
http://www.csg.csail.mit.edu/6.823 Sanchez & Emer

Daniel Sanchez

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

(BASED ON EE382A MATERIAL FROM KOZYRAKIS)

Transactional Memory

Sanchez & Emer

Reminder: Why Multicore?

May 8, 2017

Performance

C
os

t (
ar

ea
, e

ne
rg

y…
)

Cost/perf curve of

possible core designs

High-perf,

expensive

core

Moderate perf,

efficient core

2 cores

4 cores

L23-2

Sanchez & Emer

But Parallel Programming is HARD

• Divide algorithm into tasks

• Map tasks to threads

• Add synchronization (locks, barriers, …) to avoid
data races and ensure proper task ordering

• Pitfalls: scalability, locality, deadlock, livelock,
fairness, races, composability, portability…

May 8, 2017

L23-3

Sanchez & Emer

Example: Hash Table

• Sequential implementation:

• Not thread-safe
– e.g., concurrent inserts and lookups cause races

– Need synchronization

May 8, 2017

V lookup(K key) {

 int idx = hash(key);

 for (;; idx++) {

 if (buckets[idx].empty) return NOT_FOUND;

 if (buckets[idx].key == key) return buckets[idx].val;

 }

}

L23-4

Sanchez & Emer

Thread-Safe Hash Table with
Coarse-Grain Locks

• Also add lock(mutex)/unlock(mutex) pairs to all
other hash table methods (insert, remove, …)

• Problem?

May 8, 2017

Serializes operations to independent buckets

V lookup(K key) {

 int idx = hash(key);

 V result = NOT_FOUND;

 lock(mutex);

 for (;; idx++) {

 if (buckets[idx].empty) break;

 if (buckets[idx].key == key) {

 result = buckets[idx].val;

 break;

 }

 }

 unlock(mutex);

 return result;

}

L23-5

Sanchez & Emer

V lookup(K key) {

 int idx = hash(key);

 V result = NOT_FOUND;

 for (;; idx++) {

 lock(buckets[idx].mutex);

 if (buckets[idx].empty) {

 unlock(buckets[idx].mutex);

 break;

 }

 if (buckets[idx].key == key) {

 result = buckets[idx].val;

 unlock(buckets[idx].mutex);

 break;

 }

 unlock(buckets[idx].mutex);

 }

 return result;

}

Thread-Safe Hash Table with
Fine-Grain Locks

• Per-bucket locks

• Problems?

May 8, 2017

Locking overheads

Still overserializes!
(e.g., concurrent reads
to the same bucket)

L23-6

Sanchez & Emer

Performance: Locks

0

0.2

0.4

0.6

0.8

1

1 2 4 8 16

Processors

E
x

e
c

u
ti

o
n

 T
im

e

coarse locks fine locks

0

1

2

3

4

5

1 2 4 8 16

Processors

E
x

e
c

u
ti

o
n

 T
im

e

coarse locks fine locks

B
a

la
n

c
e

d
 T

re
e

H

a
s

h
-T

a
b

le

L23-7

May 8, 2017

Sanchez & Emer

Concurrency Control

• We need to implement concurrency control to
avoid races on shared data!

• Options?
– Stall

• Mutual exclusion: Ensure at most one process in critical
section; others wait

– Speculate

• Guess: No conflicts will occur during the critical section

• Check: Detect whether conflicting data accesses occur

• Recover: If conflict occurs, roll back; otherwise commit

May 8, 2017

L23-8

Sanchez & Emer

Transactional Memory (TM)

• Memory transaction [Lomet’77, Knight’86, Herlihy & Moss’93]

– An atomic & isolated sequence of memory accesses

– Inspired by database transactions

• Atomicity (all or nothing)

– At commit, all memory writes take effect at once

– On abort, none of the writes appear to take effect

• Isolation

– No other code can observe writes before commit

• Serializability

– Transactions seem to commit in a single serial order

– The exact order is not guaranteed

May 8, 2017

L23-9

Sanchez & Emer

Programming with TM

• Declarative synchronization

– Programmers says what but not how

– No declaration or management of locks

• System implements synchronization

– Typically through speculation

– Performance hit only on conflicts (R-W or W-W)

void deposit(account, amount) {

 lock(account.mutex);

 int t = bank.get(account);

 t = t + amount;

 bank.put(account, t);

 unlock(account.mutex);

}

void deposit(account, amount) {

 atomic {

 int t = bank.get(account);

 t = t + amount;

 bank.put(account, t);

 }

}

May 8, 2017

L23-10

Sanchez & Emer

Advantages of TM

• Easy-to-use synchronization
– As easy to use as coarse-grain locks

– Programmer declares, system implements

• High performance
– Performs at least as well as fine-grain locks

– Automatic read-read & fine-grain concurrency

– No tradeoff between performance & correctness

• Composability
– Safe & scalable composition of software modules (nested

transactions)

May 8, 2017

L23-11

Sanchez & Emer

Performance: Locks vs Transactions

0

0.2

0.4

0.6

0.8

1

1 2 4 8 16

Processors

E
x

e
c

u
ti

o
n

 T
im

e

coarse locks fine locks TCC

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 4 8 16

Processors

E
x

e
c

u
ti

o
n

 T
im

e

coarse locks fine locks TCC

B
a

la
n

c
e

d
 T

re
e

H

a
s

h
M

a
p

TCC: a HW-based TM system

[Hammond et al, ISCA’04]
May 8, 2017

L23-12

Sanchez & Emer

TM Implementation Basics

• Use speculation to provide atomicity and isolation
without sacrificing concurrency

• Basic implementation requirements
– Data versioning

– Conflict detection & resolution

• Implementation options
– Hardware transactional memory (HTM)

– Software transactional memory (STM)

– Hybrid transactional memory

• Hardware accelerated STMs and dual-mode systems

May 8, 2017

L23-13

Sanchez & Emer

Motivation for Hardware TM

• Single-thread software TM performance:

• Software TM suffers 2-8x slowdown over sequential
– Short-term issue: demotivates parallel programming
– Long-term issue: not energy-efficient

• Industry adopting Hardware TM: Intel (since Haswell),
IBM (Blue Gene and zSeries)

0.0

0.5

1.0

1.5

2.0

kmeans

E
x
e
c
u

ti
o

n
 T

im
e

(
n

o
r
m

a
li
z
e
d

 t
o

s
e
q

u
e
n

ti
a
l)

0

1

2

3

4

5

6

vacation

STMwrite

STMread

STMcommit

Busy

May 8, 2017

L23-14

Sanchez & Emer

Data Management Policy

• Manage uncommitted (new) and committed (old)
versions of data for concurrent transactions

1. Eager versioning (undo-log based)
– Update memory location directly

– Maintain undo info in a log

+ Fast commits

– Slow aborts

2. Lazy versioning (write-buffer based)
– Buffer data until commit in a write buffer

– Update actual memory locations at commit

+ Fast aborts

– Slow commits

May 8, 2017

L23-15

Sanchez & Emer

Eager Versioning Illustration

Begin Xaction

Thread

X: 10 Memory

Undo

Log

Write X←15

Thread

X: 15 Memory

Undo

Log X: 10

Commit Xaction

Thread

X: 15 Memory

Undo

Log X: 10

Abort Xaction

Thread

X: 10 Memory

Undo

Log X: 10

May 8, 2017

L23-16

Sanchez & Emer

Lazy Versioning Illustration

Begin Xaction

Thread

X: 10 Memory

Write

Buffer

Write X←15

Thread

X: 10 Memory

Write

Buffer X: 15

Abort Xaction

Thread

X: 10 Memory

Write

Buffer X: 15

Commit Xaction

Thread

X: 15 Memory

Write

Buffer X: 15

May 8, 2017

L23-17

Sanchez & Emer

Conflict Detection

• Detect and handle conflicts between transaction

– Read-Write and (often) Write-Write conflicts

– Must track the transaction’s read-set and write-set

• Read-set: addresses read within the transaction

• Write-set: addresses written within transaction

1. Pessimistic detection

– Check for conflicts during loads or stores

• SW: SW barriers using locks and/or version numbers

• HW: check through coherence actions

– Use contention manager to decide to stall or abort

• Various priority policies to handle common case fast

May 8, 2017

L23-18

Sanchez & Emer

Pessimistic Detection
Illustration

Case 1 Case 2 Case 3 Case 4

X0 X1

rd A

wr B

check

check

wr C
check

commit

commit

Success

X0 X1

wr A

rd A

check

check

commit

commit

Early Detect

stall

X0 X1

rd A

wr A

check

check

commit

commit

Abort

restart

rd A
check

X0 X1

rd A

check

No progress

wr A

rd A
wr A

check

restart

rd A

check

wr A

restart

rd A
wr A

check

restart

T
IM

E

May 8, 2017

L23-19

Sanchez & Emer

Conflict Detection (cont)

2. Optimistic detection
– Detect conflicts when a transaction attempts to commit

– SW: validate write/read-set using locks or version numbers

– HW: validate write-set using coherence actions

• Get exclusive access for cache lines in write-set

• On a conflict, give priority to committing transaction

• Other transactions may abort later on

– On conflicts between committing transactions, use contention
manager to decide priority

• Note: optimistic & pessimistic schemes together
– Several STM systems are optimistic on reads, pessimistic on

writes

May 8, 2017

L23-20

Sanchez & Emer

Optimistic Detection Illustration

Case 1 Case 2 Case 3 Case 4

X0 X1

rd A

wr B

wr C

commit

commit

Success

X0 X1

wr A

rd A

commit

Abort

restart

X0 X1

rd A

wr A

commit

Success

X0 X1

rd A

Forward progress

wr A

rd A
wr A

check

check

check

rd A

check

commit
check

commit
check

restart

rd A
wr A

commit
check

T
IM

E

commit
check

May 8, 2017

L23-21

Sanchez & Emer

Conflict Detection Tradeoffs

1. Pessimistic conflict detection

+ Detect conflicts early

• Undo less work, turn some aborts to stalls

– No forward progress guarantees, more aborts in some cases

• Requires additional techniques to guarantee forward progress

(e.g., backoff, prioritize older transactions)

– Locking issues (SW), fine-grain communication (HW)

2. Optimistic conflict detection

+ Forward progress guarantees

+ Potentially less conflicts, shorter locking (SW), bulk

communication (HW)

– Detects conflicts late, still has fairness problems

May 8, 2017

L23-22

Sanchez & Emer

HTM Implementation Overview

• Data versioning: Use caches

– Cache the write-buffer or the undo-log

– Cache metadata to track read-set and write-set

– Can do with private, shared, and multi-level caches

• Conflict detection: Use the cache coherence protocol

– Coherence lookups detect conflicts between transactions

– Works with snooping & directory coherence

• Note: On aborts, must also restore register state  take
register checkpoint

– OOO cores support with minimal changes (recall rename table
snapshots…)

May 8, 2017

L23-23

Sanchez & Emer

HTM Design

• Cache lines track read-set & write-set
– R bit: indicates data read by transaction; set on load

– W bit: indicates data written by transaction; set on store

– R/W bits can be at word or cache-line granularity

– R/W bits gang-cleared on transaction commit or abort

• Coherence requests check R/W bits to detect
conflicts
– Shared request to W-word is a read-write conflict

– Exclusive request to R-word is a write-read conflict

– Exclusive request to W-word is a write-write conflict

May 8, 2017

V D E Tag R W Word 1 R W Word N . . .

L23-24

Sanchez & Emer

Example HTM: Lazy Optimistic

CPU

Cache

ALUs

TM State

Tag Data V

Registers

• CPU changes

– Register checkpoint

– TM state registers
(status, pointers to
handlers, …)

• Cache changes

– Per-line R/W bits

• Assume a bus-based
system

W R

L23-25

May 8, 2017

Sanchez & Emer

HTM Transaction Execution

Xbegin

Load A

Store B  5

Load C

Xcommit

CPU

Cache

ALUs

TM State

Tag Data V

C 9 1

W R

Registers

• Transaction begin

• Initialize CPU & cache state

• Take register checkpoint

0 0

L23-26

May 8, 2017

Sanchez & Emer

HTM Transaction Execution

Xbegin

Load A

Store B  5

Load C

Xcommit

CPU

Cache

ALUs

TM State

Tag Data V

C 9 1

W R

Registers

0 0

A 33 1 1 0
• Load operation

• Serve cache miss if needed

• Set line’s R-bit

L23-27

May 8, 2017

Sanchez & Emer

HTM Transaction Execution

Xbegin

Load A

Store B  5

Load C

Xcommit

CPU

Cache

ALUs

TM State

Tag Data V

C 9 1

W R

Registers

0 0

A 33 1 1 0

B 5 1 0 1

• Store operation

• Serve cache miss if needed
(if other cores have line, get
it shared anyway!)

• Set line’s W-bit

L23-28

May 8, 2017

Sanchez & Emer

HTM Transaction Execution

Xbegin

Load A

Store B  5

Load C

Xcommit

CPU

Cache

ALUs

TM State

Tag Data V

C 9 1

W R

Registers

1 0

A 33 1 1 0

B 5 1 0 1 upgradeX B
0 0

0 0

0 0

• Fast 2-phase commit:

1. Validate: Request exclusive access to write-set lines (if needed)

2. Commit: Gang-reset R&W bits, turns write-set data to valid (dirty) data

L23-29

May 8, 2017

Sanchez & Emer

HTM Conflict Detection

Xbegin

Load A

Store B  5

Load C

Xcommit

CPU

Cache

ALUs

TM State

Tag Data V

C 9 1

W R

Registers

1 0

A 33 1 1 0

B 5 1 0 1

upgradeX D 

 upgradeX A

1 1 0

0 1 0

0 0 1

0 0

0 0

0 0

• Fast conflict detection & abort:

– Check: Lookup exclusive requests in the read-set and write-set

– Abort: Invalidate write-set, gang-reset R and W bits, restore checkpoint

L23-30

May 8, 2017

Sanchez & Emer

HTM Advantages

• Fast common-case behavior

– Zero-overhead tracking of read-set & write-set

– Zero-overhead versioning

– Fast commits & aborts without data movement

– Continuous validation of read-set

• Strong isolation

– Conflicts detected on non-transactional loads/stores as well

• Simplifies multi-core coherence and consistency

[Hammond’04, Ceze’07]

– Recall: Sequential consistency hard to implement

– How would you enforce SC using HTM?

May 8, 2017

L23-31

Sanchez & Emer

HTM Challenges

• Performance pathologies: How to handle frequent
contention?
– Should HTM guarantee fairness/enforce priorities?

• Size limitations: What happens if read-set + write-
set exceed size of cache?

• Virtualization, I/O, syscalls…

• Hybrid TMs may get the best of both worlds:
– Handle common case in HW, but with no guarantees

• Abort on cache overflow, interrupt, syscall instruction, …

– On abort, code can revert to software TM

– Current approach in Intel’s RTM…

– … but still unclear how to integrate HTM & STM well

May 8, 2017

L23-32

