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Coherence vs Consistency 

• Cache coherence makes private caches 
invisible to software 
– Concerns reads/writes to a single memory location 

 

 

• Memory consistency models precisely specify 
how memory behaves with respect to read 
and write operations from multiple processors 
– Concerns reads/writes to multiple memory locations 

April 10, 2017 

L16-2 



Sanchez & Emer 
 

Why Consistency Matters 

• What value does r2 hold after both 
processors finish running this code? 

Processor  1  Processor  2 

Store (a), 10;                L: Load r1, (flag); 

Store (flag), 1;   if r1 == 0 goto L; 

     Load r2, (a); 

Initial memory contents 
a: 0 

flag: 0 

It depends on the order in which processor 2 
observes processor 1’s stores! 

10 if Store (flag) > Store (a); 0 or 10 otherwise 
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Sequential Consistency 
A Straightforward Memory Model 

“ A system is sequentially consistent if the result of 
any execution is the same as if the operations of all 
the processors were executed in some sequential  
order, and the operations of each individual processor 
appear in the order specified by the program” 
      Leslie Lamport 
 
Sequential Consistency =  
 arbitrary order-preserving interleaving 
 of memory references of sequential programs 

M 

P P P P P P 
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Sequential Consistency 

• In-order instruction execution 

• Atomic loads and stores 

SC is easy to understand, but architects and compiler  
writers want to violate it for performance 

Processor  1  Processor  2 

Store (a), 10;                L: Load r1, (flag); 

Store (flag), 1;   if r1 == 0 goto L; 

     Load r2, (a); 
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Memory Model Issues 

Architectural optimizations that are correct 
for uniprocessors often violate sequential 
consistency and result in a new memory 
model for multiprocessors 
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Consistency Models 

• Sequential Consistency 
– All reads and writes in order  

 

 

• Relaxed Consistency (one or more of the following) 
– Loads may be reordered after loads  

• e.g., PA-RISC, Power, Alpha 

– Loads may be reordered after stores  

• e.g., PA-RISC, Power, Alpha 

– Stores may be reordered after stores  

• e.g., PA-RISC, Power, Alpha, PSO 

– Stores may be reordered after loads  

• e.g., PA-RISC, Power, Alpha, PSO, TSO, x86 

 

– Other more esoteric characteristics  

• e.g., Alpha 
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Committed Store Buffers 

CPU 

Cache 

Main Memory 

CPU 

Cache 

• CPU can continue execution 
while earlier committed 
stores are still propagating 
through memory system 
– Processor can commit other 

instructions (including loads and 
stores) while first store is 
committing to memory 

– Committed store buffer can be 
combined with speculative store 
buffer in an out-of-order CPU 

• Local loads can bypass 
values from buffered stores 
to same address 
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• Suppose Loads can go ahead of Stores 
waiting in the store buffer: Yes !  

 

  Process 1   Process 2  

  Store (flag1),1;  Store (flag2),1; 

  Load r1, (flag2);  Load r2, (flag1);  

Example 1:  Store Buffers 

Initially, all memory  
locations contain zeros 

Question:  Is it possible that r1=0 and r2=0? 
•  Sequential consistency:  No 

Total Store Order (TSO):  
 Sun SPARC, IBM 370 
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  Process 1   Process 2  

  Store (flag1), 1;  Store (flag2), 1; 

  Load r3, (flag1);  Load r4, (flag2); 

  Load r1, (flag2);  Load r2, (flag1);  

Example 2:  Store-Load Bypassing 

• Suppose Store-Load bypassing is permitted 
in the store buffer 
– No effect in Sparc’s TSO model, still not SC 
– In IBM 370, a load cannot return a written value 

until it is visible to other processors => implicity 
adds a memory fence, looks like SC 

Question:  Do extra Loads have any effect? 
•  Sequential consistency:  No 
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Interleaved Memory System 

CPU 

Even 

Cache 

Memory 

(Even 

Addresses) 

Odd 

Cache 

Memory 

(Odd 

Addresses) 

• Achieve greater throughput 
by spreading memory 
addresses across two or more 
parallel memory subsystems 
– In snooping system, can have 

two or more snoops in progress 
at same time (e.g., Sun UE10K 
system has four interleaved 
snooping busses) 

– Greater bandwidth from main 
memory system as two memory 
modules can be accessed in 
parallel 
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• With non-FIFO store buffers: Yes  

  Process 1   Process 2  

  Store (a), 1;   Load r1, (flag);  

 Store (flag), 1;  Load r2, (a);  

Example 3:  Non-FIFO Store buffers 

Sparc’s PSO memory model 

Question:  Is it possible that  r1=1 but r2=0? 
•  Sequential consistency:  No 
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• Assuming stores are ordered: Yes because 
Loads can be reordered 

Example 4:  Non-Blocking Caches 

Alpha, Sparc’s RMO, PowerPC’s WO 

Question:  Is it possible that  r1=1 but r2=0? 
•  Sequential consistency:  No 

  Process 1   Process 2  

  Store (a), 1;   Load r1, (flag);  

 Store (flag), 1;  Load r2, (a);  
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Initially both r1 and r2 contain 1. 

  Process 1   Process 2  

  Store (flag1), r1;  Store (flag2), r2; 

  Load r1, (flag2);  Load r2, (flag1);  

• Register renaming: Yes because it  removes 
anti-dependencies 

Example 5:  Register Renaming 

Question:  Is it possible that  r1=0 but r2=0? 
•  Sequential consistency:  No 

Register 
renaming 
will 
eliminate  
this edge 
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• With speculative loads: Yes even if the 
stores are ordered 

  Process 1   Process 2  

  Store (a), 1;      L: Load r1, (flag);  

 Store (flag), 1;  if r1 == 0 goto L; 

      Load r2, (a);  

Example 6:  Speculative Execution 

Question:  Is it possible that  r1=1 but r2=0? 
•  Sequential consistency:  No 
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Initially both r1 and r3 contain 1. 

  Process 1   Process 2  

  Store (flag1), r1;  Store (flag2), r3; 

  Load r2, (flag2);  Load r4, (flag1);  

 

Example 7:  Address Speculation 

Question:  Is it possible that  r2=0 but r4=0? 
•  Sequential consistency:  No 
•  Address speculation: Yes because it  
removes the dependencies between the 
stores and loads 

Address 
speculati
on will 
eliminate 
this edge 

Flag1 and  flag2 are registers  
pointing at memory locations 
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• Even if Loads on a processor are ordered, 
the different ordering of stores can be 
observed if the Store operation is not 
atomic. 

Process 1 Process 2 Process 3     Process 4 

Store (a),1; Store (a),2;  Load r1, (a);       Load r3, (a); 

      Load r2, (a);       Load r4, (a); 

Example 8:  Store Atomicity 

Question:  Is it possible that  r1=1 and r2=2 
but r3=2 and r4=1 ?  

•  Sequential consistency:  No 
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Example 9:  Causality 

Process 1  Process 2  Process 3      

Store (flag1),1; Load r1, (flag1); Load r2, (flag2); 

    Store (flag2),1; Load r3, (flag1); 

 

 

 

 

Question:  Is it possible that  r1=1 and r2=1 
but r3=0 ?  

•  Sequential consistency:  No 

•  With load/load reordering: Yes 

  Alpha 
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Weaker Memory Models & 
Memory Fence Instructions 

• Architectures with weaker memory models 
provide memory fence instructions to 
prevent otherwise permitted reorderings 
of loads and stores 

 

Fencewr  
Store (a1), r2; 

Load r1, (a2); 

Fencerr; Fencerw; Fenceww; 

The Load and Store can be 

reordered if a1 =/= a2. 

Insertion of Fencewr will 

disallow this reordering   

Similarly:  

SUN’s Sparc: MEMBAR;  
      MEMBARRR; MEMBARRW; MEMBARWR; MEMBARWW 
PowerPC: Sync; EIEIO 
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Enforcing Ordering using Fences 

  Processor  1   Processor  2 

Store (a),10;      L: Load r1, (flag); 

Store (flag),1;   if r1 == 0 goto L; 

     Load r2, (a); 

  Processor  1   Processor  2 

Store (a),10;      L: Load r1, (flag); 

Fenceww;   if r1 == 0 goto L; 

Store (flag),1;   Fencerr;   
    Load r2, (a); 

Weak ordering 
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Weaker (Relaxed) Memory Models 

• Hard to understand and remember 

• Unstable - Modèle de l’ année 

• Abandon weaker memory models in favor 
of implementing SC. 

 

Alpha, Sparc 
PowerPC, ... 

Write- 
buffers 

Store is globally 
performed 

TSO, PSO, 
RMO, ... 

RMO=WO? SMP, DSM 
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Implementing SC 

1. The memory operations of each individual 
processor appear to all processors in the 
order the requests are made to the memory. 
 
– Provided by cache coherence, which ensures that all 

processors observe the same order of loads and stores to 
an address  
 

2. Any execution is the same as if the 
operations of all the processors were 
executed in some sequential order 
 
– Provided by enforcing a dependence between each 

memory operation and the following one 
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SC Data Dependence 

• Stall 
– Use in-order execution and blocking caches 

• Cache coherence plus allowing a processor to have 
only one request in flight at a time will provide SC 

 

• Change architecture   Relaxed memory models 
– Use OOO and non-blocking caches 

• Cache coherence and allowing multiple concurrent 
requests (to different addresses) gives high 
performance 

• Add fence operations to force ordering when needed 

 

• Speculate… 
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Sequential Consistency Speculation 

• Local load-store ordering uses standard OOO mechanism  
 

• Globally non-speculative stores 

– Stores execute at commit -> stores are in-order! 
 

• Globally speculative loads 

– Guess at issue that the memory location used by a load will not 
change between issue and commit of the instruction 

• this is equivalent to loads happening in-order at commit 
 

– Check at commit by remembering all loads addresses starting 
at issue and watching for writes to that location. 
 

– Data Management for rollback relies on the basic out-of-order 
speculative data management used for uni-processor rollback 
and instruction re-execution. 
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SC Speculative Behavior 

CPU A CPU B 

ST A 

1: ST A 

2: LD A 

3: LD A 

4: ST A 

ST A 

ST A 

ST A 

ST A 

ST A 
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Properly Synchronized Programs 

• Very few programmers do programming that 
relies on SC; instead, they use higher-level 
synchronization primitives 
– locks, semaphores, monitors, atomic transactions 

• A “properly synchronized program” is one 
where each shared writable variable is 
protected (say, by a lock) so that there is no 
race in updating the variable 
– There is still race to get the lock 

– There is no way to check if a program is properly 
synchronized 

• For properly synchronized programs, 
instruction reordering does not matter as 
long as updated values are committed 
before leaving a locked region 
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Release Consistency 
[Garachorloo 1990] 

• Only care about inter-processor memory ordering 
at thread synchronization points, not in between 

• Can treat all synchronization instructions as the 
only ordering points 

 
…  
Acquire(lock) // All following loads get most recent written values 

… Read and write shared data .. 
Release(lock) // All preceding writes are globally visible before 

      // lock is freed. 

… 
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Takeaways 

• SC is too low level a programming model. High-
level programming should be based on critical 
sections & locks, atomic transactions, monitors, ... 
 

• High-level parallel programming should be 
oblivious of memory model issues 
– Programmer should not be affected by changes in the 

memory model 

 

• ISA definition for Load, Store, Memory Fence, 
synchronization instructions should  
– Be precise 

– Permit maximum flexibility in hardware implementation 

– Permit efficient implementation of high-level parallel 
constructs  
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