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Evolution in Number of Users
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Runtime loaded 
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Single User Machine
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Runtime

User Program

Hardware Machine

Memory

Architecture
• Program counter
• General Purpose Registers

Single user process runs with access to all memory



Sanchez & Emer

Multi-user systems
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Runtime

User 
Program

Hardware Machine

Memory

Architecture
• Program counter
• General Purpose Registers
• Base & bound registers

User 
Program

Challenge: 
Don’t want user programs to write over each other.
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Simple Base and Bound Translation
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Operating System-Based Systems
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Runtime

User 
Program

Hardware Machine

Memory

Architecture
• Program counter
• General Purpose Registers
• Base & bound registers
• Execution Mode

User 
Program

Challenge: 
Don’t want user programs to write over runtime.

Operating System

OS provides 
services and 
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resources
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Execution Modes
• Every process runs in a execution mode, e.g., 

– User (3)
– Executive (2)
– Supervisor (1)
– Kernel (0)

• Each page can allow read/write access based on 
current mode
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P0
(program)

P1
(control)

S0
(system)

S1
(reserved)

E.g., VAX Memory Partitions

Each partition can have pages with different protections

Per User Shared by all users
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Protecting Memory
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Page Table Entry

Valid<31> Modified<26>Prot<30:27> OS<25:21> PFN<20:0>

Valid ProtTag PFN

TLB Entry

• TLB fill is a privileged operation.
• TLB access checks if protection allows access for current mode

TLB Fill
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Protection – VAX Modes
Name Mnemonic Decimal Binary Kernel Exec Super User
No access NA 0 000 none none none none
Reserved 1 0001 Unpredictable
Kernel write KW 2 0010 write none none none
Kernel read KR 3 0011 read none none none
User write UW 4 0100 write write write write
Exec write EW 5 0101 write write none none

Exec read, kernel write ERKW 6 0110 write read none none

Exec read ER 7 0111 read read none none
Super write SW 8 1000 write write write none
Super read, exec write SREW 9 1001 write write read none

Super read, kernel write SRKW 10 1010 write read read none

Super read SR 11 1011 read read read none
User read, super write URSW 12 1100 write write write read
User read, exec write UREW 13 1101 write write read read

User read, kernel write URKW 14 1110 write read read read

User read UR 15 1111 read read read read
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More powerful modes never loss privileges
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Process Mode Switching
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user mode
kernel mode

Trap, e.g., i/o read( ) or exception

Switch to kernel mode;
Pass arguments;
Save app state

Check arguments
Find trap handler addr

Restore app state, 
Return to userTrap handler

Kernel routine
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Protection – Single OS
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Motivation for Multiple OSs
Some motivations for using multiple operating systems on 
a single computer:

• Allows for graceful operating system upgrades.

• Allows operating system development without making 
entire machine unstable or unusable.

• Allows use of capabilities of multiple distinct operating 
systems.

• Allows for load balancing and migration across multiple 
machines.
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Multiple Operating Systems
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Operating System

User 
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Hardware Machine

Memory

Architecture

User 
Program

Challenge: 
Want multiple OSs running independently

Virtual Machine Monitor

User 
Program

User 
Program

Operating System
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Virtualization Nomenclature

From (Machine we are 
attempting to execute)
• Guest
• Client
• Foreign ISA

To (Machine that is doing 
the real execution)
• Host
• Target
• Native ISA
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Virtual Machine Requirements
Popek and Goldberg

• Equivalence/Fidelity: A program running under the 
VMM should exhibit a behavior essentially identical 
to that demonstrated when running on an 
equivalent machine directly. 

• Resource control/Safety: The VMM must be in 
complete control of the virtualized resources.

• Efficiency/Performance: A statistically dominant 
fraction of machine instructions must be executed 
without VMM intervention. 
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Virtual Machine Requirements
Popek and Goldberg

Classification of instructions into 3 groups:

• Privileged instructions: Instructions that trap if the 
processor is in user mode and do not trap if it is in a 
more privileged mode.

• Control-sensitive instructions: Instructions that attempt 
to change the configuration of resources in the system. 

• Behavior-sensitive instructions: Those whose behavior 
depends on the configuration of resources, e.g., mode

Building an effective VMM for an architecture is possible if 
the set of sensitive instructions is a subset of the set of 
privileged instructions.
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Sensitive instruction handling
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Non-VMM mode
VMM mode

Sensitive instruction

Switch to VMM mode;
Pass arguments;
Save app state

Find handler addr

Restore app state, 
Return to guestVMM handler

VMM routine



Sanchez & Emer

Protection – Multiple OS
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Virtual Memory Operations

TLB can be designed to translate guest virtual 
addresses (gVA) to a host physical address (hPA), 
but…

• TLB misses are a ‘sensitive’ operation
• TLB misses happen very very frequently

• So how expensive are TLB fills…
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Nested Page Tables
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Guest VA Index 1 Index 2 Offset

Guest Page
Table Base

PTP
PTEL1 Table

L2 Table

Guest PA
PPN Offset

Guest PA or Host VA Index 1 Index 2 Offset
Host Page
Table Base

PTP
PTEL1 Table

L2 Table

Host PA
PPN Offset
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Shadow Page Tables
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Guest VA Index 1 Index 2 Offset

Guest Page
Table Base

PTP
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Guest PA
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Shadow Page
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Nested vs Shadow Paging

Native Nested Paging Shadow Paging
TLB Hit VA->PA gVA->hPA gVA->hPA

TLB Miss (max) 4 24 4
PTE Updates Fast Fast Uses VMM
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On x86
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Application-level virtualization
• Programs are usually distributed in a binary format that 

encodes the program’s instructions and initial values of some 
data segments. These requirements are called the application 
binary interface (ABI), which can be virtualized

• ABI specifications include
– Which instructions are available (the ISA)
– What system calls are possible (I/O, or the environment)
– What state is available at process creation

• Operating system implements the virtual environment
– At process startup, OS reads the binary program, creates an 

environment for it, then begins to execute the code, handling traps for 
I/O calls, emulation, etc.
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Partial ISA-level virtualization

Often good idea to implement part of ISA in software:

• Expensive but rarely used instructions can cause trap to OS 
emulation routine:
– e.g., decimal arithmetic in µVax implementation of VAX ISA

• Infrequent but difficult operand values can cause trap
– e.g., IEEE floating-point denormals cause traps in almost all 

floating-point unit implementations

• Old machine can trap unused opcodes, allows binaries for 
new ISA to run on old hardware
– e.g., Sun SPARC v8 added integer multiply instructions, older v7 

CPUs trap and emulate
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Full ISA-Level Virtualization
Run programs for one ISA on hardware with different ISA

• Run-time Hardware Emulation
– IBM System 360 had IBM 1401 emulator in microcode
– Intel Itanium converts x86 to native VLIW (two software-visible ISAs)
– ARM cores support 32-bit ARM, 16-bit Thumb, and JVM (three software-visible 

ISAs!)

• Emulation (OS software interprets instructions at run-time)
– E.g., OS for PowerPC Macs had emulator for 68000 code

• Static Binary Translation (convert at install time, load time, or offline)
– IBM AS/400 to modified PowerPC cores
– DEC tools for VAX->Alpha and MIPS->Alpha 

• Dynamic Binary Translation (non-native ISA to native ISA at run time)
– Sun’s HotSpot Java JIT (just-in-time) compiler
– Transmeta Crusoe, x86->VLIW code morphing
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Emulation
• Software instruction set interpreter fetches and decodes one 

instruction at a time in emulated VM
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guest VM lives in 
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Emulator Data
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Emulator Stack

fetch-decode loop
while(!stop)
{
inst = Code[PC];
PC += 4;
execute(inst);

}

Guest 
ISA 

Code

Guest 
ISA 
Data

Executable 
on Disk

Guest 
ISA 

Code

Guest 
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Stack
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Emulation
• Easy to code, small code footprint, but slow, 

approximately 100x slower than native execution for 
RISC ISA hosted on RISC ISA

– Fetch
• Instruction accessed from memory

– Decode
• Opcode decode with switch tables
• Extract register specifiers using bit shifts

– Register access
• Access register file data structure

– Execute operation
– Next PC calculation

• return to main fetch loop
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Major time sink
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Dynamic Binary Translation
• Translate code sequences as needed at run-time, 

but cache results

• Can optimize code sequences based on dynamic 
information (e.g., branch targets encountered)

• Tradeoff between optimizer run-time and time 
saved by optimizations in translated code

• Technique used in Java JIT (Just-In-Time) 
compilers and PIN dynamic instrumentation 
system

• Also, Transmeta Crusoe for x86 emulation
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Dynamic Translation Example
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Data RAM

Disk

x86
Binary

Runtime -- Execution

x86
Binary

Code Cache Code Cache
Tags

Translator

x86 Parser &
High Level
Translator

High Level
Optimization

Low Level
Code Generation

Low Level
Optimization and

Scheduling
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Chaining
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Runtime --
Execution

Code Cache Code Cache
Tags

Pre Chained
add %r5, %r6, %r7        

li %next_addr_reg, next_addr #load address
#of next block

j dispatch loop

Chained
add %r5, %r6, %r7        

j physical location of translated
code for next_block
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Dynamic Translation Example:
Transmeta Crusoe (2000)
• Converts x86 ISA into internal native VLIW format using 

software at run-time è “Code Morphing”

• Optimizes across x86 instruction boundaries to improve 
performance

• Translations cached to avoid translator overhead on repeated 
execution

• Completely invisible to operating system – looks like x86 
hardware processor
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[ Following slides contain examples taken from “The 
Technology Behind Crusoe Processors”, Transmeta 

Corporation, 2000 ]
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Transmeta VLIW Engine
• VLIW engine optimized for x86 code emulation

– evaluates condition codes the same way as x86
– has 80-bit floating-point unit
– partial register writes (update 8 bits in 32 bit register)

• Support for fast instruction writes
– run-time code generation important

• Native ISA difference invisible to user, hidden by translation 
system
– Low-end 2-wide VLIW (TM3120)
– Higher-end 4-wide VLIW (TM5400)
– Top-end 8-wide VLIW (Efficeon/TM8000 series)

May 10, 2017 http://www.csg.csail.mit.edu/6.823 

L24-32



Sanchez & Emer

Crusoe System
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VLIW Processor

Inst. Cache

Data Cache

Crusoe CPU

x86 DRAMCode Morph DRAM
x86 BIOS 

Flash

Code Morph 
Compiler Code 

(VLIW)

Translation 
Cache (VLIW)

Workspace

Portion of system DRAM is 
used by Code Morph software 
and is invisible to x86 machine

Crusoe 
Boot Flash 

ROM

Compressed 
compiler held in 

boot ROM

System DRAM
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Transmeta Translation
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addl %eax, (%esp) # load data from stack, add to eax

addl %ebx, (%esp) # load data from stack, add to ebx
movl %esi, (%ebp) # load from ebp* into esi
subl %ecx, 5      # sub 5 from ecx

x86 code:

ld %r30, [%esp]        # load from stack into temp1

add.c %eax, %eax, %r30 # add to eax, set cond.codes
ld %r31, [%esp]        # load from stack into temp2
add.c %ebx, %ebx, %r31 # add to ebx, set cond.codes
ld %esi, [%ebp]        # load from epb* into esi

sub.c %ecx, %ecx, 5    # subtract 5 from ecx

first step, translate into RISC ops:
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Compiler Optimizations
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RISC ops:

ld %r30, [%esp]        # load from stack only once

add %eax, %eax, %r30
add %ebx, %ebx, %r30   # reuse data loaded earlier
ld %esi, [%ebp]
sub.c %ecx, %ecx, 5    # only this cond. code needed

Optimize:

ld %r30, [%esp]        # load from stack into temp1

add.c %eax, %eax, %r30 # add to eax, set cond.codes
ld %r31, [%esp]        # load from stack into temp2
add.c %ebx, %ebx, %r31 # add to ebx, set cond.codes
ld %esi, [%ebp]        # load from epb* into esi

sub.c %ecx, %ecx, 5    # subtract 5 from ecx
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Scheduling
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ld %r30, [%esp]        # load from stack only once

add %eax, %eax, %r30
add %ebx, %ebx, %r30   # reuse data loaded earlier
ld %esi, [%ebp]
sub.c %ecx, %ecx, 5    # only this cond. code needed

Optimized RISC ops:

ld %r30, [%esp]; sub.c %ecx, %ecx, 5

ld %esi, [%ebp]; add %eax, %eax, %r30; add %ebx, %ebx, %r30

Schedule into VLIW code:
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Translation Overhead
• Highly optimizing compiler takes considerable time 

to run, adds run-time overhead

• Only worth doing for frequently executed code

• Translation adds instrumentation into translations 
that counts how often code executed, and which 
way branches usually go

• As count for a block increases, higher optimization 
levels are invoked on that code
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Exceptions
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ld %r30, [%esp]; sub.c %ecx, %ecx, 5

ld %esi, [%ebp]; add %eax, %eax, %r30; add %ebx, %ebx, %r30

Scheduled VLIW code:

addl %eax, (%esp) # load data from stack, add to eax

addl %ebx, (%esp) # load data from stack, add to ebx
movl %esi, (%ebp) # load esi from memory
subl %ecx, 5      # sub 5 from ecx

Original x86 code:

• x86 instructions executed out-of-order with respect to 
original program flow

• Need to restore state for precise traps
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Shadow Registers and Store Buffer
• All registers have working copy and shadow copy

• Stores held in software controlled store buffer, loads can 
snoop

• At end of translation block, commit changes by copying 
values from working regs to shadow regs, and by releasing 
stores in store buffer

• On exception, re-execute x86 code using interpreter
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Handling Self-Modifying Code

• When a translation is made, mark the associated 
x86 code page as being translated in page table

• Store to translated code page causes trap, and 
associated translations are invalidated
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