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But Parallel Programming is HARD 

• Divide algorithm into tasks 

• Map tasks to threads 

• Add synchronization (locks, barriers, …) to avoid 
data races and ensure proper task ordering 

 

 

• Pitfalls: scalability, locality, deadlock, livelock, 
fairness, races, composability, portability… 

May 8, 2017 
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Example: Hash Table 

• Sequential implementation: 

 

 

 

 

 

 

• Not thread-safe 
– e.g., concurrent inserts and lookups cause races 

– Need synchronization 

May 8, 2017 

V lookup(K key)  { 

  int idx = hash(key); 

  for (;; idx++) { 

    if (buckets[idx].empty) return NOT_FOUND; 

    if (buckets[idx].key == key) return buckets[idx].val; 

  } 

} 
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Thread-Safe Hash Table with 
Coarse-Grain Locks 

• Also add lock(mutex)/unlock(mutex) pairs to all 
other hash table methods (insert, remove, …) 

• Problem? 

May 8, 2017 

Serializes operations to independent buckets 

V lookup(K key)  { 

  int idx = hash(key); 

  V result = NOT_FOUND;   

  lock(mutex); 

  for (;; idx++) { 

    if (buckets[idx].empty) break; 

    if (buckets[idx].key == key) { 

      result = buckets[idx].val; 

      break; 

    } 

  } 

  unlock(mutex); 

  return result;   

} 
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V lookup(K key)  { 

  int idx = hash(key); 

  V result = NOT_FOUND;   

  for (;; idx++) { 

    lock(buckets[idx].mutex); 

    if (buckets[idx].empty) { 

      unlock(buckets[idx].mutex); 

      break; 

    } 

    if (buckets[idx].key == key) { 

      result = buckets[idx].val; 

      unlock(buckets[idx].mutex); 

      break; 

    } 

    unlock(buckets[idx].mutex); 

  } 

  return result; 

} 

Thread-Safe Hash Table with 
Fine-Grain Locks 

• Per-bucket locks 

• Problems? 

May 8, 2017 

Locking overheads 

Still overserializes! 
(e.g., concurrent reads 
to the same bucket) 
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Performance: Locks 
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Concurrency Control 

• We need to implement concurrency control to 
avoid races on shared data! 

 

• Options? 
– Stall 

• Mutual exclusion: Ensure at most one process in critical 
section; others wait 

 

– Speculate 

• Guess: No conflicts will occur during the critical section 

• Check: Detect whether conflicting data accesses occur 

• Recover: If conflict occurs, roll back; otherwise commit 

 

May 8, 2017 
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Transactional Memory (TM) 

• Memory transaction [Lomet’77, Knight’86, Herlihy & Moss’93] 

– An atomic & isolated sequence of memory accesses  

– Inspired by database transactions 

 

• Atomicity (all or nothing)  

– At commit, all memory writes take effect at once 

– On abort, none of the writes appear to take effect 

• Isolation 

– No other code can observe writes before commit 

• Serializability  

– Transactions seem to commit in a single serial order 

– The exact order is not guaranteed 

May 8, 2017 
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Programming with TM 

• Declarative synchronization 

– Programmers says what but not how 

– No declaration or management of locks 

 

• System implements synchronization 

– Typically through speculation 

– Performance hit only on conflicts (R-W or W-W) 

void deposit(account, amount) { 

   lock(account.mutex); 

   int t = bank.get(account); 

   t = t + amount; 

   bank.put(account, t); 

   unlock(account.mutex); 

} 

void deposit(account, amount) { 

   atomic { 

     int t = bank.get(account); 

     t = t + amount; 

     bank.put(account, t); 

   } 

} 

May 8, 2017 
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Advantages of TM 

• Easy-to-use synchronization 
– As easy to use as coarse-grain locks 

– Programmer declares, system implements 

 

• High performance 
– Performs at least as well as fine-grain locks 

– Automatic read-read & fine-grain concurrency 

– No tradeoff between performance & correctness 

 

• Composability 
– Safe & scalable composition of software modules (nested 

transactions) 

 

May 8, 2017 
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Performance: Locks vs Transactions 
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TCC: a HW-based TM system 

[Hammond et al, ISCA’04] 
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TM Implementation Basics 

• Use speculation to provide atomicity and isolation 
without sacrificing concurrency   

 

• Basic implementation requirements 
– Data versioning 

– Conflict detection & resolution 

 

• Implementation options 
– Hardware transactional memory (HTM) 

– Software transactional memory (STM) 

– Hybrid transactional memory 

• Hardware accelerated STMs and dual-mode systems 

May 8, 2017 
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Motivation for Hardware TM 

• Single-thread software TM performance: 
 
 
 
 
 
 
 
 
 
 

• Software TM suffers 2-8x slowdown over sequential 
– Short-term issue: demotivates parallel programming 
– Long-term issue: not energy-efficient 

 

• Industry adopting Hardware TM: Intel (since Haswell), 
IBM (Blue Gene and zSeries) 
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Data Management Policy 

• Manage uncommitted (new) and committed (old) 
versions of data for concurrent transactions 

 

1. Eager versioning (undo-log based) 
– Update memory location directly 

– Maintain undo info in a log 

+ Fast commits 

– Slow aborts 

 

2. Lazy versioning (write-buffer based) 
– Buffer data until commit in a write buffer 

– Update actual memory locations at commit 

+ Fast aborts 

– Slow commits 

 

May 8, 2017 
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Eager Versioning Illustration 

Begin Xaction 

Thread 

X: 10 Memory 

Undo 

Log 

Write X←15 

Thread 

X: 15 Memory 

Undo 

Log X: 10 

Commit Xaction  

Thread 

X: 15 Memory 

Undo 

Log X: 10 

Abort Xaction 

Thread 

X: 10 Memory 

Undo 

Log X: 10 
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Lazy Versioning Illustration 

Begin Xaction 

Thread 

X: 10 Memory 

Write 

Buffer 

Write X←15 

Thread 

X: 10 Memory 

Write 

Buffer X: 15 

Abort Xaction 

Thread 

X: 10 Memory 

Write 

Buffer X: 15 

Commit Xaction  

Thread 

X: 15 Memory 

Write 

Buffer X: 15 
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Conflict Detection 

• Detect and handle conflicts between transaction 

– Read-Write and (often) Write-Write conflicts 

– Must track the transaction’s read-set and write-set  

• Read-set: addresses read within the transaction 

• Write-set: addresses written within transaction 

 

1. Pessimistic detection  

– Check for conflicts during loads or stores 

• SW: SW barriers using locks and/or version numbers 

• HW: check through coherence actions 

– Use contention manager to decide to stall or abort 

• Various priority policies to handle common case fast  

May 8, 2017 
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Pessimistic Detection 
Illustration 
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Conflict Detection (cont) 

2. Optimistic detection 
– Detect conflicts when a transaction attempts to commit 

– SW: validate write/read-set  using locks or version numbers 

– HW: validate write-set using coherence actions 

• Get exclusive access for cache lines in write-set 

• On a conflict, give priority to committing transaction 

• Other transactions may abort later on 

– On conflicts between committing transactions, use contention 
manager to decide priority 

 

• Note: optimistic & pessimistic schemes together 
– Several STM systems are optimistic on reads, pessimistic on 

writes 

May 8, 2017 
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Optimistic Detection Illustration 
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Conflict Detection Tradeoffs 

1. Pessimistic conflict detection 

+ Detect conflicts early 

• Undo less work, turn some aborts to stalls 

– No forward progress guarantees, more aborts in some cases 

• Requires additional techniques to guarantee forward progress 

(e.g., backoff, prioritize older transactions) 

– Locking issues (SW), fine-grain communication (HW) 

 

2. Optimistic conflict detection 

+ Forward progress guarantees 

+ Potentially less conflicts, shorter locking (SW), bulk 

communication (HW) 

– Detects conflicts late, still has fairness problems 

 

May 8, 2017 
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HTM Implementation Overview 

• Data versioning: Use caches 

– Cache the write-buffer or the undo-log 

– Cache metadata to track read-set and write-set 

– Can do with private, shared, and multi-level caches 
 

• Conflict detection: Use the cache coherence protocol 

– Coherence lookups detect conflicts between transactions 

– Works with snooping & directory coherence 

 

• Note: On aborts, must also restore register state  take 
register checkpoint 

– OOO cores support with minimal changes (recall rename table 
snapshots…) 

May 8, 2017 
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HTM Design 

• Cache lines track read-set & write-set 
– R bit: indicates data read by transaction; set on load 

– W bit: indicates data written by transaction; set on store 

– R/W bits can be at word or cache-line granularity 

– R/W bits gang-cleared on transaction commit or abort 

 

 

 

• Coherence requests check R/W bits to detect 
conflicts  
– Shared request to W-word is a read-write conflict 

– Exclusive request to R-word is a write-read conflict 

– Exclusive request to W-word is a write-write conflict  

May 8, 2017 
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Example HTM: Lazy Optimistic 

CPU 

Cache 

ALUs 

TM State 

Tag Data V 

Registers 

• CPU changes 

– Register checkpoint 

– TM state registers 
(status, pointers to 
handlers, …) 
 

• Cache changes 

– Per-line R/W bits 

 

• Assume a bus-based 
system 

W R 
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HTM Transaction Execution 

Xbegin 

Load A 

Store B  5 

Load C 

Xcommit 

CPU 

Cache 

ALUs 

TM State 

Tag Data V 

C 9 1 

W R 

Registers 

• Transaction begin 

• Initialize CPU & cache state 

• Take register checkpoint 

0 0 
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HTM Transaction Execution 

Xbegin 

Load A 

Store B  5 

Load C 

Xcommit 

CPU 

Cache 

ALUs 

TM State 

Tag Data V 

C 9 1 

W R 

Registers 

0 0 

A 33 1 1 0 
• Load operation 

• Serve cache miss if needed 

• Set line’s R-bit 
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HTM Transaction Execution 

Xbegin 

Load A 

Store B  5 

Load C 

Xcommit 

CPU 

Cache 

ALUs 

TM State 

Tag Data V 

C 9 1 

W R 

Registers 

0 0 

A 33 1 1 0 

B 5 1 0 1 

• Store operation 

• Serve cache miss if needed 
(if other cores have line, get 
it shared anyway!) 

• Set line’s W-bit 
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HTM Transaction Execution 

Xbegin 

Load A 

Store B  5 

Load C 

Xcommit 

CPU 

Cache 

ALUs 

TM State 

Tag Data V 

C 9 1 

W R 

Registers 

1 0 

A 33 1 1 0 

B 5 1 0 1 upgradeX B 
0 0 

0 0 

0 0 

• Fast 2-phase commit: 

1. Validate: Request exclusive access to write-set lines (if needed) 

2. Commit: Gang-reset R&W bits, turns write-set data to valid (dirty) data 
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HTM Conflict Detection 

Xbegin 
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• Fast conflict detection & abort: 

– Check: Lookup exclusive requests in the read-set and write-set 

– Abort: Invalidate write-set, gang-reset R and W bits, restore checkpoint 
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HTM Advantages 

• Fast common-case behavior 

– Zero-overhead tracking of read-set & write-set 

– Zero-overhead versioning 

– Fast commits & aborts without data movement  

– Continuous validation of read-set 

 

• Strong isolation 

– Conflicts detected on non-transactional loads/stores as well 

 

• Simplifies multi-core coherence and consistency 

[Hammond’04, Ceze’07] 

– Recall: Sequential consistency hard to implement 

– How would you enforce SC using HTM? 

May 8, 2017 
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HTM Challenges 

• Performance pathologies: How to handle frequent 
contention? 
– Should HTM guarantee fairness/enforce priorities? 

• Size limitations: What happens if read-set + write-
set exceed size of cache? 

• Virtualization, I/O, syscalls… 

 

• Hybrid TMs may get the best of both worlds: 
– Handle common case in HW, but with no guarantees 

• Abort on cache overflow, interrupt, syscall instruction, … 

– On abort, code can revert to software TM 

– Current approach in Intel’s RTM… 

– … but still unclear how to integrate HTM & STM well 

May 8, 2017 
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