
Cache Coherence
Victor Ying

6.823 Spring 2020

4/17/2020 1

Goals of caches

» Small memories that provide quick access to
recently accessed data.

» Transparently managed by hardware (and OS)
- Program output should appear as if the caches did not

exist and applications directly accessed main memory.

4/17/2020 2

Goals of shared memory

»Multiple concurrently executing threads can read
and write data in a single address space.

» Transparently managed by hardware (and OS)
- Program output should appear as if the caches did not

exist and applications directly accessed single memory.

4/17/2020 3

Caches in parallel systems

»Caches give quick access to data:
- Small private caches may hold copies of data.

» Transparent management: How to ensure cache
accesses don’t act on stale data?
- No shared writeable address space: Pure message

passing, or

- Cache coherence

4/17/2020 4

Cache coherence

Processor X:

Ld 0xA 0

Ld 0xA 0

Ld 0xA 0

…

Ld 0xA 42

Ld 0xA 42
4/17/2020 5

Processor Y:

St 42 0xAtime

Cache Coherence
» Two Rules:

1. Write propagation: Writes eventually become visible
to other processors

2. Write serialization: All processors observe writes to
one location appear to happen in a consistent order

» Strategies for propagation:
- A write invalidates copies in other private caches

- A write updates copies in other private caches

- Tradeoffs?

4/17/2020 6

Serialization strategies

» Snoopy coherence protocol
On a miss, private caches broadcast their actions
through a bus-like interconnect, other caches observe
(“snoop”) and perform updates or invalidations.

» Directory-based coherence protocol
On a miss, private caches send unicast message to the
directory, which serializes requests and sends unicast
messages to other caches to perform updates or
invalidations.

Tradeoffs?

4/17/2020 7

Do write-through caches need
coherence?
»Yes.

- Writes must propagate: update or invalidate copies in
other private caches.

- Write serialization is trivial.

»A protocol with two stable states is sufficient:
- Invalid

- Shared

»Do you need transient cache states?
- Implemented with MSHR

4/17/2020 8

Write-back caches: MSI

» Three stable states per cache-line
- Invalid (I): Cache does not have a copy
- Shared (S): Cache has read-only copy; clean
- Modified (M): Cache has only copy; writable;

(potentially) dirty

»Processor-initiated actions:
- Read: needs to upgrade permission to S
- Write: needs to upgrade permission to M
- Evict: relinquish permissions (caused by access to a

different cache line)

4/17/2020 9

MSI directory states

»Uncached (Un): No cache has a valid copy

» Shared (Sh): One or more caches in S state. Must
track sharers.

» Exclusive (Ex): One of the caches in M state. Must
track owner.

»Does the directory need transient states?
- Yes on downgrades/invalidations, to guarantee

serialization

4/17/2020 10

Lab Task: MSI Coherence Protocol

» Implement with Murphi description language
- Rules: Define transitions between states

- Invariants and asserts: Capture protocol correctness

»Murphi verifier
- Explores reachable states until it finds:

• A violation of an invariant or assertion, or

• A state with no possible transitions (deadlock), or

• It has explored all reachable states and found no errors.

- Exploits symmetry to reduce redundant states

4/17/2020 11

Races

» Occur when there are multiple messages/requests in flight
concerning a single cache line.

» Try to minimize the opportunity for races by waiting for
previous messages before sending new ones.

» Multiple processors may concurrently initiate conflicting
requests.
- L15-24 shows one case

» If network may deliver messages out of order, the protocol
must handle this. For example:
- The directory has two messages in flight to one private cache.
- One processor/cache has two messages in flight to the directory.

» 3-hop protocol may require you to add more handling for
additional races.

4/17/2020 12

Tips

» Feel free to add to or rename states and messages.

»Get a 4-hop protocol working first, before
attempting 3-hop.

»Get your protocol working with ProcCount set to 2
before handling the 3-processor case.

»Write more of assertions and/or invariants.
- Add assertions/invariants about your transient states.

4/17/2020 13

