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History: From interconnection networks
to on-chip networks

Box-to-box  Board-to-board Chip-to-chip On-chip
net_works networks networks networks

Multi-Chip: Supercomputers, Data Centers, Internet Routers, Servers
On-Chip: Servers, Laptops, Phones, HDTVs, Access routers
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History: From interconnection networks
to on-chip networks

Box-to-box  Board-to-board Chip-to-chip On-chip
netyvorks networks networks networks

in shared memory processors

Multi-Chip: Supercomputers, Data Centers, Internet Routers, Servers
On-Chip: Servers, Laptops, Phones, HDTVs, Access routers
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What's an on-chip network?

E.g. Cache-coherent chip multiprocessor

Load regl, addressA

ﬁ ﬁ Sharer that

Home node holds a copy of
for address A address A in its $
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What's an on-chip network?

E.g. Cache-coherent chip multiprocessor

Load regl, addressA

ﬁ ﬁ Sharer that

Message
Node: switch/router Home node holds a copy of
Channel, Link for address A address A in its $
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What's an on-chip network?

E.g. Cache-coherent chip multiprocessor

Load regl, addressA
Message . $ $ Sharer that
Node: switch/router Home node holds a copy of
Channel, Link for address A address A in its $

Network transports cache coherence messages
and cache lines between processor cores
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Designing an on-chip network
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Designing an

on-chip network
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Designing an on-chip network
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Designing an on-chip network
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Designing an on-chip network

D_D_E‘I - Topology

‘Latency
O——D——L] -Scalability

‘ ‘ ‘ * Routing
O—C[O——[1

April 14, 2020 MIT 6.823 Spring 2020

L16-13



Designing an on-chip network
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Designing an on-chip network

O—~o—1 Topology

‘ ‘ ‘ ‘Latency
C——0O—11] -Scalability

‘ ‘ ‘ * Routing
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Designing an on-chip network

O—~o—1 Topology

‘ ‘ ‘ ‘Latency
C——0O—11] -Scalability
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Designing an on-chip network
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Designing an on-chip network
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Designing an on-chip network

D
I?E“f‘l - Topology
‘ ‘Latency
O——0O—I ] -Scalability
‘ ‘ ‘ * Routing

E | | r
—— ) —

 Flow control

« Router/Link
micro-architecture

April 14, 2020 MIT 6.823 Spring 2020 L16-19



Designing an on-chip network

D
I?E“f‘l - Topology
‘ ‘Latency
C]—O—I ] -Scalability

‘ ‘ ‘ * Routing

“““ » Flow control

@ * Router/Link
router micro-architecture
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Interconnection Network Architecture

e Topology: How to connect the nodes up?
(processors, memories, router line cards, ...)

e Routing: Which path should a message take?

e Flow control: How is the message actually
forwarded from source to destination?

e Router microarchitecture: How to build the routers?

e [ink microarchitecture: How to build the links?
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Topology
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Topological Properties

e Routing Distance - number of links on route
e Diameter - maximum routing distance
e Average Distance

e Bijsection Bandwidth

— A network is partitioned by a set of links if their removal
disconnects the graph

— Bisection bandwidth is the bandwidth crossing a minimal cut that
divides the network in half
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Linear Arrays and Rings

Linear Array

55—

Torus

® B Torus arranged to use short wires
P

Route A > B given by relative address R = B-A

Linear Array Ring (1-D Torus)
Diameter?
Average distance?
Bisection bandwidth?

e Torus Examples:
— FDDI, SCI, FiberChannel Arbitrated Loop, Intel Xeon
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Linear Arrays and Rings

Linear Array

55—

Torus

® B Torus arranged to use short wires
P

Route A > B given by relative address R = B-A

Linear Array Ring (1-D Torus)
Diameter? N-1
Average distance? N/3-1/(3N)
Bisection bandwidth?

e Torus Examples:
— FDDI, SCI, FiberChannel Arbitrated Loop, Intel Xeon
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Linear Arrays and Rings

Linear Array

55—

Torus

® B Torus arranged to use short wires
P

Route A > B given by relative address R = B-A

Linear Array Ring (1-D Torus)

Diameter? N-1
Average distance? N/3-1/(3N)
Bisection bandwidth? 1

e Torus Examples:
— FDDI, SCI, FiberChannel Arbitrated Loop, Intel Xeon
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Linear Arrays and Rings

Linear Array

55—

Torus

® B Torus arranged to use short wires
P

Route A > B given by relative address R = B-A

Linear Array Ring (1-D Torus)

Diameter? N-1 N/2 (if even N)
Average distance? N/3-1/(3N)
Bisection bandwidth? 1

e Torus Examples:
— FDDI, SCI, FiberChannel Arbitrated Loop, Intel Xeon
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Linear Arrays and Rings

Linear Array

55—

Torus

® B Torus arranged to use short wires
P

Route A > B given by relative address R = B-A

Linear Array Ring (1-D Torus)

Diameter? N-1 N/2 (if even N)
Average distance? N/3-1/(3N) N/4 (if even N)
Bisection bandwidth? 1

e Torus Examples:
— FDDI, SCI, FiberChannel Arbitrated Loop, Intel Xeon
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Linear Arrays and Rings

Linear Array

55—

Torus

® B Torus arranged to use short wires
P

Route A > B given by relative address R = B-A

Linear Array Ring (1-D Torus)

Diameter? N-1 N/2 (if even N)
Average distance? N/3-1/(3N) N/4 (if even N)
Bisection bandwidth? 1 2

e Torus Examples:
— FDDI, SCI, FiberChannel Arbitrated Loop, Intel Xeon
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Multidimensional Meshes and Tori

&
oroe
&

P91

e d-dimensional array

- Nn = Kg.1 X ... X Kg Nodes

— described by d-vector of coordinates (i4-1, ..., ip)
e d-dimensional k-ary mesh: N = k¢

- k = &N

— described by d-vector of radix k coordinate
e d-dimensional k-ary torus (or k-ary d-cube)
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Routing & Flow Control
Overview
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Messages, Packets, Flits, Phits

f ; Header \

Packet |RI ISN

N N—
| Tail Flit
Head FI7 \\Bod}' Flit Wh y f/l ts P

Flit T)'PZI Ve
Head, Bod,?'/ LY’
Tail, or H& Phit

Packet: Basic unit of routing and sequencing
- Limited size (e.g. 64 bits — 64 KB)
Flit: Basic unit of bandwidth/storage allocation
- All flits in packet follow the same path
Phit (physical transfer digit): data transferred in single clock

Message
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Messages, Packets, Flits, Phits

f ; Header \

Packet |RI ISN

N N—
| Tail Flit
Head Fllt7 \\Bod}‘ Flit Wh y f/l ts P

Message

Head. Body. acket sizes
o B o P

Packet: Basic unit of routing and sequencing
- Limited size (e.g. 64 bits - 64 KB)
Flit: Basic unit of bandwidth/storage allocation
- All flits in packet follow the same path
Phit (physical transfer digit): data transferred in single clock
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Messages, Packets, Flits, Phits

f 2 Header \

Packet |RISN

N N
| Tail Flit
Head Flit : \\Body Flit Why f/lts P

Message

. acket sizes
Hosd By o P

Packet: Basic unit of routing and sequencing—> Routing
- Limited size (e.g. 64 bits - 64 KB)

Flit: Basic unit of bandwidth/storage allocation = Flow control
- All flits in packet follow the same path

Phit (physical transfer digit): data transferred in single clock
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Routing vs Flow Control

e Routing algorithm chooses path that packets should
follow to get from source to destination

e Flow control schemes allocate resources (buffers,
links, control state) to packets traversing the
network

e Our approach: Bottom-up
— Today: Flow control, assuming routes are set
— Next lecture: Routing algorithms
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Properties of Routing Algorithms

e Deterministic/Oblivious

— Route determined by (source, dest), not intermediate state (i.e.
traffic)

e Adaptive

— Route influenced by traffic along the way

e Minimal
— Only selects shortest paths

e Deadlock-free

— No traffic pattern can lead to a situation where no packets move
forward

(more in next lecture)
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Flow Control
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Contention

-

—_—— —

e Two packets trying to use the same link at the same time

e Problem arises because we are sharing resources
— Sharing bandwidth and buffers
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e What can we do?
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Contention

-

—_—— —

e Two packets trying to use the same link at the same time
e What can we do?

— Buffer one
— Drop one

e Problem arises because we are sharing resources
— Sharing bandwidth and buffers
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Contention

-

—_—— —

e Two packets trying to use the same link at the same time
e What can we do?

- Buffer one
— Drop one
— Misroute one (deflection)
e Problem arises because we are sharing resources
— Sharing bandwidth and buffers
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Flow Control Protocols

e Bufferless:
how to allocate channels

— Circuit switching

— Dropping
— Misrouting

e Buffered:

how to allocate buffers and channels

— Store-and-forward

— Virtua
— Worm

~ =Virtua
April 14, 2020

nole

-channel

cut-through
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Flow Control Protocols

e Bufferless:

how to allocate channels
— Circuit switching
— Dropping

— Misrouting ComngLeXity
e Buffered: Efficiency

how to allocate buffers and channels
— Store-and-forward
— Virtual cut-through +
- Wormhole

= Virtual-channel |
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Circuit Switching

e Form a circuit from source to dest
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Circuit Switching

e Form a circuit from source to dest

e Probe to set up path through network
e Reserve all links
e Data sent through links

e Bufferless
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Time-space View: Circuit Switching

Channel
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e Why is this good?

e Why is it not?
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Time-space View: Circuit Switching
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Time-space View: Circuit Switching
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Acknowledgement

e Why is this good?
e Why is it not?
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Time-space View: Circuit Switching
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Time-space View: Circuit Switching
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Time-space View: Circuit Switching

0 IR AR D|D|DID {DID|D]D Ll

2 1 R A D{D[D|D |IDID|D]D Ll

c 2 R A D{D[D|D DID|DID 1
823 R| A D|D[D]D] D[D|D|D] T
O 4 RHA D{DID]D] DID|DID T

01 273 4 5 6°\7 8 91011121314 151617 18 19 20 21 22 23 24 25 26 27 28 29 30

Request Cycle _
Acknowledgement Deallocation

e Why is this good? Simple to implement

e Why is it not? Wasteful, 3x latency
for short packets
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Speculative Flow Control: Dropping

e If two things arrive and I don’t have resources,
drop one of them

e Flow control protocol on the Internet

=|

—_—

=
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Speculative Flow Control: Dropping

e If two things arrive and I don’t have resources,
drop one of them

e Flow control protocol on the Internet

=

| drop
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Time-space Diagram: Dropping

o, F [HIe[e]e]T] [H]B]B]B]T
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R Al
01 2 3 4 5 6 7 8 910111213 14 1516 17
Cycle
Disadvantages?
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Time-space Diagram: Dropping
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Time-space Diagram: Dropping

Retransmission
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Time-space Diagram: Dropping

Retransmission

o F HIB|B|B|T| |H|BIB|B]|T
T R | 2]
g | F H|B|B|B HIBIB|B|T
S R N
S ¥ iE AE[E[E]T
TR A
q F HIBIB|B|T
R Al
0 »2 3 4 5 6 7 8 9 10111213 14 1516 17
Cycle
Unable to allocate channel 3 Disadvantages?

Poor tradeoff of traffic
and buffering
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Less Simple Flow Control:
Misrouting

e Philosophy behind misrouting: intentionally route
away from congestion

e No need for buffering
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Less Simple Flow Control:
Misrouting

e Philosophy behind misrouting: intentionally route
away from congestion

e No need for buffering

e Problems? I
—
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Less Simple Flow Control:
Misrouting

e Philosophy behind misrouting: intentionally route
away from congestion

e No need for buffering

e Problems? I
Livelock: need to guarantee ﬁ o—

that progress is made
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Buffered Routing

e Link-level flow control:

- Given that you can’t drop packets, how to manage the
buffers? When can you send stuff forward, when not?

e Metrics of interest:
— Throughput/Latency
— Buffer utilization (turnaround time)
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Store-and-Forward (packet-based)

e Strategy:

- Make intermediate stops and wait until the entire
packet has arrived before you move on

— Allocate buffers and channels to packets

e Advantage:
— Other packets can use intermediate links
S

I

April 14, 2020 MIT 6.823 Spring 2020 L16-66




Store-and-Forward (packet-based)

e Strategy:

- Make intermediate stops and wait until the entire
packet has arrived before you move on

— Allocate buffers and channels to packets

e Advantage:
— Other packets can use intermediate links
S

W1

April 14, 2020 MIT 6.823 Spring 2020 L16-67




Store-and-Forward (packet-based)

e Strategy:

- Make intermediate stops and wait until the entire
packet has arrived before you move on

— Allocate buffers and channels to packets

e Advantage:
— Other packets can use intermediate links
S

April 14, 2020 MIT 6.823 Spring 2020 L16-68



Store-and-Forward (packet-based)

e Strategy:

- Make intermediate stops and wait until the entire

packet has arrived before you move on
— Allocate buffers and channels to packets

e Advantage:

— Other packets can use intermediate links
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Store-and-Forward (packet-based)

e Strategy:

- Make intermediate stops and wait until the entire
packet has arrived before you move on

— Allocate buffers and channels to packets

e Advantage:
— Other packets can use intermediate links
S

T
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Store-and-Forward (packet-based)

e Strategy:

- Make intermediate stops and wait until the entire
packet has arrived before you move on

— Allocate buffers and channels to packets

e Advantage:

— Other packets can use intermediate links
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T

|
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Store-and-Forward (packet-based)

e Strategy:

- Make intermediate stops and wait until the entire
packet has arrived before you move on

— Allocate buffers and channels to packets
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— Other packets can use intermediate links
S
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Store-and-Forward (packet-based)

e Strategy:

- Make intermediate stops and wait until the entire
packet has arrived before you move on

— Allocate buffers and channels to packets
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Store-and-Forward (packet-based)

e Strategy:

- Make intermediate stops and wait until the entire
packet has arrived before you move on

— Allocate buffers and channels to packets
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— Other packets can use intermediate links
S

" i

D

April 14, 2020 MIT 6.823 Spring 2020 L16-74



Store-and-Forward (packet-based)

e Strategy:
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Store-and-Forward (packet-based)
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Store-and-Forward (packet-based)

e Strategy:

- Make intermediate stops and wait until the entire
packet has arrived before you move on

— Allocate buffers and channels to packets

e Advantage:
— Other packets can use intermediate links
S

\J
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Time-space View: Store-and-
Forward

WN —O

Channel

01 2 3 45 6 7 8 9101112131415 16 17 18 19

Cycle

e Buffering allows packet to wait for channel
e Drawback?
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Time-space View: Store-and-
Forward
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Channel
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Cycle

Could be allocated at a much later time without packet dropping

e Buffering allows packet to wait for channel
e Drawback?
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Time-space View: Store-and-
Forward

WN —O

Channel

01 2 3 4 5 6 7 8 910111213 141516 17 18 19

Cycle

Could be allocated at a much later time without packet dropping

e Buffering allows packet to wait for channel

* Drawback? Serialization latency experienced at
each hop/channel
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Virtual Cut-through (packet-based)

e Why wait till entire message has arrived at each
intermediate stop?

e Forward as soon as the flits are received and
channels are allocated
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Virtual Cut-through (packet-based)

e Why wait till entire message has arrived at each
intermediate stop?

e Forward as soon as the flits are received and
channels are allocated

e Used in Alpha 21364
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Virtual Cut-through (packet-based)

e Why wait till entire message has arrived at each
intermediate stop?

e Forward as soon as the flits are received and
channels are allocated

e Used in Alpha 21364
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Virtual Cut-through (packet-based)

e Why wait till entire message has arrived at each
intermediate stop?

e Forward as soon as the flits are received and
channels are allocated
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Virtual Cut-through (packet-based)

e Why wait till entire message has arrived at each
intermediate stop?

e Forward as soon as the flits are received and
channels are allocated

e Used in Alpha 21364

e When the head gets blocked, whole packet gets
blocked at one intermediate node
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Time-space View:
Virtual Cut-through

e Advantages?

WKN—= O

Channel

01 2 3 4 5 6 7

Cycle

e Disadvantages?
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Time-space View:
Virtual Cut-through

e Advantages?

WKN—= O

Lower latency

Channel

01 2 3 4 5 6 7

Cycle No breaks
allowed o pjsadvantages?

Buffers allocated in packets
- large buffers & low utilization

@
Channel
W ho - O

Channels allocated in packets

01 2 3 4 5 6 7 & 910 ;
° > unfairness & low utilization

Cycle
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Flit-Buffer Flow Control: Wormhole

e When a packet blocks, just block wherever the
pieces (flits) of the message are at that time.

e Operates like cut-through but with channel and
buffers allocated to flits rather than packets

— Channel state (virtual channel) allocated to packet so body flits
can follow head flit
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Time-space View: Wormhole

In HEHEIT
Out HIBIB]T
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Cycle

e Advantages?

e Disadvantages?
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Time-space View: Wormhole

N HEHE]T
Out HIBIB]T

a b cc d e f g

Cycle

e Advantages? Smaller amount of buffer space required

e Disadvantages? May block a channel mid-packet,
another packet cannot use bandwidth
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Head of Line Blocking

Blocked by other
—
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Head of Line Blocking

Buffer full: blue
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Head of Line Blocking

Channel idle but
red packet blocked
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Virtual-Channel (VC) Flow Control

e When a message blocks, instead of holding on to links
so others can’t use them, hold on to virtual links
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e Multiple queues in buffer storage
— Like lanes on the highway

e Virtual channel can be thought of as channel state and
flit buffers
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e When a message blocks, instead of holding on to links
so others can’t use them, hold on to virtual links

e Multiple queues in buffer storage
— Like lanes on the highway

e Virtual channel can be thought of as channel state and
flit buffers

25
ZFE
zi
(=]

>

mii —H>—
> T o Do
—>—

R

Scheduling

April 14, 2020 MIT 6.823 Spring 2020 L16-116



Virtual Channel Flow Control

Blocked by
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Time-space View: Virtual-Channel
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Time-space View: Virtual-Channel

In1

# flits in In2
VVC buffer

Out
A downstream

B downstream

» Advantages?
« Disadvantages?
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Techniques for link backpressure
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— Can source send or not?
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Techniques for link backpressure

e Naive stall-based (on/off):
— Can source send or not?

e Sophisticated stall-based (credit-based):

- How many flits can be sent to the next node?

e Speculative (ack/nack):
— Guess can always send, but keep copy
— Resolve if send was successful (ack/nack)
e On ack - drop copy
e On nack - resend
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Credit-based Flow Control

Node 1 Node 2

t1
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Credit-based Flow Control
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Credit-based Flow Control

t1
t2
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Credit-based Flow Control

t1
t2

t4
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Credit-based Flow Control
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Credit-based Flow Control
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Credit-based Flow Control
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Credit-based Flow Control

t1
t2

t4

Node 1 Node 2
cred“ Flit 1
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e Round-trip credit delay:

— Time between when buffer empties and when next flit can be processed
from that buffer entry
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Thank you!

Next Lecture:
Router (Switch) Microarchitecture

Routing Algorithms
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