comment on whether the following conflict resolution 
policies suffer from either livelock (i.e., the system may reach a state where no single transaction 
makes forward progress) or starvation (i.e., the system may reach a state where at least one 
transaction does not make forward progress). State your reasoning. 
 

 
1. Requester wins: Upon a conflict, the transaction whose request initiated the conflict 

check is granted access to the data, and any conflicting transactions are aborted. After 
aborting, transactions immediately restart execution.  
 
This policy can livelock. Transactions A and B that conflict, can end up aborting each 
other similar to the scenario discussed in L23-19. This policy is also prone to starvation if 
a transaction gets aborted by conflicting transactions repeatedly. 
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2. Timestamp-based, retain timestamp on abort: Each transaction is assigned a unique 
timestamp when it first begins execution. Timestamps are monotonically increasing. 
Upon a conflict, if the requesting transaction’s timestamp is lower than the timestamps of 
all other conflicting transactions, the requester is granted access to the data, and other 
conflicting transactions are aborted. Otherwise, the requesting transaction is aborted. 
 
After aborting, transactions immediately restart execution. Aborted transactions retain 
their original timestamp when they restart execution. 
 
Cannot livelock or starve. At some point, a transaction becomes the oldest transaction in 
the system (i.e. with the lowest timestamp), and can proceed to completion (commit) at 
that point. 

 
 
 
 
 
 
 
 
 

 
 

3. Timestamp-based, discard timestamp on abort: Like the previous policy, except that 
aborted transactions discard their previous timestamp and acquire a new one when they 
restart execution. 
 
This policy cannot livelock since the lowest timestamp transaction at any point can 
commit. However, this policy can lead to starvation, since an aborted transaction acquires 
a new timestamp on restarting execution. It is possible that it repeatedly conflicts with 
lower timestamp transactions, and is aborted. 
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4. Random-number-based, retain random number on abort: Each transaction is 
assigned a unique random number when it first begins execution. Upon a conflict, if the 
requesting transaction’s random number is lower than the random numbers of all other 
conflicting transactions, the requester is granted access to the data, and other conflicting 
transactions are aborted. Otherwise, the requesting transaction is aborted. 
 
After aborting, transactions immediately restart execution. Aborted transactions retain 
their original random number when they restart execution. 

 
This policy cannot livelock. The lowest timestamp transaction will complete unless a new 
conflicting transaction with lower timestamp arrives in the system (and issues a 
conflicting memory access) before completion of this transaction. Eventually, we should 
generate a transaction with minimum random number allowing it to complete. The policy 
can however lead to starvation if a transaction is assigned the maximum possible random 
number. 
 

 
 
 
 
 
 
 
 

5. Random-number-based, discard random number on abort: Like the previous policy, 
except that aborted transactions discard their previous random number and acquire a new 
one when they restart execution. 
 
This policy cannot livelock (reason similar to the previous question). Since an aborted 
transaction receives a new timestamp on restarting execution, this policy avoids 
starvation. 
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Scratch Space 
 
Use these extra pages if you run out of space or for your own personal notes. We will not grade 
this unless you tell us explicitly in the earlier pages. 
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Scratch Space 


