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Evolution in Number of Users
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Single-Program Machine

• Hardware executes a single program
• This program has direct and complete access to all 

hardware resources in the machine
• The instruction set architecture (ISA) is the 

interface between software and hardware
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Operating Systems

• Operating System (OS) goals:
– Protection and privacy: Processes cannot access each 

other’s data
– Abstraction: OS hides details of underlying hardware 

• e.g., processes open and access files instead of issuing raw 
commands to the disk

– Resource management: OS controls how processes share 
hardware (CPU, memory, disk, etc.)
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Operating System Mechanisms

• The OS kernel provides a private
address space to each process
– Each process is allocated space in

physical memory by the OS
– A process is not allowed to access

the memory of other processes

• The OS kernel schedules processes
into cores
– Each process is given a fraction of CPU time
– A process cannot use more CPU time than allowed

• The OS kernel lets processes invoke system services 
(e.g., access files or network sockets) via system calls

May 7, 2020

free

Process 2
memory

OS Kernel
memory

Process 1
memory

Ph
ys

ic
al

M
em

or
y

free

…
Running
process Process 1 Process 2

Time

Process 1

L23-5



MIT 6.823 Spring 2020

Virtual Machines

• The OS gives a Virtual Machine (VM) to each process
– Each process believes it runs on its own machine…
– …but this machine does not exist in physical hardware
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Virtual Machines

• A Virtual Machine (VM) is an emulation of a 
computer system
– Very general concept, used beyond operating systems
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Virtual Machines Are Everywhere

• Example: Consider a Python program running on a 
Linux Virtual Machine
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Implementing Virtual Machines

• Virtual machines can be implemented entirely in 
software, but at a performance cost
– e.g., Python programs are 10-100x slower than native Linux 

programs due to Python interpreter overheads

• We want to support virtual machines with minimal 
overheads à need hardware support!
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ISA Extensions to Support OS

• Two modes of execution: user and supervisor
– OS kernel runs in supervisor mode
– All other processes run in user mode

• Privileged instructions and registers that
are only available in supervisor mode

• Traps (exceptions) to safely transition
from user to supervisor mode

• Virtual memory to provide private address spaces 
and abstract the storage resources of the machine
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Supporting Multiple OSs

• A VMM (aka Hypervisor) provides a system virtual 
machine to each OS

• VMM can run directly on hardware (as above) or on 
another OS
– Precisely, VMM can be implemented against an ISA (as above) or 

a process-level ABI. Who knows what lays below the interface… 
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Motivation for Multiple OSs
Some motivations for using multiple operating systems on 
a single computer:

• Allows use of capabilities of multiple distinct operating 
systems.

• Allows different users to share a system while using 
completely independent software stacks.

• Allows for load balancing and migration across multiple 
machines.

• Allows operating system development without making 
entire machine unstable or unusable.
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From (Machine we are 
attempting to execute)
• Guest
• Client
• Foreign ISA

To (Machine that is doing 
the real execution)
• Host
• Target
• Native ISA

May 7, 2020

Virtualization Nomenclature
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Virtual Machine Requirements
[Popek and Goldberg, 1974]
• Equivalence/Fidelity: A program running on the 

VMM should exhibit a behavior essentially identical 
to that demonstrated when running on an 
equivalent machine directly. 

• Resource control/Safety: The VMM must be in 
complete control of the virtualized resources.

• Efficiency/Performance: A statistically dominant 
fraction of machine instructions must be executed 
without VMM intervention. 
– Every instruction is intervened by VMM: Virtual machines 

implemented entirely in software using binary emulation
– VMM only intervenes sensitive instructions: need hardware 

support
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Virtual Machine Requirements
[Popek and Goldberg, 1974]
Classification of instructions into 3 groups:

• Privileged instructions: Instructions that trap if the 
processor is in user mode and do not trap if it is in a 
more privileged mode.

• Control-sensitive instructions: Instructions that attempt 
to change the configuration of resources in the system. 

• Behavior-sensitive instructions: Those whose behavior 
depends on the configuration of resources, e.g., mode

Building an effective VMM for an architecture is possible if 
the set of sensitive instructions is a subset of the set of 
privileged instructions.
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Security and Side Channels

• ISA and ABI are timing-independent interfaces
– Specify what should happen, not when

• Hardware isolation mechanisms like virtual memory 
guarantee that architectural state will not be 
directly exposed to other processes…

• …but timing and other implementation details (e.g., 
microarchitectural state, power, etc.) may be used 
as side channels to leak information!
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Side Channels

• Side channels do not exploit software bugs or 
crypto algorithm weaknesses
– E.g. Buffer overflow attack is not a side channel attack

• Side channels leak information based on the 
implementation of a computer system
– E.g. acoustic side channel
– Timing information, power consumption, electromagnetic leaks 

etc.
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Cache-Based Side Channels

• Attacker can infer shared cache behavior of victim
– e.g., prime+probe attack, flush+reload attacks
– Leaks address-dependent information, e.g., RSA [Percival 

2005] and AES keys [Osvik et al. 2005]

May 7, 2020 L23-18

Core 0

Main Memory

Priv Caches

Core 1

Priv Caches

Core 2

Priv Caches

Core 3

Priv Caches

Shared Cache

Victim Attacker



MIT 6.823 Spring 2020

Cache-based Side Channels
• RSA example:

– Square-and-multiply based exponentiation
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Input : base b, modulo m,
exponent e = (en−1 ...e0 )2 

Output: be mod m
r = 1
for i = n−1 down to 0 do

r = sqr(r)
r = mod(r,m) 
if ei == 1 then

r = mul(r,b)
r = mod(r,m) 

end 
end
return r 

Secret-dependent 
memory accesses 
à transmitter
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DRAM

Cache-based Side Channels
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Microarchitecture Side Channels
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Attack Platforms Target Applications
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Exploiting Speculative Execution in 
Side-Channel Attacks
• OoO cores run instructions speculatively and out of order
• Problem: Speculative instructions can change 

microarchitectural state à can leak data via side channel

• Example: In x86, process page table can have kernel 
pages, but kernel pages only accessible in kernel mode

– Avoids switching page tables on context switches
– What does the following code do when run in user mode?

May 7, 2020

Address Space User pages Kernel pages

0x0 0xFF...F

val = *kernel_address;
Causes a protection fault

In Intel processors, protection fault is handled late
à Kernel data speculatively loaded into val register!
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Meltdown
[Lipp et al. 2018]

1. Setup: Attacker allocates 256-line probe_array, flushes 
all its cache lines

2. Transmit: Attacker executes

3. Receive: After handling protection fault, attacker times 
accesses to all cache lines of probe_array, finds which 
one hits à recovers byte

• Result: Attacker can read arbitrary kernel data!
– For higher performance, use transactional memory 
– Mitigation: Do not map kernel data in user page tables; 

Register poisoning
May 7, 2020

Ld1: uint8_t byte = *kernel_address;
Ld2: unit8_t dummy = probe_array[byte*64];
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General Attack Schema
[Belay, Devadas, Emer]

• Types of transmitter:
1. Pre-existing (the victim itself leaks secret, e.g., RSA/AES keys)
2. Programmed by attacker (e.g., Meltdown)
3. Synthesized from existing victim code by attacker (e.g., Spectre)

May 7, 2020
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Spectre variant 1 — Exploiting
Conditional Branches [Kocher et al. 2018]

• Consider the following kernel code, e.g., in a system call
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Br:  if (x < size_array1) {

Ld1:      secret = array1[x]*4096

Ld2: y = array2[secret]

}

Attacker to read arbitrary memory:
1. Setup: Train branch predictor
2. Transmit: Trigger branch misprediction; &array1[x] maps to 
some desired kernel address
3. Receive: Attacker probes cache to infer which line of array2
was fetched

….
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Spectre variant 2—Branch Target 
Injection [Kocher et al. 2018]

• Assume the BTB stores partial tags but full target PCs. 
How can this be exploited?

• Most BTBs store partial tags and targets…
– Hard to get BTB to jump from a kernel address to a far-away 

user address

• But most cores add an indirect branch predictor that 
stores full targets (e.g., to predict virtual function calls)
– Spectre v2 exploits this predictor instead 
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Br: if (…) {

…      }

…

Ld1: secret = array1[x]*4096

Ld2: y = array2[secret]

1. Setup: Attacker chooses any
jump in kernel code, mistrains
BTB so that it predicts a target 
PC under the control of the 
attacker that leaks information

2. Transmit & receive: Like in 
Spectre v1
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Spectre variants and mitigations

• Spectre relies on speculative execution, not late 
exception handling à Much harder to fix than Meltdown

• Several other Spectre variants reported
– Leveraging the speculative store buffer, return address stack, 

leaking privileged registers, etc.

• Can attack any type of VM, including OSs, VMMs, 
JavaScript engines in browsers, and the OS network 
stack (NetSpectre)

• Short-term mitigations:
– Microcode updates (disable sharing of speculative state when possible)
– OS and compiler patches to selectively avoid speculation

• Long-term mitigations:
– Disabling speculation?
– Closing side channels?
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The Age of Pervasive Hardware 
Security Attacks
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New Special Topic course in Fall 2020
6.888 Secure Hardware Design
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Thank you!
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