Directory-Based
Cache Coherence

Mengjia Yan
Computer Science & Artificial Intelligence Lab
M.I.T.

Based on slides from Daniel Sanchez

April 9, 2020 MIT 6.823 Spring 2020 L15-1

Valid/Invalid Example

@i BusRd OXA

O LD oxA

April 7, 2020 MIT 6.823 Spring 2020 L14-2

Maintaining Cache Coherence

It is sufficient to have hardware such that
« only one processor at a time has write permission for a location
* N0 processor can load a stale copy of the location after a write

— A correct approach could be: (e.g. MSI)

write request:
The address is invalidated in all other caches before the
write is performed

read request:

If a dirty copy is found in some cache, a write-back is
performed before the memory is read

April 9, 2020 MIT 6.823 Spring 2020 L15-3

Directory-Based Coherence
(Censier and Feautrier, 1978)

Snoopy Protocols
(Goodman 1983)

PPN PEP

' Bus

|
v
Mem.

e Snoopy schemes broadcast
requests over memory bus

e Difficult to scale to large
numbers of processors

e Requires additional
bandwidth to cache tags for
snoop requests

April 9, 2020

Directory Protocols

$ $ $

0
T

nterconplect

Dir. [Mem.

e Directory schemes send
messages to only those caches
that might have the line

e Can scale to large numbers of
processors

e Requires extra directory
storage to track possible
sharers

MIT 6.823 Spring 2020 L15-4

An MSI Directory Protocol

Directory

|__Tag | state | Sharers_

Tag | State | Data _

e Cache states: Modified (M) / Shared (S) / Invalid (I)

e Directory states:
— Uncached (Un): No sharers
— Shared (Sh): One or more sharers with read permission (S)
— Exclusive (Ex): A single sharer with read & write permissions (M)
e Transient states not drawn for clarity; for now, assume
No racing requests
April 9, 2020 MIT 6.823 Spring 2020 L15-5

MSI Protocol: Caches (1/3)

Transitions initiated by processor accesses:

PrRd / --
PrWr / --
Privr / Privr / BxRea Actions |
ExReq PrRd / Processor Read (PrRd)
r -
CS:D Processor Write (PrWr)
T Shared Request
PrRd / ShReq (ShReq)
Exclusive Request
(ExReq)

April 9, 2020 MIT 6.823 Spring 2020 L15-6

MSI Protocol: Caches (2/3)

Transitions initiated by directory requests:

InvReq / InvResp (with data)

DownReq /

DownResp

(with data) ____ Actions

= Invalidation Request
<S> (InvReq)
Downgrade Request

InvRess (DownRea)

(without Invalidation Response

data) = (InvResp)
@ Downgrade Response

(DownResp)

April 9, 2020 MIT 6.823 Spring 2020 L15-7

MSI Protocol: Caches (3/3)

@ Eviction /

WDbReq
Eviction /

(with data)
Writeback Request
@ | (WbReq) |
WDbReq

(without data)

@

April 9, 2020 MIT 6.823 Spring 2020 L15-8

MSI Protocol: Caches

—> Transitions initiated by processor accesses

—> Transitions initiated by directory requests

| |
N

April 9, 2020 MIT 6.823 Spring 2020 L15-9

MSI Protocol: Directory (1/2)

Transitions initiated by data requests:

ExReq / Sharers = {P}; ExResp

ShReq / Sharers = {P}; ShResp

April 9, 2020 MIT 6.823 Spring 2020 L15-10

MSI Protocol: Directory (2/2)

®
WbReq / Sharers = {}; WDbResp
Sh WbReq && |Sharers| > 1/
Sharers = Sharers - {P}; WbResp

WbReq && |Sharers| == 1/
Sharers = {}; WbResp

(o)

April 9, 2020 MIT 6.823 Spring 2020 L15-11

MSI Directory Protocol Example

Main Memory

Directory

: -
mml

OxA

® ShReq 0xA @ ShResp 0xA, data=3

OxA

€ LD OxA

April 9, 2020 MIT 6.823 Spring 2020 L15-12

MSI Directory Protocol Example

Main Memory

) = AT —2O
Directory i 4
| Tag | State | Sharers |
OxA Sh ,

@ ShResp 0xA, data=3 © ShReq OxA

ETEETIETS TR

OxA

€ LD OxA

April 9, 2020 MIT 6.823 Spring 2020 L15-13

MSI Directory Protocol Example

Main Memory

Directory

|__Tag | state | Sharers _

OxA

Ex

{1}

€) InvReq 0xA @ ExResp OxA

data = 3
QIanesp OxA

9 InvReqg OxA

€) ExReq OxA

QIanesp OxA

OxA I 3 OxA M 5 OxA I >
Core O Core 1 Core 2

€ st oxA

April 9, 2020

MIT 6.823 Spring 2020

L15-14

MSI Directory Protocol Example

Main Memory

ViFfl=laalEEA'SA '-I..I--L‘_-—--
-

Directory
| Tag | State | Sharers
0xB Ex {1}
€) WbReq OxA, data=5 © ExReq OxB

@ WbResp 0xA

@) ExResp 0xB, data=10

mm mm mm

OxB

€ st oxB

Why are OxA’s wb and OxB’s req serialized? Structural dependence

Possible solutions? Buffer outside of cache to hold write data
April 9, 2020 MIT 6.823 Spring 2020 L15-15

Miss Status Handling Register

MSHR - Holds load misses and writes outside of cache

MSHR entry

VI|X| Addr Data

e On eviction/writeback
— No free MSHR entry: stall

— Allocate new MSHR entry
- When channel available send WBReq and data

— Deallocate entry on WBResp

April 9, 2020 MIT 6.823 Spring 2020 L15-16

Miss Status Handling Register

MSHR - Holds load misses and writes outside of cache

MSHR entry per ld/st slots
Block
V([X| Addr Data L/S Inum Offset

e On cache load miss
— No free MSHR entry: stall
— Allocate new MSHR entry
— Send ShReq (or ExReq)
— On *Resp forward data to CPU and cache

— Deallocate MSHR

April 9, 2020

MIT 6.823 Spring 2020

L15-17

Miss Status Handling Register

MSHR - Holds load misses and writes outside of cache

MSHR entry per ld/st slots
Block
V([X| Addr Data V| L/S Inum Offset
Block
V]| L/S Inum Offset
Block

] V| L/S Inum
e On cache load miss Offset

— Look for matching address is MSHR
e If not found
— If no free MSHR entry: stall
— Allocate new MSHR entry and fill in
e If found, just fill in per Id/st slot
- Send ShReq (or ExReq)
— On *Resp forward data to CPU and cache
— Deallocate MSHR

Per Id/st slots allow servicing multiple requests with one entry

April 9, 2020 MIT 6.823 Spring 2020 L15-18

Directory Organization

e Requirement: Directory needs to keep track of all
the cores that are sharing a cache block

e Challenge: For each block, the space needed to
hold the list of sharers grows with number of
possible sharers...

April 9, 2020 MIT 6.823 Spring 2020 L15-19

Flat, Memory-based Directories

e Dedicate a few bits of main memory to store the
state and sharers of every line

e Encode sharers using a bit-vector

Main Memory

State Sharer Set

Sh 01001100

64 bytes 10 bits

v Simple
x Slow
x Very inefficient with many processors (~P bits/line)

April 9, 2020 MIT 6.823 Spring 2020 L15-20

Sparse Full-Map Directories

e Not every line in the system needs to be tracked -
only those in private caches!

e Idea: Organize directory as a cache

Way 1 Way 2 Way 3 Way 4

Directory Entry Format
Line Address State Sharer Set

OxFOO Sh 01001100

v Low latency, energy-efficient
x Bit-vectors grow with # cores - Area scales poorly
x Limited associativity - Directory-induced invalidations

April 9, 2020 MIT 6.823 Spring 2020 L15-21

Directory-Induced Invalidations

e To retain inclusion, must invalidate all sharers of an entry
before reusing it for another address

e Example: 2-way set-associative sparse directory

Main Memory

: W 5 -L'A;m.=_=-
Directory
| Tag | sState | Sharers | Tag | State | Sharers |
OxB Sh {2} OxF Ex {1}

9 d —) InvResp 0xA data=5

Cache 0

ShReq OxB

LD OxB
How many entries should the directory have?

April 9, 2020 MIT 6.823 Spring 2020 L15-22

Inexact Representations of Sharer Sets

e (Coarse-grain bit-vectors (e.g., 1 bit per 4 cores)

Sharer Set 0 0 0 0 0 0

0-3 4-7 8-11 12-15 16-19 20-23

e Limited pointers: Maintain a few sharer pointers, on overflow
mark ‘all’ and broadcast (or invalidate another sharer)

Sharer Set 0 8 14 33

all sharer 1 sharer 2 sharer 3

o Allow false positives (e.g., Bloom filters)

v’ Reduced area & energy
x Overheads still not scalable (these techniques simply play with

constant factors)
x Inexact sharers - Broadcasts, invalidations or spurious

invalidations and downgrades

April 9, 2020 MIT 6.823 Spring 2020 L15-23

Protocol Races

e Directory serializes multiple requests for the same address
— Same-address requests are queued or NACKed and retried

e But races still exist due to conflicting requests
e Example: Upgrade race

. Caches 0 and 1 issue
simultaneous ExReqs

Directory Directory starts serving
ReqQ DTN ETTONRETEEAN | cache 0's ExReq,
1, ExReq OxA OXA Sh {0,2} queues cache 1’s

QExReq OxA elaneq OxA \QExReq OxA

Cache 1 expected
ExResp, but got InvReq!

Cache 1 should
transition from S->M to
I->M and send InvResp

€ sToxA € ST 0xA

April 9, 2020 MIT 6.823 Spring 2020 L15-24

Extra Hops and 3-Hop Protocols
Reducing Protocol Latency

e Problem: Data in another cache needs to pass
through the directory, adding latency

e Optimization: Forward data to requester directly

Directory

Tag
OxA Ex {2}

© ExFwd O0xA, req=2 O ExAck OxA © ExReq OxA

Cache 2

© ExResp OxA~—— ©® ST 0xA

data=3

April 9, 2020 MIT 6.823 Spring 2020 L15-25

In-Cache Directories

e Common multicore memory hierarchy:
— 1+ levels of private caches
— A shared last-level cache
- Need to enforce coherence Shared cache

amon rivate caches
I P . Private Private Private
e Idea: Embed the dlrectory cache cache | cache
information in shared cache --
Core 0] Core 1 Core N
tags

— Shared cache must be inclusive
— Need extended directory if non-inclusive (Intel Skylake-X/SP)

Main Memory

v'Avoids tag overheads & separate lookups
x Can be inefficient if shared cache size >>
sum(private cache sizes)

April 9, 2020 MIT 6.823 Spring 2020 L15-26

Coherence in Multi-Level Hierarchies

e Can use the same or different protocols to keep coherence

across multiple levels

e Key invariant: Ensure sufficient permissions in all

intermediate levels

e Example: 8-socket Xeon E7 (8 cores/socket)

" Main temory [Main Hemory |

MESIF protocol
- Snooping (QPI)

1 MESI protocol

Chi

p O

Chip 7

April 9, 2020

MIT 6.823 Spring 2020

L3 in-cache directory

L15-27

Avoiding Protocol Deadlock

e Protocols can cause deadlocks even if network is
deadlock-free! (more on this later)

Example: Both nodes
saturate all intermediate
buffers with requests to each
other, blocking responses
from entering the network

Node O

e Solution: Separate virtual networks
— Different sets of virtual channels and endpoint buffers
— Same physical routers and links

e Most protocols require at least 2 virtual networks
(for requests and replies), often >2 needed

April 9, 2020 MIT 6.823 Spring 2020 L15-28

Thank you!

Next Lecture:
On-chip Networks

April 9, 2020 MIT 6.823 Spring 2020 L15-29

Load-reserve & Store-conditional

Special register(s) to hold reservation flag and
address, and the outcome of store-conditional

Load-reserve R, (a): Store-conditional (a), R:
<flag, adr> « <1, a>; if <flag, adr> == <1, a>
R « M[a]; then cancel other procs’

reservation on a;

M[a] < <R>;

status « succeed;
else status <« fail;

If the cache receives an invalidation to the address

in the reserve register, the reserve bit is set to 0
e Several processors may reserve ‘a’ simultaneously
e These instructions are like ordinary loads and stores
with respect to the bus traffic

April 9, 2020 MIT 6.823 Spring 2020 L15-30

Load-Reserve/Store-Conditional

Swap implemented with Ld-Reserve/St-Conditional

#

April 9, 2020

Swap(R1, mutex):

Ld-Reserve R2, (mutex)
St-Conditional (mutex), R1
if (status == fail) goto L
R1 <- R2

MIT 6.823 Spring 2020

L15-31

Performance:
Load-reserve & Store-conditional

The total number of coherence transactions is
not necessarily reduced, but splitting an atomic
instruction into load-reserve & store-conditional:

e jncreases utilization (and reduces
processor stall time), especially in split-
transaction buses and directories

e reduces cache ping-pong effect because

processors trying to acquire a semaphore do
not have to perform stores each time

April 9, 2020 MIT 6.823 Spring 2020 L15-32

