
L23-1MIT 6.823 Spring 2020

Mengjia Yan
Computer Science & Artificial Intelligence Lab

M.I.T.

Based on slides from Daniel Sanchez

Virtualization and Security

May 7, 2020

MIT 6.823 Spring 2020

Evolution in Number of Users

May 7, 2020

IBM 1620
1959

Single User

Runtime
loaded with

program

IBM 360
1960s

Multiple Users

OS for
sharing

resources

IBM PC
1980s

Single User

OS for
sharing

resources

Cloud Servers
1990s

Multiple Users

Multiple OSs

L23-2

MIT 6.823 Spring 2020

Single-Program Machine

• Hardware executes a single program
• This program has direct and complete access to all

hardware resources in the machine
• The instruction set architecture (ISA) is the

interface between software and hardware

May 7, 2020

Program

Hardware

Processor Memory Disk Network card Display

…

Keyboard

ISA

L23-3

MIT 6.823 Spring 2020

Operating Systems

• Operating System (OS) goals:
– Protection and privacy: Processes cannot access each

other’s data
– Abstraction: OS hides details of underlying hardware

• e.g., processes open and access files instead of issuing raw
commands to the disk

– Resource management: OS controls how processes share
hardware (CPU, memory, disk, etc.)

May 7, 2020

process1

OS Kernel

Hardware

processN…process2

ISA

Application Binary
Interface (ABI)

L23-4

MIT 6.823 Spring 2020

Operating System Mechanisms

• The OS kernel provides a private
address space to each process
– Each process is allocated space in

physical memory by the OS
– A process is not allowed to access

the memory of other processes

• The OS kernel schedules processes
into cores
– Each process is given a fraction of CPU time
– A process cannot use more CPU time than allowed

• The OS kernel lets processes invoke system services
(e.g., access files or network sockets) via system calls

May 7, 2020

free

Process 2
memory

OS Kernel
memory

Process 1
memory

Ph
ys

ic
al

M
em

or
y

free

…
Running
process Process 1 Process 2

Time

Process 1

L23-5

MIT 6.823 Spring 2020

Virtual Machines

• The OS gives a Virtual Machine (VM) to each process
– Each process believes it runs on its own machine…
– …but this machine does not exist in physical hardware

May 7, 2020

OS Kernel (specially privileged process)

Physical Hardware

Processor Memory Disk Network card Display

…
Keyboard

Virtual
Processor

Virtual
Memory Events Files Sockets Syscalls

Process2

Virtual
Processor

Virtual
Memory Events Files Sockets Syscalls

Process3

Virtual
Processor

Virtual
Memory Events Files Sockets Syscalls

Process4
ABI

Virtual
CPUs

Virtual
Memory Events Files Sockets Syscalls

Process1

VM1

L23-6

MIT 6.823 Spring 2020

Virtual Machines

• A Virtual Machine (VM) is an emulation of a
computer system
– Very general concept, used beyond operating systems

May 7, 2020

ABI
Virtual
Processor

Virtual
Memory Events Files Sockets Syscalls

Process1

OS Kernel (specially privileged process)

Physical Hardware

Processor Memory Disk Network card Display

…
Keyboard

Virtual
Processor

Virtual
Memory Events Files Sockets Syscalls

Process2

Virtual
Processor

Virtual
Memory Events Files Sockets Syscalls

Process3

Virtual
Processor

Virtual
Memory Events Files Sockets Syscalls

Process4

VM1

L23-7

MIT 6.823 Spring 2020

Virtual Machines Are Everywhere

• Example: Consider a Python program running on a
Linux Virtual Machine

May 7, 2020

Python program

Python interpreter (CPython) Implements a Python VM

Win/Linux/MacOS/… ABI

Linux OS kernel Implements a Linux-x86 VM

VirtualBox

Implements an x86 physical
machine

OS kernel (Win/Linux/MacOS/…)

Hardware (e.g., your laptop)

Python Language

Linux ABI

x86 ISA

Implements an OS-x86 VM
x86 ISA

Implements an x86 system VM

L23-8

MIT 6.823 Spring 2020

Implementing Virtual Machines

• Virtual machines can be implemented entirely in
software, but at a performance cost
– e.g., Python programs are 10-100x slower than native Linux

programs due to Python interpreter overheads

• We want to support virtual machines with minimal
overheads à need hardware support!

May 7, 2020 L23-9

MIT 6.823 Spring 2020

ISA Extensions to Support OS

• Two modes of execution: user and supervisor
– OS kernel runs in supervisor mode
– All other processes run in user mode

• Privileged instructions and registers that
are only available in supervisor mode

• Traps (exceptions) to safely transition
from user to supervisor mode

• Virtual memory to provide private address spaces
and abstract the storage resources of the machine

May 7, 2020 L23-10

MIT 6.823 Spring 2020

Supporting Multiple OSs

• A VMM (aka Hypervisor) provides a system virtual
machine to each OS

• VMM can run directly on hardware (as above) or on
another OS
– Precisely, VMM can be implemented against an ISA (as above) or

a process-level ABI. Who knows what lays below the interface…

May 7, 2020

process1

OS Kernel1

Hardware

processN…

…

process1

OS KernelK

processM…
ABIABI

Virtual Machine Monitor (VMM)
ISA ISA

ISA

L23-11

MIT 6.823 Spring 2020

Motivation for Multiple OSs
Some motivations for using multiple operating systems on
a single computer:

• Allows use of capabilities of multiple distinct operating
systems.

• Allows different users to share a system while using
completely independent software stacks.

• Allows for load balancing and migration across multiple
machines.

• Allows operating system development without making
entire machine unstable or unusable.

May 7, 2020 L23-12

MIT 6.823 Spring 2020

From (Machine we are
attempting to execute)
• Guest
• Client
• Foreign ISA

To (Machine that is doing
the real execution)
• Host
• Target
• Native ISA

May 7, 2020

Virtualization Nomenclature

L23-13

OS Kernel1

Hardware

… OS KernelK

Virtual Machine Monitor (VMM)

Foreign
ISA

Native
ISA

Host OS/
Hypervisor

Guest OS

MIT 6.823 Spring 2020

Virtual Machine Requirements
[Popek and Goldberg, 1974]
• Equivalence/Fidelity: A program running on the

VMM should exhibit a behavior essentially identical
to that demonstrated when running on an
equivalent machine directly.

• Resource control/Safety: The VMM must be in
complete control of the virtualized resources.

• Efficiency/Performance: A statistically dominant
fraction of machine instructions must be executed
without VMM intervention.
– Every instruction is intervened by VMM: Virtual machines

implemented entirely in software using binary emulation
– VMM only intervenes sensitive instructions: need hardware

support

May 7, 2020 L23-14

MIT 6.823 Spring 2020

Virtual Machine Requirements
[Popek and Goldberg, 1974]
Classification of instructions into 3 groups:

• Privileged instructions: Instructions that trap if the
processor is in user mode and do not trap if it is in a
more privileged mode.

• Control-sensitive instructions: Instructions that attempt
to change the configuration of resources in the system.

• Behavior-sensitive instructions: Those whose behavior
depends on the configuration of resources, e.g., mode

Building an effective VMM for an architecture is possible if
the set of sensitive instructions is a subset of the set of
privileged instructions.

May 7, 2020 L23-15

MIT 6.823 Spring 2020

Security and Side Channels

• ISA and ABI are timing-independent interfaces
– Specify what should happen, not when

• Hardware isolation mechanisms like virtual memory
guarantee that architectural state will not be
directly exposed to other processes…

• …but timing and other implementation details (e.g.,
microarchitectural state, power, etc.) may be used
as side channels to leak information!

May 7, 2020 L23-16

Core
L1

Shared LLC

Core
L1

Core
L1

Core
L1

Victim
VM

Attacker
VM

VM Isolation

MIT 6.823 Spring 2020

Side Channels

• Side channels do not exploit software bugs or
crypto algorithm weaknesses
– E.g. Buffer overflow attack is not a side channel attack

• Side channels leak information based on the
implementation of a computer system
– E.g. acoustic side channel
– Timing information, power consumption, electromagnetic leaks

etc.

L23-17May 7, 2020

MIT 6.823 Spring 2020

Cache-Based Side Channels

• Attacker can infer shared cache behavior of victim
– e.g., prime+probe attack, flush+reload attacks
– Leaks address-dependent information, e.g., RSA [Percival

2005] and AES keys [Osvik et al. 2005]

May 7, 2020 L23-18

Core 0

Main Memory

Priv Caches

Core 1

Priv Caches

Core 2

Priv Caches

Core 3

Priv Caches

Shared Cache

Victim Attacker

MIT 6.823 Spring 2020

Cache-based Side Channels
• RSA example:

– Square-and-multiply based exponentiation

L23-19May 7, 2020

Input : base b, modulo m,
exponent e = (en−1 ...e0)2

Output: be mod m
r = 1
for i = n−1 down to 0 do

r = sqr(r)
r = mod(r,m)
if ei == 1 then

r = mul(r,b)
r = mod(r,m)

end
end
return r

Secret-dependent
memory accesses
à transmitter

MIT 6.823 Spring 2020

DRAM

Cache-based Side Channels

L23-20May 7, 2020

conflict

Victim Attacker

Shared LLC

Private
caches

Private
caches

• Prime+Probe
– Victim access a transmitter address
à Attacker has 1 cache miss during

Probe
à Long access latency

- Victim does not access the
transmitter address

à Attacker has all cache hits during
Probe

à Short access latency
• Microarch side channels among

threads running on same SMT
core?L1/L2/L3 caches

ROB/Issue/FU contention
Branch & other predictors

MIT 6.823 Spring 2020

Microarchitecture Side Channels

L23-21May 7, 2020

Attack Platforms Target Applications

MIT 6.823 Spring 2020

Exploiting Speculative Execution in
Side-Channel Attacks
• OoO cores run instructions speculatively and out of order
• Problem: Speculative instructions can change

microarchitectural state à can leak data via side channel

• Example: In x86, process page table can have kernel
pages, but kernel pages only accessible in kernel mode

– Avoids switching page tables on context switches
– What does the following code do when run in user mode?

May 7, 2020

Address Space User pages Kernel pages

0x0 0xFF...F

val = *kernel_address;
Causes a protection fault

In Intel processors, protection fault is handled late
à Kernel data speculatively loaded into val register!

L23-22

MIT 6.823 Spring 2020

Meltdown
[Lipp et al. 2018]

1. Setup: Attacker allocates 256-line probe_array, flushes
all its cache lines

2. Transmit: Attacker executes

3. Receive: After handling protection fault, attacker times
accesses to all cache lines of probe_array, finds which
one hits à recovers byte

• Result: Attacker can read arbitrary kernel data!
– For higher performance, use transactional memory
– Mitigation: Do not map kernel data in user page tables;

Register poisoning
May 7, 2020

Ld1: uint8_t byte = *kernel_address;
Ld2: unit8_t dummy = probe_array[byte*64];

L23-23

….
Ld1
Ld2
….

ROB head

Ld2 is transmitter

MIT 6.823 Spring 2020

General Attack Schema
[Belay, Devadas, Emer]

• Types of transmitter:
1. Pre-existing (the victim itself leaks secret, e.g., RSA/AES keys)
2. Programmed by attacker (e.g., Meltdown)
3. Synthesized from existing victim code by attacker (e.g., Spectre)

May 7, 2020

Domain of victim

Secret

Transmitter

Attacker

Secret

ReceiverSide channel
Acce

ss

L23-24

MIT 6.823 Spring 2020

Spectre variant 1 — Exploiting
Conditional Branches [Kocher et al. 2018]

• Consider the following kernel code, e.g., in a system call

May 7, 2020 L23-25

Br: if (x < size_array1) {

Ld1: secret = array1[x]*4096

Ld2: y = array2[secret]

}

Attacker to read arbitrary memory:
1. Setup: Train branch predictor
2. Transmit: Trigger branch misprediction; &array1[x] maps to
some desired kernel address
3. Receive: Attacker probes cache to infer which line of array2
was fetched

….
Br
Ld1
Ld2
…

ROB
head

MIT 6.823 Spring 2020

Spectre variant 2—Branch Target
Injection [Kocher et al. 2018]

• Assume the BTB stores partial tags but full target PCs.
How can this be exploited?

• Most BTBs store partial tags and targets…
– Hard to get BTB to jump from a kernel address to a far-away

user address

• But most cores add an indirect branch predictor that
stores full targets (e.g., to predict virtual function calls)
– Spectre v2 exploits this predictor instead

May 7, 2020 L23-26

Br: if (…) {

… }

…

Ld1: secret = array1[x]*4096

Ld2: y = array2[secret]

1. Setup: Attacker chooses any
jump in kernel code, mistrains
BTB so that it predicts a target
PC under the control of the
attacker that leaks information

2. Transmit & receive: Like in
Spectre v1

MIT 6.823 Spring 2020

Spectre variants and mitigations

• Spectre relies on speculative execution, not late
exception handling à Much harder to fix than Meltdown

• Several other Spectre variants reported
– Leveraging the speculative store buffer, return address stack,

leaking privileged registers, etc.

• Can attack any type of VM, including OSs, VMMs,
JavaScript engines in browsers, and the OS network
stack (NetSpectre)

• Short-term mitigations:
– Microcode updates (disable sharing of speculative state when possible)
– OS and compiler patches to selectively avoid speculation

• Long-term mitigations:
– Disabling speculation?
– Closing side channels?

May 7, 2020 L23-27

MIT 6.823 Spring 2020

The Age of Pervasive Hardware
Security Attacks

On-chip Processor

Off-chip DRAM

core

L1/L2

L3

core

L1/L2

…
…

Flush+Reload, Prime+Probe
Directory Attacks

RNG Unit Covert Chanel

CacheOut, RIDL, Fallout
Port contention,
cache banking, 4K Alias

RowHammer, DRAMA
RAMBleed

Spectre, Meltdown
Foreshadow,
Arithmetic timing

L23-28May 7, 2020

New Special Topic course in Fall 2020
6.888 Secure Hardware Design

L23-29MIT 6.823 Spring 2020

Thank you!

May 7, 2020

