
http://www.csg.csail.mit.edu/6.823

Daniel Sanchez
Computer Science and Artificial Intelligence Lab

M.I.T.

Memory Consistency Models

Sanchez & Emer

Coherence vs Consistency

• Cache coherence makes private caches
invisible to software
– Concerns reads/writes to a single memory location

• Memory consistency models precisely specify
how memory behaves with respect to read
and write operations from multiple processors
– Concerns reads/writes to multiple memory locations

April 10, 2017

L16-2

Sanchez & Emer

Why Consistency Matters

• What value does r2 hold after both
processors finish running this code?

Processor 1 Processor 2

Store (a), 10; L: Load r1, (flag);

Store (flag), 1; if r1 == 0 goto L;

 Load r2, (a);

Initial memory contents
a: 0

flag: 0

It depends on the order in which processor 2
observes processor 1’s stores!

10 if Store (flag) > Store (a); 0 or 10 otherwise

April 10, 2017

L16-3

Sanchez & Emer

Sequential Consistency
A Straightforward Memory Model

“ A system is sequentially consistent if the result of
any execution is the same as if the operations of all
the processors were executed in some sequential
order, and the operations of each individual processor
appear in the order specified by the program”
 Leslie Lamport

Sequential Consistency =
 arbitrary order-preserving interleaving
 of memory references of sequential programs

M

P P P P P P

April 10, 2017

L16-4

Sanchez & Emer

Sequential Consistency

• In-order instruction execution

• Atomic loads and stores

SC is easy to understand, but architects and compiler
writers want to violate it for performance

Processor 1 Processor 2

Store (a), 10; L: Load r1, (flag);

Store (flag), 1; if r1 == 0 goto L;

 Load r2, (a);

April 10, 2017

L16-5

Sanchez & Emer

Memory Model Issues

Architectural optimizations that are correct
for uniprocessors often violate sequential
consistency and result in a new memory
model for multiprocessors

April 10, 2017

L16-6

Sanchez & Emer

Consistency Models

• Sequential Consistency
– All reads and writes in order

• Relaxed Consistency (one or more of the following)
– Loads may be reordered after loads

• e.g., PA-RISC, Power, Alpha

– Loads may be reordered after stores

• e.g., PA-RISC, Power, Alpha

– Stores may be reordered after stores

• e.g., PA-RISC, Power, Alpha, PSO

– Stores may be reordered after loads

• e.g., PA-RISC, Power, Alpha, PSO, TSO, x86

– Other more esoteric characteristics

• e.g., Alpha

April 10, 2017

L16-7

Sanchez & Emer

Committed Store Buffers

CPU

Cache

Main Memory

CPU

Cache

• CPU can continue execution
while earlier committed
stores are still propagating
through memory system
– Processor can commit other

instructions (including loads and
stores) while first store is
committing to memory

– Committed store buffer can be
combined with speculative store
buffer in an out-of-order CPU

• Local loads can bypass
values from buffered stores
to same address

April 10, 2017

L16-8

Sanchez & Emer

• Suppose Loads can go ahead of Stores
waiting in the store buffer: Yes !

 Process 1 Process 2

 Store (flag1),1; Store (flag2),1;

 Load r1, (flag2); Load r2, (flag1);

Example 1: Store Buffers

Initially, all memory
locations contain zeros

Question: Is it possible that r1=0 and r2=0?
• Sequential consistency: No

Total Store Order (TSO):
 Sun SPARC, IBM 370

April 10, 2017

L16-9

Sanchez & Emer

 Process 1 Process 2

 Store (flag1), 1; Store (flag2), 1;

 Load r3, (flag1); Load r4, (flag2);

 Load r1, (flag2); Load r2, (flag1);

Example 2: Store-Load Bypassing

• Suppose Store-Load bypassing is permitted
in the store buffer
– No effect in Sparc’s TSO model, still not SC
– In IBM 370, a load cannot return a written value

until it is visible to other processors => implicity
adds a memory fence, looks like SC

Question: Do extra Loads have any effect?
• Sequential consistency: No

April 10, 2017

L16-10

Sanchez & Emer

Interleaved Memory System

CPU

Even

Cache

Memory

(Even

Addresses)

Odd

Cache

Memory

(Odd

Addresses)

• Achieve greater throughput
by spreading memory
addresses across two or more
parallel memory subsystems
– In snooping system, can have

two or more snoops in progress
at same time (e.g., Sun UE10K
system has four interleaved
snooping busses)

– Greater bandwidth from main
memory system as two memory
modules can be accessed in
parallel

April 10, 2017

L16-11

Sanchez & Emer

• With non-FIFO store buffers: Yes

 Process 1 Process 2

 Store (a), 1; Load r1, (flag);

 Store (flag), 1; Load r2, (a);

Example 3: Non-FIFO Store buffers

Sparc’s PSO memory model

Question: Is it possible that r1=1 but r2=0?
• Sequential consistency: No

April 10, 2017

L16-12

Sanchez & Emer

• Assuming stores are ordered: Yes because
Loads can be reordered

Example 4: Non-Blocking Caches

Alpha, Sparc’s RMO, PowerPC’s WO

Question: Is it possible that r1=1 but r2=0?
• Sequential consistency: No

 Process 1 Process 2

 Store (a), 1; Load r1, (flag);

 Store (flag), 1; Load r2, (a);

April 10, 2017

L16-13

Sanchez & Emer

Initially both r1 and r2 contain 1.

 Process 1 Process 2

 Store (flag1), r1; Store (flag2), r2;

 Load r1, (flag2); Load r2, (flag1);

• Register renaming: Yes because it removes
anti-dependencies

Example 5: Register Renaming

Question: Is it possible that r1=0 but r2=0?
• Sequential consistency: No

Register
renaming
will
eliminate
this edge

April 10, 2017

L16-14

Sanchez & Emer

• With speculative loads: Yes even if the
stores are ordered

 Process 1 Process 2

 Store (a), 1; L: Load r1, (flag);

 Store (flag), 1; if r1 == 0 goto L;

 Load r2, (a);

Example 6: Speculative Execution

Question: Is it possible that r1=1 but r2=0?
• Sequential consistency: No

April 10, 2017

L16-15

Sanchez & Emer

Initially both r1 and r3 contain 1.

 Process 1 Process 2

 Store (flag1), r1; Store (flag2), r3;

 Load r2, (flag2); Load r4, (flag1);

Example 7: Address Speculation

Question: Is it possible that r2=0 but r4=0?
• Sequential consistency: No
• Address speculation: Yes because it
removes the dependencies between the
stores and loads

Address
speculati
on will
eliminate
this edge

Flag1 and flag2 are registers
pointing at memory locations

April 10, 2017

L16-16

Sanchez & Emer

• Even if Loads on a processor are ordered,
the different ordering of stores can be
observed if the Store operation is not
atomic.

Process 1 Process 2 Process 3 Process 4

Store (a),1; Store (a),2; Load r1, (a); Load r3, (a);

 Load r2, (a); Load r4, (a);

Example 8: Store Atomicity

Question: Is it possible that r1=1 and r2=2
but r3=2 and r4=1 ?

• Sequential consistency: No

April 10, 2017

L16-17

Sanchez & Emer

Example 9: Causality

Process 1 Process 2 Process 3

Store (flag1),1; Load r1, (flag1); Load r2, (flag2);

 Store (flag2),1; Load r3, (flag1);

Question: Is it possible that r1=1 and r2=1
but r3=0 ?

• Sequential consistency: No

• With load/load reordering: Yes

 Alpha

April 10, 2017

L16-18

Sanchez & Emer

Weaker Memory Models &
Memory Fence Instructions

• Architectures with weaker memory models
provide memory fence instructions to
prevent otherwise permitted reorderings
of loads and stores

Fencewr
Store (a1), r2;

Load r1, (a2);

Fencerr; Fencerw; Fenceww;

The Load and Store can be

reordered if a1 =/= a2.

Insertion of Fencewr will

disallow this reordering

Similarly:

SUN’s Sparc: MEMBAR;
 MEMBARRR; MEMBARRW; MEMBARWR; MEMBARWW
PowerPC: Sync; EIEIO

April 10, 2017

L16-19

Sanchez & Emer

Enforcing Ordering using Fences

 Processor 1 Processor 2

Store (a),10; L: Load r1, (flag);

Store (flag),1; if r1 == 0 goto L;

 Load r2, (a);

 Processor 1 Processor 2

Store (a),10; L: Load r1, (flag);

Fenceww; if r1 == 0 goto L;

Store (flag),1; Fencerr;
 Load r2, (a);

Weak ordering

April 10, 2017

L16-20

Sanchez & Emer

Weaker (Relaxed) Memory Models

• Hard to understand and remember

• Unstable - Modèle de l’ année

• Abandon weaker memory models in favor
of implementing SC.

Alpha, Sparc
PowerPC, ...

Write-
buffers

Store is globally
performed

TSO, PSO,
RMO, ...

RMO=WO? SMP, DSM

April 10, 2017

L16-21

Sanchez & Emer

Implementing SC

1. The memory operations of each individual
processor appear to all processors in the
order the requests are made to the memory.

– Provided by cache coherence, which ensures that all

processors observe the same order of loads and stores to
an address

2. Any execution is the same as if the
operations of all the processors were
executed in some sequential order

– Provided by enforcing a dependence between each

memory operation and the following one

April 10, 2017

L16-22

Sanchez & Emer

SC Data Dependence

• Stall
– Use in-order execution and blocking caches

• Cache coherence plus allowing a processor to have
only one request in flight at a time will provide SC

• Change architecture Relaxed memory models
– Use OOO and non-blocking caches

• Cache coherence and allowing multiple concurrent
requests (to different addresses) gives high
performance

• Add fence operations to force ordering when needed

• Speculate…

 April 10, 2017

L16-23

Sanchez & Emer

Sequential Consistency Speculation

• Local load-store ordering uses standard OOO mechanism

• Globally non-speculative stores

– Stores execute at commit -> stores are in-order!

• Globally speculative loads

– Guess at issue that the memory location used by a load will not
change between issue and commit of the instruction

• this is equivalent to loads happening in-order at commit

– Check at commit by remembering all loads addresses starting
at issue and watching for writes to that location.

– Data Management for rollback relies on the basic out-of-order
speculative data management used for uni-processor rollback
and instruction re-execution.

April 10, 2017

L16-24

Sanchez & Emer

SC Speculative Behavior

CPU A CPU B

ST A

1: ST A

2: LD A

3: LD A

4: ST A

ST A

ST A

ST A

ST A

ST A

April 10, 2017

L16-25

Sanchez & Emer

Properly Synchronized Programs

• Very few programmers do programming that
relies on SC; instead, they use higher-level
synchronization primitives
– locks, semaphores, monitors, atomic transactions

• A “properly synchronized program” is one
where each shared writable variable is
protected (say, by a lock) so that there is no
race in updating the variable
– There is still race to get the lock

– There is no way to check if a program is properly
synchronized

• For properly synchronized programs,
instruction reordering does not matter as
long as updated values are committed
before leaving a locked region

April 10, 2017

L16-26

Sanchez & Emer

Release Consistency
[Garachorloo 1990]

• Only care about inter-processor memory ordering
at thread synchronization points, not in between

• Can treat all synchronization instructions as the
only ordering points

…
Acquire(lock) // All following loads get most recent written values

… Read and write shared data ..
Release(lock) // All preceding writes are globally visible before

 // lock is freed.

…

April 10, 2017

L16-27

Sanchez & Emer

Takeaways

• SC is too low level a programming model. High-
level programming should be based on critical
sections & locks, atomic transactions, monitors, ...

• High-level parallel programming should be
oblivious of memory model issues
– Programmer should not be affected by changes in the

memory model

• ISA definition for Load, Store, Memory Fence,
synchronization instructions should
– Be precise

– Permit maximum flexibility in hardware implementation

– Permit efficient implementation of high-level parallel
constructs

April 10, 2017

L16-28

