
L05-1MIT 6.823 Spring 2020

Mengjia Yan
Computer Science and Artificial Intelligence Laboratory

M.I.T.

Based on slides from Daniel Sanchez

Modern Virtual Memory
Systems

MIT 6.823 Spring 2020

Recap: Virtual Memory Systems
Illusion of a large, private, uniform store

February 20, 2020

Protection & Privacy
• several users, each with their private

address space and one or more shared
address spaces
• page table º name space

Demand Paging
• Provides the ability to run programs

larger than the primary memory
• Hides differences in machine

configurations

The price is address translation on
each memory reference

OS

useri

Primary
Memory

Swapping
Store

VA PAmapping
TLB

MIT 6.823 Spring 2020

Recap: Hierarchical Page Table

February 20, 2020

Level 1
Page Table

Level 2
Page Tables

Data Pages

page in primary memory
page in secondary memory

Root of the Current
Page Table

p1

offset

p2

Virtual Address

(Processor
Register)

PTE of a nonexistent page

p1 p2 offset
01112212231

10-bit
L1 index

10-bit
L2 index

MIT 6.823 Spring 2020

Recap: Translation Lookaside Buffers

February 20, 2020

Address translation is very expensive!
• In a two-level page table, each reference becomes

several memory accesses

Solution: Cache translations in TLB
TLB hit Þ Single-cycle Translation
TLB miss Þ Page Table Walk to refill

VPN offset

V R W D tag PPN

physical address PPN offset

virtual address

hit?

(VPN = virtual page number)

(PPN = physical page number)

MIT 6.823 Spring 2020

Recap: Translation Lookaside Buffers

February 20, 2020

Address translation is very expensive!
• In a two-level page table, each reference becomes

several memory accesses

Solution: Cache translations in TLB
TLB hit Þ Single-cycle Translation
TLB miss Þ Page Table Walk to refill

VPN offset

V R W D tag PPN

physical address PPN offset

virtual address

hit?

(VPN = virtual page number)

(PPN = physical page number)

<tag, index>

MIT 6.823 Spring 2020

Recap: TLB Designs

• Typically 32-128 entries, usually fully associative
– Each entry maps a large page, hence less spatial locality across

pages è more likely that two entries conflict
– Sometimes larger TLBs (256-512 entries) are 4-16 way set-

associative

• Random or FIFO replacement policy
• No process information in TLB?
• TLB Reach: Size of largest virtual address space

that can be simultaneously mapped by TLB

Example: 64 TLB entries, 4KB pages, one page per entry

TLB Reach = _____________________________________?

February 20, 2020

64 entries * 4 KB = 256 KB (if contiguous)

MIT 6.823 Spring 2020

Variable-Sized Page Support

February 20, 2020

Level 1
Page Table

Level 2
Page Tables

Data Pages

page in primary memory
large page in primary memory
page in secondary memory
PTE of a nonexistent page

Root of the Current
Page Table

p1

offset

p2

Virtual Address

(Processor
Register)

p1 p2 offset
01112212231

10-bit
L1 index

10-bit
L2 index

L05-7

MIT 6.823 Spring 2020

Variable-Sized Page Support

February 20, 2020

Level 1
Page Table

Level 2
Page Tables

Data Pages

page in primary memory
large page in primary memory
page in secondary memory
PTE of a nonexistent page

Root of the Current
Page Table

p1

offset

p2

Virtual Address

(Processor
Register)

p1 p2 offset
01112212231

10-bit
L1 index

10-bit
L2 index

L05-8

MIT 6.823 Spring 2020

Variable-Size Page TLB

February 20, 2020

• Chicken-and-egg problem

virtual address

V RWD Tag PPN L

L05-9

47 21 12 0

xxxxxxxx……xxxxxxx 000000110 110010111000

MIT 6.823 Spring 2020

Variable-Size Page TLB

February 20, 2020

• Chicken-and-egg problem

virtual address

V RWD Tag PPN L

L05-10

47 21 12 0

xxxxxxxx……xxxxxxx 000000110 110010111000
4KB page VPN 4KB page offset

MIT 6.823 Spring 2020

Variable-Size Page TLB

February 20, 2020

• Chicken-and-egg problem

virtual address

V RWD Tag PPN L

L05-11

47 21 12 0

xxxxxxxx……xxxxxxx 000000110 110010111000
2MB page VPN

4KB page VPN

2MB page offset

4KB page offset

MIT 6.823 Spring 2020

Variable-Size Page TLB

February 20, 2020

• Chicken-and-egg problem

virtual address

hit?

V RWD Tag PPN L

L05-12

47 21 12 0

xxxxxxxx……xxxxxxx 000000110 110010111000
2MB page VPN

4KB page VPN

2MB page offset

4KB page offset

MIT 6.823 Spring 2020

Variable-Size Page TLB

February 20, 2020

• Chicken-and-egg problem

virtual address

hit?

V RWD Tag PPN L

L05-13

47 21 12 0

xxxxxxxx……xxxxxxx 000000110 110010111000
2MB page VPN

4KB page VPN

2MB page offset

4KB page offset

xxxxxxxx……xxxxxxx xxxxxxxxx 110010111000physical address

MIT 6.823 Spring 2020

Variable-Size Page TLB

February 20, 2020

• Chicken-and-egg problem
• Q: how about set-associative TLBs?

virtual address

hit?

V RWD Tag PPN L

L05-14

47 21 12 0

xxxxxxxx……xxxxxxx 000000110 110010111000
2MB page VPN

4KB page VPN

2MB page offset

4KB page offset

xxxxxxxx……xxxxxxx xxxxxxxxx 110010111000physical address

MIT 6.823 Spring 2020

Variable-Size Page TLB

February 20, 2020

• Chicken-and-egg problem
• Q: how about set-associative TLBs?
• Some systems use separate TLBs for different page sizes.

virtual address

hit?

V RWD Tag PPN L

L05-15

47 21 12 0

xxxxxxxx……xxxxxxx 000000110 110010111000
2MB page VPN

4KB page VPN

2MB page offset

4KB page offset

xxxxxxxx……xxxxxxx xxxxxxxxx 110010111000physical address

MIT 6.823 Spring 2020

Handling a TLB Miss

February 20, 2020

• Software (MIPS, Alpha)

• Hardware (SPARC v8, x86, PowerPC)

L05-16

MIT 6.823 Spring 2020

Handling a TLB Miss

February 20, 2020

• Software (MIPS, Alpha)
• TLB miss causes an exception and the operating system

walks the page tables and reloads TLB.
• A privileged “untranslated” addressing mode used for walk

• Hardware (SPARC v8, x86, PowerPC)

L05-17

MIT 6.823 Spring 2020

Handling a TLB Miss

February 20, 2020

• Software (MIPS, Alpha)
• TLB miss causes an exception and the operating system

walks the page tables and reloads TLB.
• A privileged “untranslated” addressing mode used for walk

• Hardware (SPARC v8, x86, PowerPC)
• A memory management unit (MMU) walks the page tables

and reloads the TLB
• If a missing (data or PT) page is encountered during the

TLB reloading, MMU gives up and signals a Page-Fault
exception for the original instruction

L05-18

MIT 6.823 Spring 2020

Handling a TLB Miss

February 20, 2020

• Software (MIPS, Alpha)
• TLB miss causes an exception and the operating system

walks the page tables and reloads TLB.
• A privileged “untranslated” addressing mode used for walk

• Hardware (SPARC v8, x86, PowerPC)
• A memory management unit (MMU) walks the page tables

and reloads the TLB
• If a missing (data or PT) page is encountered during the

TLB reloading, MMU gives up and signals a Page-Fault
exception for the original instruction

L05-19

Q: Pros and cons of software and hardware approaches?

MIT 6.823 Spring 2020

Hierarchical Page Table Walk:
SPARC v8

February 20, 2020

31 11
0

Virtual Address Index 1 Index 2 Index 3 Offset
31 23 17 11 0

Context
Table
Register

Context
Register

root ptr

PTP
PTP

PTE

Context Table

L1 Table

L2 Table
L3 Table

Physical Address PPN Offset

MMU does this table walk in hardware on a TLB miss
L05-20

MIT 6.823 Spring 2020

Address Translation:
putting it all together

February 20, 2020

Virtual Address

TLB
Lookup

hardware
hardware or software
software

L05-21

MIT 6.823 Spring 2020

Address Translation:
putting it all together

February 20, 2020

Virtual Address

TLB
Lookup

Protection
Check

hit

hardware
hardware or software
software

L05-22

MIT 6.823 Spring 2020

Address Translation:
putting it all together

February 20, 2020

Virtual Address

TLB
Lookup

Protection
Check

hit

hardware
hardware or software
software

Physical
Address
(to cache)

permitted

L05-23

MIT 6.823 Spring 2020

Address Translation:
putting it all together

February 20, 2020

Virtual Address

TLB
Lookup

Protection
Check

hit

hardware
hardware or software
software

Physical
Address
(to cache)

permitteddenied

Protection
Fault

SEGFAULT

L05-24

MIT 6.823 Spring 2020

Address Translation:
putting it all together

February 20, 2020

Virtual Address

TLB
Lookup

Page Table
Walk

miss

Protection
Check

hit

hardware
hardware or software
software

Physical
Address
(to cache)

permitteddenied

Protection
Fault

SEGFAULT

L05-25

MIT 6.823 Spring 2020

Address Translation:
putting it all together

February 20, 2020

Virtual Address

TLB
Lookup

Page Table
Walk

miss

Protection
Check

hit

Update TLB

the page is
Îmemory

hardware
hardware or software
software

Physical
Address
(to cache)

permitteddenied

Protection
Fault

SEGFAULT

L05-26

MIT 6.823 Spring 2020

Address Translation:
putting it all together

February 20, 2020

Virtual Address

TLB
Lookup

Page Table
Walk

miss

Protection
Check

hit

Update TLB

the page is
Îmemory

hardware
hardware or software
software

Physical
Address
(to cache)

permitteddenied

Protection
Fault

SEGFAULT

L05-27

Page Fault
(OS loads page)

Ïmemory

MIT 6.823 Spring 2020

Address Translation:
putting it all together

February 20, 2020

Virtual Address

TLB
Lookup

Page Table
Walk

miss

Protection
Check

hit

Update TLB

the page is
Îmemory

hardware
hardware or software
software

Physical
Address
(to cache)

permitteddenied

Protection
Fault

SEGFAULTWhere?
L05-28

Page Fault
(OS loads page)

Ïmemory

MIT 6.823 Spring 2020

Topics

February 20, 2020

• Interrupts
• Speeding up the common case:

– TLB & Cache organization
• Speeding up page table walks
• Modern Usage

L05-29

Virtual Address

TLB
Lookup

Page Table
Walk

miss

Protection
Check

hit

Update TLB

the page is
Îmemory

hardware
hardware or software
software

Physical
Address
(to cache)

permitteddenied

Protection
Fault

SEGFAULTWhere?

Page Fault
(OS loads page)

Ïmemory

MIT 6.823 Spring 2020

Interrupts: altering the normal flow of control

February 20, 2020

Ii-1

Ii

Ii+1

program

An external or internal event that needs to be processed by
another (system) program. The event is usually unexpected or
rare from program’s point of view.

L05-30

MIT 6.823 Spring 2020

Interrupts: altering the normal flow of control

February 20, 2020

Ii-1

Ii

Ii+1

program

An external or internal event that needs to be processed by
another (system) program. The event is usually unexpected or
rare from program’s point of view.

L05-31

HI1

HI2

HIn

interrupt
handler

MIT 6.823 Spring 2020

Causes of Interrupts

• Asynchronous: an external event
– input/output device service-request
– timer expiration
– power disruptions, hardware failure

• Synchronous: an internal event (a.k.a exception)
– undefined opcode, privileged instruction
– arithmetic overflow, FPU exception
– misaligned memory access
– virtual memory exceptions:

• page faults, TLB misses, protection violations
– traps: system calls, e.g., jumps into kernel

February 20, 2020

Interrupt: an event that requests the attention of the processor

L05-32

MIT 6.823 Spring 2020

Asynchronous Interrupts:
invoking the interrupt handler

• An I/O device requests attention by asserting one of
the prioritized interrupt request lines

• Tricky: interrupted thread cannot anticipate/prepare
for this control transfer

• When the processor decides to process the interrupt

February 20, 2020 L05-33

MIT 6.823 Spring 2020

Asynchronous Interrupts:
invoking the interrupt handler

• An I/O device requests attention by asserting one of
the prioritized interrupt request lines

• Tricky: interrupted thread cannot anticipate/prepare
for this control transfer

• When the processor decides to process the interrupt
– Precise interrupt: It stops the current program at instruction Ii,

completing all the instructions up to Ii-1

– It saves the PC of instruction Ii in a special register (EPC)
– It disables interrupts and transfers control to a designated

interrupt handler running in the kernel mode

February 20, 2020 L05-34

Ii-1

Ii

Ii+1

HI1

HI2

HIn

Us
er
->
ke
rn
el

Kernel->
user

MIT 6.823 Spring 2020

Interrupt Handler
• Needs to read a status register that indicates the

cause of the interrupt
• Uses a special indirect jump instruction RFE

(return-from-exception) that
– enables interrupts
– restores the processor to the user mode
– restores hardware status and control state

• Nested interrupts

February 20, 2020 L05-35

MIT 6.823 Spring 2020

Interrupt Handler
• Needs to read a status register that indicates the

cause of the interrupt
• Uses a special indirect jump instruction RFE

(return-from-exception) that
– enables interrupts
– restores the processor to the user mode
– restores hardware status and control state

• Nested interrupts
– Saves EPC before enabling interrupts
– need an instruction to move EPC into GPRs
– need a way to mask further interrupts at least until EPC can be

saved

February 20, 2020 L05-36

MIT 6.823 Spring 2020

Synchronous Interrupts

• A synchronous interrupt (exception) is caused by a
particular instruction

• In general, the instruction cannot be completed
and needs to be restarted after the exception has
been handled
– With pipelining, requires undoing the effect of one or more

partially executed instructions

• In case of a trap (system call), the instruction is
considered to have been completed
– A special jump instruction involving a change to privileged

kernel mode

February 20, 2020 L05-37

MIT 6.823 Spring 2020

Topics

• Interrupts

• Speeding up the common case:
– TLB & Cache organization

• Speeding up page table walks

• Modern Usage

February 20, 2020 L05-38

MIT 6.823 Spring 2020

Address Translation in CPU

February 20, 2020

PC
Inst.

Cache
Data
Cache+RegFile

L05-39

MIT 6.823 Spring 2020

Address Translation in CPU

February 20, 2020

PC
Inst.

Cache
Data
Cache+

Inst
TLB

Data
TLBRegFile

L05-40

MIT 6.823 Spring 2020

Address Translation in CPU

February 20, 2020

PC
Inst.

Cache
Data
Cache+

Inst
TLB

Data
TLB

TLB miss? Page Fault?
Protection violation?

TLB miss? Page Fault?
Protection violation?

RegFile

L05-41

MIT 6.823 Spring 2020

Address Translation in CPU

• TLB miss: a hardware or software mechanism
• Page fault or protection violation: software handler

February 20, 2020

PC
Inst.

Cache
Data
Cache+

Inst
TLB

Data
TLB

TLB miss? Page Fault?
Protection violation?

TLB miss? Page Fault?
Protection violation?

RegFile

L05-42

MIT 6.823 Spring 2020

Address Translation in CPU

• TLB miss: a hardware or software mechanism
• Page fault or protection violation: software handler
• The common case: TLB lookup before every cache access

February 20, 2020

PC
Inst.

Cache
Data
Cache+

Inst
TLB

Data
TLB

TLB miss? Page Fault?
Protection violation?

TLB miss? Page Fault?
Protection violation?

RegFile

L05-43

MIT 6.823 Spring 2020

Address Translation in CPU

• TLB miss: a hardware or software mechanism
• Page fault or protection violation: software handler
• The common case: TLB lookup before every cache access

• Need mechanisms to cope with the additional latency of TLB:

February 20, 2020

PC
Inst.

Cache
Data
Cache+

Inst
TLB

Data
TLB

TLB miss? Page Fault?
Protection violation?

TLB miss? Page Fault?
Protection violation?

RegFile

L05-44

MIT 6.823 Spring 2020

Address Translation in CPU

• TLB miss: a hardware or software mechanism
• Page fault or protection violation: software handler
• The common case: TLB lookup before every cache access

• Need mechanisms to cope with the additional latency of TLB:
– slow down the clock
– pipeline the TLB and cache access
– virtual-address caches
– parallel TLB/cache access

February 20, 2020

PC
Inst.

Cache
Data
Cache+

Inst
TLB

Data
TLB

TLB miss? Page Fault?
Protection violation?

TLB miss? Page Fault?
Protection violation?

RegFile

L05-45

MIT 6.823 Spring 2020

Virtual-Address Caches

February 20, 2020

Pros and cons:

CPU Physical
CacheTLB Primary

Memory
VA

PA

L05-46

MIT 6.823 Spring 2020

Virtual-Address Caches

February 20, 2020

Pros and cons:

CPU Physical
CacheTLB Primary

Memory
VA

PA

Alternative: place the cache before the TLB

CPU

VA

Virtual
Cache

PA
TLB

Primary
Memory

L05-47

MIT 6.823 Spring 2020

Virtual-Address Caches

February 20, 2020

Pros and cons:
• one-step process in case of a hit (+)

CPU Physical
CacheTLB Primary

Memory
VA

PA

Alternative: place the cache before the TLB

CPU

VA

Virtual
Cache

PA
TLB

Primary
Memory

L05-48

MIT 6.823 Spring 2020

Virtual-Address Caches

February 20, 2020

Pros and cons:
• one-step process in case of a hit (+)
• cache needs to be flushed on a context switch unless

address space identifiers (ASIDs) included in tags (-)

CPU Physical
CacheTLB Primary

Memory
VA

PA

Alternative: place the cache before the TLB

CPU

VA

Virtual
Cache

PA
TLB

Primary
Memory

L05-49

MIT 6.823 Spring 2020

Virtual-Address Caches

February 20, 2020

Pros and cons:
• one-step process in case of a hit (+)
• cache needs to be flushed on a context switch unless

address space identifiers (ASIDs) included in tags (-)
• aliasing problems due to the sharing of pages (-)

CPU Physical
CacheTLB Primary

Memory
VA

PA

Alternative: place the cache before the TLB

CPU

VA

Virtual
Cache

PA
TLB

Primary
Memory

L05-50

MIT 6.823 Spring 2020

Aliasing in Virtual-Address Caches

February 20, 2020

VA1

VA2

Page Table

Data Pages

PA

Two virtual pages share
one physical page

L05-51

MIT 6.823 Spring 2020

Aliasing in Virtual-Address Caches

February 20, 2020

VA1

VA2

Page Table

Data Pages

PA

Two virtual pages share
one physical page

General Solution: Disallow aliases to coexist in cache

L05-52

MIT 6.823 Spring 2020

Aliasing in Virtual-Address Caches

February 20, 2020

VA1

VA2

Page Table

Data Pages

PA

VA1

VA2

1st Copy of Data at PA

2nd Copy of Data at PA

Tag Data

Two virtual pages share
one physical page

General Solution: Disallow aliases to coexist in cache

L05-53

MIT 6.823 Spring 2020

Aliasing in Virtual-Address Caches

February 20, 2020

VA1

VA2

Page Table

Data Pages

PA

VA1

VA2

1st Copy of Data at PA

2nd Copy of Data at PA

Tag Data

Two virtual pages share
one physical page

Virtual cache can have two
copies of same physical data.
Writes to one copy not visible

to reads of other!

General Solution: Disallow aliases to coexist in cache

L05-54

MIT 6.823 Spring 2020

Aliasing in Virtual-Address Caches

February 20, 2020

VA1

VA2

Page Table

Data Pages

PA

VA1

VA2

1st Copy of Data at PA

2nd Copy of Data at PA

Tag Data

Two virtual pages share
one physical page

Virtual cache can have two
copies of same physical data.
Writes to one copy not visible

to reads of other!

General Solution: Disallow aliases to coexist in cache
Software (i.e., OS) solution for direct-mapped cache

VAs of shared pages must agree in cache index bits; this
ensures all VAs accessing same PA will conflict in direct-
mapped cache (early SPARCs)

L05-55

MIT 6.823 Spring 2020

Concurrent Access to TLB & Cache

February 20, 2020

VPN

TLB
Direct-map Cache

2L blocks
2b-byte block

PPN

Data

VA

PA

k

L05-56

Page
Offset

MIT 6.823 Spring 2020

Concurrent Access to TLB & Cache

February 20, 2020

VPN

TLB
Direct-map Cache

2L blocks
2b-byte block

PPN

Data

VA

PA

k

L05-57

Virtual
IndexL b

Page
Offset

MIT 6.823 Spring 2020

Concurrent Access to TLB & Cache

February 20, 2020

Index L is available without consulting the TLB
Þ cache and TLB accesses can begin simultaneously

VPN

TLB
Direct-map Cache

2L blocks
2b-byte block

PPN

Data

VA

PA

k

L05-58

Virtual
IndexL b

Page
Offset

MIT 6.823 Spring 2020

Concurrent Access to TLB & Cache

February 20, 2020

Index L is available without consulting the TLB
Þ cache and TLB accesses can begin simultaneously

VPN

TLB
Direct-map Cache

2L blocks
2b-byte block

PPN

Data
=

hit?
Physical Tag

Tag

VA

PA

k

L05-59

Virtual
IndexL b

Page
Offset

MIT 6.823 Spring 2020

Concurrent Access to TLB & Cache

February 20, 2020

Index L is available without consulting the TLB
Þ cache and TLB accesses can begin simultaneously

Tag comparison is made after both accesses are completed

VPN

TLB
Direct-map Cache

2L blocks
2b-byte block

PPN

Data
=

hit?
Physical Tag

Tag

VA

PA

k

L05-60

Virtual
IndexL b

Page
Offset

MIT 6.823 Spring 2020

Concurrent Access to TLB & Cache

February 20, 2020

Index L is available without consulting the TLB
Þ cache and TLB accesses can begin simultaneously

Tag comparison is made after both accesses are completed

VPN

TLB
Direct-map Cache

2L blocks
2b-byte block

PPN

Data
=

hit?
Physical Tag

Tag

VA

PA

k

L05-61

Virtual
IndexL b

Page
Offset

VPN2 VA2 L b

MIT 6.823 Spring 2020

Concurrent Access to TLB & Cache

February 20, 2020

Index L is available without consulting the TLB
Þ cache and TLB accesses can begin simultaneously

Tag comparison is made after both accesses are completed

When does this work? L + b < k __ L + b = k __ L + b > k __

VPN

TLB
Direct-map Cache

2L blocks
2b-byte block

PPN

Data
=

hit?
Physical Tag

Tag

VA

PA

k

L05-62

Virtual
IndexL b

Page
Offset

VPN2 VA2 L b

MIT 6.823 Spring 2020

Concurrent Access to TLB & Cache

February 20, 2020

Index L is available without consulting the TLB
Þ cache and TLB accesses can begin simultaneously

Tag comparison is made after both accesses are completed

When does this work? L + b < k __ L + b = k __ L + b > k __

VPN

TLB
Direct-map Cache

2L blocks
2b-byte block

PPN

Data
=

hit?
Physical Tag

Tag

VA

PA

k

ü
L05-63

Virtual
IndexL b

Page
Offset

VPN2 VA2 L b

MIT 6.823 Spring 2020

Concurrent Access to TLB & Cache

February 20, 2020

Index L is available without consulting the TLB
Þ cache and TLB accesses can begin simultaneously

Tag comparison is made after both accesses are completed

When does this work? L + b < k __ L + b = k __ L + b > k __

VPN

TLB
Direct-map Cache

2L blocks
2b-byte block

PPN

Data
=

hit?
Physical Tag

Tag

VA

PA

k

ü ü
L05-64

Virtual
IndexL b

Page
Offset

VPN2 VA2 L b

MIT 6.823 Spring 2020

Concurrent Access to TLB & Cache

February 20, 2020

Index L is available without consulting the TLB
Þ cache and TLB accesses can begin simultaneously

Tag comparison is made after both accesses are completed

When does this work? L + b < k __ L + b = k __ L + b > k __

VPN

TLB
Direct-map Cache

2L blocks
2b-byte block

PPN

Data
=

hit?
Physical Tag

Tag

VA

PA

k

ü ü û
L05-65

Virtual
IndexL b

Page
Offset

VPN2 VA2 L b

MIT 6.823 Spring 2020

Concurrent Access to TLB & Large L1
The problem with L1 > Page size

February 20, 2020

TLB

PPN b

Tag

VA

PA

L1 cache
VIPT
Direct-map

= hit?

L05-66

kPage
Offset

VPN b

MIT 6.823 Spring 2020

Concurrent Access to TLB & Large L1
The problem with L1 > Page size

February 20, 2020

TLB

PPN b

Tag

VA

PA

L1 cache
VIPT
Direct-map

= hit?

L05-67

kPage
Offset

VPN b

Virtual Index

MIT 6.823 Spring 2020

Concurrent Access to TLB & Large L1
The problem with L1 > Page size

February 20, 2020

TLB

PPN b

Tag

VA

PA

L1 cache
VIPT
Direct-map

= hit?

L05-68

kPage
Offset

VPN b

Virtual Index

a

MIT 6.823 Spring 2020

Concurrent Access to TLB & Large L1
The problem with L1 > Page size

February 20, 2020

Can VA1 and VA2 both map to PA?

TLB

PPN b

Tag

VA

PA

L1 cache
VIPT
Direct-map

= hit?

L05-69

kPage
Offset

VPN b

Virtual Index

a

MIT 6.823 Spring 2020

Concurrent Access to TLB & Large L1
The problem with L1 > Page size

February 20, 2020

Can VA1 and VA2 both map to PA?

TLB

PPN b

Tag

VA

PA

L1 cache
VIPT
Direct-map

= hit?

PPNa Data

PPNa Data

VA1

VA2

Yes

L05-70

kPage
Offset

VPN b

Virtual Index

a

MIT 6.823 Spring 2020

Virtual-Index Physical-Tag Caches:
Associative Organization

February 20, 2020

Is this scheme realistic?

VPN L = k-b b

TLB Direct-map
2L blocks

PPN

=
hit?

Data

Phy.
Tag

Tag

VA

PA

Virtual
Index

k
Direct-map
2L blocks

2a

=
2a

After the PPN is known, 2a physical tags are compared

L05-71

Page
Offset

a

MIT 6.823 Spring 2020

A solution via Second-Level Cache

February 20, 2020

Usually a common L2 cache backs up both
Instruction and Data L1 caches

L2 is “inclusive” of both Instruction and Data caches

CPU

L1 Data
Cache

L1
Instruction

Cache Unified L2
Cache

RF Memory

Memory

Memory

Memory

L05-72

MIT 6.823 Spring 2020

Anti-Aliasing Using L2: MIPS R10000

February 20, 2020

VPN Page Offset b

TLB

PPN Page Offset b

Tag

VA

PA

Virtual Index

= hit?

PPNa DataVA1

VA2

PPN

• Suppose VA1 and VA2 both map to PA and
VA1 is already in L1, L2 (VA1 ¹ VA2)

L05-73

L1 cache
VIPT
Direct-map

a into L2 tag

MIT 6.823 Spring 2020

L2 cache

PA a1 Data

(PIPT)

Anti-Aliasing Using L2: MIPS R10000

February 20, 2020

VPN Page Offset b

TLB

PPN Page Offset b

Tag

VA

PA

Virtual Index

= hit?

PPNa DataVA1

VA2

PPN

• Suppose VA1 and VA2 both map to PA and
VA1 is already in L1, L2 (VA1 ¹ VA2)

L05-74

L1 cache
VIPT
Direct-map

a into L2 tag

MIT 6.823 Spring 2020

L2 cache

PA a1 Data

(PIPT)

Anti-Aliasing Using L2: MIPS R10000

February 20, 2020

VPN Page Offset b

TLB

PPN Page Offset b

Tag

VA

PA

Virtual Index

= hit?

PPNa DataVA1

VA2

PPN

• Suppose VA1 and VA2 both map to PA and
VA1 is already in L1, L2 (VA1 ¹ VA2)

• After VA2 is resolved to PA, collision is
detected in L2. Collision à

L05-75

L1 cache
VIPT
Direct-map

a into L2 tag

MIT 6.823 Spring 2020

L2 cache

PA a1 Data

(PIPT)

Anti-Aliasing Using L2: MIPS R10000

February 20, 2020

VPN Page Offset b

TLB

PPN Page Offset b

Tag

VA

PA

Virtual Index

= hit?

PPNa DataVA1

VA2

PPN

• Suppose VA1 and VA2 both map to PA and
VA1 is already in L1, L2 (VA1 ¹ VA2)

• After VA2 is resolved to PA, collision is
detected in L2. Collision à Field a is different.

L05-76

L1 cache
VIPT
Direct-map

a into L2 tag

MIT 6.823 Spring 2020

L2 cache

PA a1 Data

(PIPT)

Anti-Aliasing Using L2: MIPS R10000

February 20, 2020

VPN Page Offset b

TLB

PPN Page Offset b

Tag

VA

PA

Virtual Index

= hit?

PPNa DataVA1

VA2

PPN

• Suppose VA1 and VA2 both map to PA and
VA1 is already in L1, L2 (VA1 ¹ VA2)

• After VA2 is resolved to PA, collision is
detected in L2. Collision à

• VA1 will be purged from L1, and VA2 will be
loaded Þ no aliasing!

Field a is different.

L05-77

L1 cache
VIPT
Direct-map

a into L2 tag

MIT 6.823 Spring 2020

L2 cache

PA a1 Data

(PIPT)

Anti-Aliasing Using L2: MIPS R10000

February 20, 2020

VPN Page Offset b

TLB

PPN Page Offset b

Tag

VA

PA

Virtual Index

= hit?

PPNa DataVA1

VA2

PPN

• Suppose VA1 and VA2 both map to PA and
VA1 is already in L1, L2 (VA1 ¹ VA2)

• After VA2 is resolved to PA, collision is
detected in L2. Collision à

• VA1 will be purged from L1, and VA2 will be
loaded Þ no aliasing!

Field a is different.

L05-78

L1 cache
VIPT
Direct-map

a into L2 tag

MIT 6.823 Spring 2020

L2 cache

PA a1 Data

(PIPT)

Anti-Aliasing Using L2: MIPS R10000

February 20, 2020

VPN Page Offset b

TLB

PPN Page Offset b

Tag

VA

PA

Virtual Index

= hit?

PPNa DataVA1

VA2

PPN

• Suppose VA1 and VA2 both map to PA and
VA1 is already in L1, L2 (VA1 ¹ VA2)

• After VA2 is resolved to PA, collision is
detected in L2. Collision à

• VA1 will be purged from L1, and VA2 will be
loaded Þ no aliasing!

Field a is different.
a2

L05-79

L1 cache
VIPT
Direct-map

a into L2 tag

MIT 6.823 Spring 2020

L2 cache

PA a1 Data

(PIPT)

Anti-Aliasing Using L2: MIPS R10000

February 20, 2020

VPN Page Offset b

TLB

PPN Page Offset b

Tag

VA

PA

Virtual Index

= hit?

PPNa Data

PPNa Data

VA1

VA2

PPN

• Suppose VA1 and VA2 both map to PA and
VA1 is already in L1, L2 (VA1 ¹ VA2)

• After VA2 is resolved to PA, collision is
detected in L2. Collision à

• VA1 will be purged from L1, and VA2 will be
loaded Þ no aliasing!

Field a is different.
a2

L05-80

L1 cache
VIPT
Direct-map

a into L2 tag

MIT 6.823 Spring 2020

Virtually Addressed L1:
Anti-Aliasing using L2

February 20, 2020

VPN Page Offset b

TLB

PPN Page Offset b

Tag

VA

PA

Virtual
Index & Tag

Physical
Index & Tag

L1 VA Cache

L2 PA Cache
L2 “contains” L1

PA VA1 Data

VA1 Data

VA2 Data

“Virtual
Tag”

Physically addressed L2 can also be
used to avoid aliases in virtually
addressed L1

L05-81

MIT 6.823 Spring 2020

Topics

• Interrupts

• Speeding up the common case:
– TLB & Cache organization

• Speeding up page table walks

• Modern Usage

February 20, 2020 L05-82

MIT 6.823 Spring 2020

Page Fault Handler

• When the referenced page is not in DRAM:
– The missing page is located (or created)
– It is brought in from disk, and page table is updated

Another job may be run on the CPU while the first job waits
for the requested page to be read from disk

– If no free pages are left, a page is swapped out
Pseudo-LRU replacement policy

February 20, 2020 L05-83

MIT 6.823 Spring 2020

Page Fault Handler

• When the referenced page is not in DRAM:
– The missing page is located (or created)
– It is brought in from disk, and page table is updated

Another job may be run on the CPU while the first job waits
for the requested page to be read from disk

– If no free pages are left, a page is swapped out
Pseudo-LRU replacement policy

• Since it takes a long time to transfer a page
(msecs), page faults are handled completely in
software by the OS
– Untranslated addressing mode is essential to allow kernel

to access page tables

February 20, 2020 L05-84

MIT 6.823 Spring 2020

Translation for Page Tables
• Can references to page tables cause TLB misses?
• Can this go on forever?

February 20, 2020

User Page Table
(in virtual space)

Data Pages

User PTE Base

System Page Table
(in physical space)

System PTE Base

L05-85

MIT 6.823 Spring 2020

Translation for Page Tables
• Can references to page tables cause TLB misses?
• Can this go on forever?

February 20, 2020

User Page Table
(in virtual space)

Data Pages

User PTE Base

System Page Table
(in physical space)

System PTE Base

A program that traverses the page table
needs a “no translation” addressing mode.

L05-86

MIT 6.823 Spring 2020

A PTE in primary memory contains
primary or secondary memory addresses

A PTE in secondary memory contains
only secondary memory addresses

Þ a page of a PT can be swapped out only
if none of its PTE’s point to pages in the
primary memory

Why?__________________________________

Swapping a Page of a Page Table

February 20, 2020 L05-87

page in primary memory
page in secondary memory

MIT 6.823 Spring 2020

A PTE in primary memory contains
primary or secondary memory addresses

A PTE in secondary memory contains
only secondary memory addresses

Þ a page of a PT can be swapped out only
if none of its PTE’s point to pages in the
primary memory

Why?__________________________________

Swapping a Page of a Page Table

February 20, 2020

Pointed-to pages become inaccessible
(page fault due to swapped-out PT page)

May cause deadlock!

L05-88

page in primary memory
page in secondary memory

MIT 6.823 Spring 2020

Atlas Revisited

• One PAR for each physical page

• PAR’s contain the VPN’s of the
pages resident in primary memory

• Advantage:

• Disadvantage?

February 20, 2020

VPN

PARs

PPN

L05-89

MIT 6.823 Spring 2020

Atlas Revisited

• One PAR for each physical page

• PAR’s contain the VPN’s of the
pages resident in primary memory

• Advantage:
– The size is proportional to the size of the

primary memory

• Disadvantage?

February 20, 2020

VPN

PARs

PPN

L05-90

MIT 6.823 Spring 2020

Atlas Revisited

• One PAR for each physical page

• PAR’s contain the VPN’s of the
pages resident in primary memory

• Advantage:
– The size is proportional to the size of the

primary memory

• Disadvantage?

February 20, 2020

VPN

PARs

PPN

Must check all PARs!

L05-91

MIT 6.823 Spring 2020

Hashed Page Table:
Approximating Associative Addressing

February 20, 2020

hash
Offset

Base of Table

+ PA of PTE

Primary
Memory

VPN PID PPN

Page Table
VPN Virtual Address

VPN PID DPN

VPN PID

PID

L05-92

MIT 6.823 Spring 2020

Hashed Page Table:
Approximating Associative Addressing

• Hashed Page Table is typically 2 to 3 times
larger than the number of PPNs to reduce
collision probability

February 20, 2020

hash
Offset

Base of Table

+ PA of PTE

Primary
Memory

VPN PID PPN

Page Table
VPN Virtual Address

VPN PID DPN

VPN PID

PID

L05-93

MIT 6.823 Spring 2020

Hashed Page Table:
Approximating Associative Addressing

• Hashed Page Table is typically 2 to 3 times
larger than the number of PPNs to reduce
collision probability

• It can also contain DPNs for some non-
resident pages (not common)

• If a translation cannot be resolved in this
table then the software consults a data
structure that has an entry for every
existing page

February 20, 2020

hash
Offset

Base of Table

+ PA of PTE

Primary
Memory

VPN PID PPN

Page Table
VPN Virtual Address

VPN PID DPN

VPN PID

PID

L05-94

MIT 6.823 Spring 2020

Virtual Memory Use Today - 1
• Desktop/server/cellphone processors have full

demand-paged virtual memory
– Portability between machines with different memory sizes
– Protection between multiple users or multiple tasks
– Share small physical memory among active tasks
– Simplifies implementation of some OS features

• Vector supercomputers and GPUs have translation
and protection but not demand paging
(Older Crays: base&bound, Japanese & Cray X1: pages)
– Don’t waste expensive processor time thrashing to disk (make

jobs fit in memory)
– Mostly run in batch mode (run set of jobs that fits in memory)
– Difficult to implement restartable vector instructions

February 20, 2020 L05-95

MIT 6.823 Spring 2020

Virtual Memory Use Today - 2

• Most embedded processors and DSPs provide
physical addressing only
– Can’t afford area/speed/power budget for virtual memory support
– Often there is no secondary storage to swap to!
– Programs custom-written for particular memory configuration in

product
– Difficult to implement restartable instructions for exposed

architectures

February 20, 2020 L05-96

L05-97MIT 6.823 Spring 2020

Next lecture: Pipelining!

MIT 6.823 Spring 2020

Global System Address Space

• Level A maps users’ address spaces into the global space
providing privacy, protection, sharing etc.

• Level B provides demand paging for the large global system
address space

• Level A and Level B translations may be kept in separate
TLB’s

February 20, 2020

Global
System
Address
Space

Physical
Memory

User

User

map

map

mapLevel A

Level B

L05-98

MIT 6.823 Spring 2020

Hashed Page Table Walk:
PowerPC Two-level, Segmented Addressing

February 20, 2020

Seg ID Page Offset
0 35 51 63

Hashed Segment Table

80-bit System VA Global Seg ID Page Offset
0 51 67 79

Hashed Page Table

PPN Offset
0 27 39

hashP

PA of Page Table +

hashS

PA of Seg Table +

40-bit PA

64-bit user VA

per process

system-wide

PA

PA

[IBM numbers bits
with MSB=0]

L05-99

MIT 6.823 Spring 2020

Base of Table

Power PC: Hashed Page Table

• Each hash table slot has 8 PTEs
<VPN,PPN> that are searched sequentially

• If the first hash slot fails, an alternate hash
function is used to look in another slot

All these steps are done in hardware!
• Hashed Table is typically 2 to 3 times

larger than the number of physical pages
• The full backup Page Table is a software

data structure
February 20, 2020

hash
Offset + PA of Slot

Primary
Memory

VPN PPN

Page Table
VPN d 80-bit VA

VPN

L05-100

