
Virtual Machines

Joel Emer
Computer Science and Artificial Intelligence Laboratory

M.I.T.

http://www.csg.csail.mit.edu/6.823

Sanchez & Emer

Evolution in Number of Users

May 10, 2017 http://www.csg.csail.mit.edu/6.823

L24-2

IBM 1620
1959

Single User

Runtime loaded
with program

IBM 360
1960s

Multiple Users

OS for sharing
resources

IBM PC
1980s

Single User

OS for sharing
resources

Cloud Servers
1990s

Multiple Users

Multiple OSs

Sanchez & Emer

Single User Machine

May 10, 2017 http://www.csg.csail.mit.edu/6.823

L24-3

Runtime

User Program

Hardware Machine

Memory

Architecture
• Program counter
• General Purpose Registers

Single user process runs with access to all memory

Sanchez & Emer

Multi-user systems

May 10, 2017 http://www.csg.csail.mit.edu/6.823

L24-4

Runtime

User
Program

Hardware Machine

Memory

Architecture
• Program counter
• General Purpose Registers
• Base & bound registers

User
Program

Challenge:
Don’t want user programs to write over each other.

Sanchez & Emer

Simple Base and Bound Translation

May 10, 2017 http://www.csg.csail.mit.edu/6.823

L24-5

Base and bounds registers are visible/accessible only
when processor is running in the supervisor mode

Load X

Program
Address
Space

Bound
Register ≤

Bounds
Violation?

M
ai

n
M

em
or

y

current
segment

Base
Register

+

Physical
AddressEffective

Address

Base Physical Address

Segment Length

Sanchez & Emer

Operating System-Based Systems

May 10, 2017 http://www.csg.csail.mit.edu/6.823

L24-6

Runtime

User
Program

Hardware Machine

Memory

Architecture
• Program counter
• General Purpose Registers
• Base & bound registers
• Execution Mode

User
Program

Challenge:
Don’t want user programs to write over runtime.

Operating System

OS provides
services and

manages
resources

Sanchez & Emer

Execution Modes
• Every process runs in a execution mode, e.g.,

– User (3)
– Executive (2)
– Supervisor (1)
– Kernel (0)

• Each page can allow read/write access based on
current mode

May 10, 2017 http://www.csg.csail.mit.edu/6.823

L24-7

P0
(program)

P1
(control)

S0
(system)

S1
(reserved)

E.g., VAX Memory Partitions

Each partition can have pages with different protections

Per User Shared by all users

Sanchez & Emer

Protecting Memory

May 10, 2017 http://www.csg.csail.mit.edu/6.823

L24-8

Page Table Entry

Valid<31> Modified<26>Prot<30:27> OS<25:21> PFN<20:0>

Valid ProtTag PFN

TLB Entry

• TLB fill is a privileged operation.
• TLB access checks if protection allows access for current mode

TLB Fill

Sanchez & Emer

Protection – VAX Modes
Name Mnemonic Decimal Binary Kernel Exec Super User
No access NA 0 000 none none none none
Reserved 1 0001 Unpredictable
Kernel write KW 2 0010 write none none none
Kernel read KR 3 0011 read none none none
User write UW 4 0100 write write write write
Exec write EW 5 0101 write write none none

Exec read, kernel write ERKW 6 0110 write read none none

Exec read ER 7 0111 read read none none
Super write SW 8 1000 write write write none
Super read, exec write SREW 9 1001 write write read none

Super read, kernel write SRKW 10 1010 write read read none

Super read SR 11 1011 read read read none
User read, super write URSW 12 1100 write write write read
User read, exec write UREW 13 1101 write write read read

User read, kernel write URKW 14 1110 write read read read

User read UR 15 1111 read read read read

May 10, 2017 http://www.csg.csail.mit.edu/6.823

L24-9

More powerful modes never loss privileges

Sanchez & Emer

Process Mode Switching

May 10, 2017 http://www.csg.csail.mit.edu/6.823

L24-10

user mode
kernel mode

Trap, e.g., i/o read() or exception

Switch to kernel mode;
Pass arguments;
Save app state

Check arguments
Find trap handler addr

Restore app state,
Return to userTrap handler

Kernel routine

Sanchez & Emer

Protection – Single OS

May 10, 2017 http://www.csg.csail.mit.edu/6.823

L24-11

User
Process

User
Process

OS Kernel

Sanchez & Emer

Motivation for Multiple OSs
Some motivations for using multiple operating systems on
a single computer:

• Allows for graceful operating system upgrades.

• Allows operating system development without making
entire machine unstable or unusable.

• Allows use of capabilities of multiple distinct operating
systems.

• Allows for load balancing and migration across multiple
machines.

May 10, 2017 http://www.csg.csail.mit.edu/6.823

L24-12

Sanchez & Emer

Multiple Operating Systems

May 10, 2017 http://www.csg.csail.mit.edu/6.823

L24-13

Operating System

User
Program

Hardware Machine

Memory

Architecture

User
Program

Challenge:
Want multiple OSs running independently

Virtual Machine Monitor

User
Program

User
Program

Operating System

Sanchez & Emer

Virtualization Nomenclature

From (Machine we are
attempting to execute)
• Guest
• Client
• Foreign ISA

To (Machine that is doing
the real execution)
• Host
• Target
• Native ISA

May 10, 2017 http://www.csg.csail.mit.edu/6.823

L24-14

Sanchez & Emer

Virtual Machine Requirements
Popek and Goldberg

• Equivalence/Fidelity: A program running under the
VMM should exhibit a behavior essentially identical
to that demonstrated when running on an
equivalent machine directly.

• Resource control/Safety: The VMM must be in
complete control of the virtualized resources.

• Efficiency/Performance: A statistically dominant
fraction of machine instructions must be executed
without VMM intervention.

May 10, 2017 http://www.csg.csail.mit.edu/6.823

L24-15

Sanchez & Emer

Virtual Machine Requirements
Popek and Goldberg

Classification of instructions into 3 groups:

• Privileged instructions: Instructions that trap if the
processor is in user mode and do not trap if it is in a
more privileged mode.

• Control-sensitive instructions: Instructions that attempt
to change the configuration of resources in the system.

• Behavior-sensitive instructions: Those whose behavior
depends on the configuration of resources, e.g., mode

Building an effective VMM for an architecture is possible if
the set of sensitive instructions is a subset of the set of
privileged instructions.

May 10, 2017 http://www.csg.csail.mit.edu/6.823

L24-16

Sanchez & Emer

Sensitive instruction handling

May 10, 2017 http://www.csg.csail.mit.edu/6.823

L24-17

Non-VMM mode
VMM mode

Sensitive instruction

Switch to VMM mode;
Pass arguments;
Save app state

Find handler addr

Restore app state,
Return to guestVMM handler

VMM routine

Sanchez & Emer

Protection – Multiple OS

May 10, 2017 http://www.csg.csail.mit.edu/6.823

L24-18

User
Process

User
Process

OS
Kernel

User
Process

User
Process

OS
Kernel

VMM

Sanchez & Emer

Virtual Memory Operations

TLB can be designed to translate guest virtual
addresses (gVA) to a host physical address (hPA),
but…

• TLB misses are a ‘sensitive’ operation
• TLB misses happen very very frequently

• So how expensive are TLB fills…

May 10, 2017 http://www.csg.csail.mit.edu/6.823

L24-19

Sanchez & Emer

Nested Page Tables

May 10, 2017 http://www.csg.csail.mit.edu/6.823

L24-20

Guest VA Index 1 Index 2 Offset

Guest Page
Table Base

PTP
PTEL1 Table

L2 Table

Guest PA
PPN Offset

Guest PA or Host VA Index 1 Index 2 Offset
Host Page
Table Base

PTP
PTEL1 Table

L2 Table

Host PA
PPN Offset

Sanchez & Emer

Shadow Page Tables

May 10, 2017 http://www.csg.csail.mit.edu/6.823

L24-21

Guest VA Index 1 Index 2 Offset

Guest Page
Table Base

PTP
PTEL1 Table

L2 Table

Guest PA
PPN Offset

Guest VA Index 1 Index 2 Offset
Shadow Page
Table Base

PTP
PTEL1 Table

L2 Table

Host PA
PPN Offset

Sanchez & Emer

Nested vs Shadow Paging

Native Nested Paging Shadow Paging
TLB Hit VA->PA gVA->hPA gVA->hPA

TLB Miss (max) 4 24 4
PTE Updates Fast Fast Uses VMM

May 10, 2017 http://www.csg.csail.mit.edu/6.823

L24-22

On x86

Sanchez & Emer

Application-level virtualization
• Programs are usually distributed in a binary format that

encodes the program’s instructions and initial values of some
data segments. These requirements are called the application
binary interface (ABI), which can be virtualized

• ABI specifications include
– Which instructions are available (the ISA)
– What system calls are possible (I/O, or the environment)
– What state is available at process creation

• Operating system implements the virtual environment
– At process startup, OS reads the binary program, creates an

environment for it, then begins to execute the code, handling traps for
I/O calls, emulation, etc.

May 10, 2017 http://www.csg.csail.mit.edu/6.823

L24-23

Sanchez & Emer

Partial ISA-level virtualization

Often good idea to implement part of ISA in software:

• Expensive but rarely used instructions can cause trap to OS
emulation routine:
– e.g., decimal arithmetic in µVax implementation of VAX ISA

• Infrequent but difficult operand values can cause trap
– e.g., IEEE floating-point denormals cause traps in almost all

floating-point unit implementations

• Old machine can trap unused opcodes, allows binaries for
new ISA to run on old hardware
– e.g., Sun SPARC v8 added integer multiply instructions, older v7

CPUs trap and emulate

May 10, 2017 http://www.csg.csail.mit.edu/6.823

L24-24

Sanchez & Emer

Full ISA-Level Virtualization
Run programs for one ISA on hardware with different ISA

• Run-time Hardware Emulation
– IBM System 360 had IBM 1401 emulator in microcode
– Intel Itanium converts x86 to native VLIW (two software-visible ISAs)
– ARM cores support 32-bit ARM, 16-bit Thumb, and JVM (three software-visible

ISAs!)

• Emulation (OS software interprets instructions at run-time)
– E.g., OS for PowerPC Macs had emulator for 68000 code

• Static Binary Translation (convert at install time, load time, or offline)
– IBM AS/400 to modified PowerPC cores
– DEC tools for VAX->Alpha and MIPS->Alpha

• Dynamic Binary Translation (non-native ISA to native ISA at run time)
– Sun’s HotSpot Java JIT (just-in-time) compiler
– Transmeta Crusoe, x86->VLIW code morphing

May 10, 2017 http://www.csg.csail.mit.edu/6.823

L24-25

Sanchez & Emer

Emulation
• Software instruction set interpreter fetches and decodes one

instruction at a time in emulated VM

May 10, 2017 http://www.csg.csail.mit.edu/6.823

L24-26

Memory image of
guest VM lives in

host emulator data
memory

Emulator Data

Emulator Code

Emulator Stack

fetch-decode loop
while(!stop)
{
inst = Code[PC];
PC += 4;
execute(inst);

}

Guest
ISA

Code

Guest
ISA
Data

Executable
on Disk

Guest
ISA

Code

Guest
ISA
Data

Guest
Stack

Load into
emulator
memory

Sanchez & Emer

Emulation
• Easy to code, small code footprint, but slow,

approximately 100x slower than native execution for
RISC ISA hosted on RISC ISA

– Fetch
• Instruction accessed from memory

– Decode
• Opcode decode with switch tables
• Extract register specifiers using bit shifts

– Register access
• Access register file data structure

– Execute operation
– Next PC calculation

• return to main fetch loop

May 10, 2017 http://www.csg.csail.mit.edu/6.823

L24-27

Major time sink

Sanchez & Emer

Dynamic Binary Translation
• Translate code sequences as needed at run-time,

but cache results

• Can optimize code sequences based on dynamic
information (e.g., branch targets encountered)

• Tradeoff between optimizer run-time and time
saved by optimizations in translated code

• Technique used in Java JIT (Just-In-Time)
compilers and PIN dynamic instrumentation
system

• Also, Transmeta Crusoe for x86 emulation

May 10, 2017 http://www.csg.csail.mit.edu/6.823

L24-28

Sanchez & Emer

Dynamic Translation Example

May 10, 2017 http://www.csg.csail.mit.edu/6.823

L24-29

Data RAM

Disk

x86
Binary

Runtime -- Execution

x86
Binary

Code Cache Code Cache
Tags

Translator

x86 Parser &
High Level
Translator

High Level
Optimization

Low Level
Code Generation

Low Level
Optimization and

Scheduling

Sanchez & Emer

Chaining

May 10, 2017 http://www.csg.csail.mit.edu/6.823

L24-30

Runtime --
Execution

Code Cache Code Cache
Tags

Pre Chained
add %r5, %r6, %r7

li %next_addr_reg, next_addr #load address
#of next block

j dispatch loop

Chained
add %r5, %r6, %r7

j physical location of translated
code for next_block

Sanchez & Emer

Dynamic Translation Example:
Transmeta Crusoe (2000)
• Converts x86 ISA into internal native VLIW format using

software at run-time è “Code Morphing”

• Optimizes across x86 instruction boundaries to improve
performance

• Translations cached to avoid translator overhead on repeated
execution

• Completely invisible to operating system – looks like x86
hardware processor

May 10, 2017 http://www.csg.csail.mit.edu/6.823

L24-31

[Following slides contain examples taken from “The
Technology Behind Crusoe Processors”, Transmeta

Corporation, 2000]

Sanchez & Emer

Transmeta VLIW Engine
• VLIW engine optimized for x86 code emulation

– evaluates condition codes the same way as x86
– has 80-bit floating-point unit
– partial register writes (update 8 bits in 32 bit register)

• Support for fast instruction writes
– run-time code generation important

• Native ISA difference invisible to user, hidden by translation
system
– Low-end 2-wide VLIW (TM3120)
– Higher-end 4-wide VLIW (TM5400)
– Top-end 8-wide VLIW (Efficeon/TM8000 series)

May 10, 2017 http://www.csg.csail.mit.edu/6.823

L24-32

Sanchez & Emer

Crusoe System

May 10, 2017 http://www.csg.csail.mit.edu/6.823

L24-33

VLIW Processor

Inst. Cache

Data Cache

Crusoe CPU

x86 DRAMCode Morph DRAM
x86 BIOS

Flash

Code Morph
Compiler Code

(VLIW)

Translation
Cache (VLIW)

Workspace

Portion of system DRAM is
used by Code Morph software
and is invisible to x86 machine

Crusoe
Boot Flash

ROM

Compressed
compiler held in

boot ROM

System DRAM

Sanchez & Emer

Transmeta Translation

May 10, 2017 http://www.csg.csail.mit.edu/6.823

L24-34

addl %eax, (%esp) # load data from stack, add to eax

addl %ebx, (%esp) # load data from stack, add to ebx
movl %esi, (%ebp) # load from ebp* into esi
subl %ecx, 5 # sub 5 from ecx

x86 code:

ld %r30, [%esp] # load from stack into temp1

add.c %eax, %eax, %r30 # add to eax, set cond.codes
ld %r31, [%esp] # load from stack into temp2
add.c %ebx, %ebx, %r31 # add to ebx, set cond.codes
ld %esi, [%ebp] # load from epb* into esi

sub.c %ecx, %ecx, 5 # subtract 5 from ecx

first step, translate into RISC ops:

Sanchez & Emer

Compiler Optimizations

May 10, 2017 http://www.csg.csail.mit.edu/6.823

L24-35

RISC ops:

ld %r30, [%esp] # load from stack only once

add %eax, %eax, %r30
add %ebx, %ebx, %r30 # reuse data loaded earlier
ld %esi, [%ebp]
sub.c %ecx, %ecx, 5 # only this cond. code needed

Optimize:

ld %r30, [%esp] # load from stack into temp1

add.c %eax, %eax, %r30 # add to eax, set cond.codes
ld %r31, [%esp] # load from stack into temp2
add.c %ebx, %ebx, %r31 # add to ebx, set cond.codes
ld %esi, [%ebp] # load from epb* into esi

sub.c %ecx, %ecx, 5 # subtract 5 from ecx

Sanchez & Emer

Scheduling

May 10, 2017 http://www.csg.csail.mit.edu/6.823

L24-36

ld %r30, [%esp] # load from stack only once

add %eax, %eax, %r30
add %ebx, %ebx, %r30 # reuse data loaded earlier
ld %esi, [%ebp]
sub.c %ecx, %ecx, 5 # only this cond. code needed

Optimized RISC ops:

ld %r30, [%esp]; sub.c %ecx, %ecx, 5

ld %esi, [%ebp]; add %eax, %eax, %r30; add %ebx, %ebx, %r30

Schedule into VLIW code:

Sanchez & Emer

Translation Overhead
• Highly optimizing compiler takes considerable time

to run, adds run-time overhead

• Only worth doing for frequently executed code

• Translation adds instrumentation into translations
that counts how often code executed, and which
way branches usually go

• As count for a block increases, higher optimization
levels are invoked on that code

May 10, 2017 http://www.csg.csail.mit.edu/6.823

L24-37

Sanchez & Emer

Exceptions

May 10, 2017 http://www.csg.csail.mit.edu/6.823

L24-38

ld %r30, [%esp]; sub.c %ecx, %ecx, 5

ld %esi, [%ebp]; add %eax, %eax, %r30; add %ebx, %ebx, %r30

Scheduled VLIW code:

addl %eax, (%esp) # load data from stack, add to eax

addl %ebx, (%esp) # load data from stack, add to ebx
movl %esi, (%ebp) # load esi from memory
subl %ecx, 5 # sub 5 from ecx

Original x86 code:

• x86 instructions executed out-of-order with respect to
original program flow

• Need to restore state for precise traps

Sanchez & Emer

Shadow Registers and Store Buffer
• All registers have working copy and shadow copy

• Stores held in software controlled store buffer, loads can
snoop

• At end of translation block, commit changes by copying
values from working regs to shadow regs, and by releasing
stores in store buffer

• On exception, re-execute x86 code using interpreter

May 10, 2017 http://www.csg.csail.mit.edu/6.823

L24-39

Sanchez & Emer

Handling Self-Modifying Code

• When a translation is made, mark the associated
x86 code page as being translated in page table

• Store to translated code page causes trap, and
associated translations are invalidated

May 10, 2017 http://www.csg.csail.mit.edu/6.823

L24-40

Thank you !

May 1, 2017

L21-41

