
Quiz 4 Review
Microcoded and VLIW processors

& Vector processors

Guowei Zhang

5/7/20 6.823 Spring 2020 1

Lab 4

• Request a deadline extension till Wednesday
13 midnight if needed

5/7/20 26.823 Spring 2020

Quiz 4 logistics

• Time: 1pm on Tuesday May 12

• Style: same as Quiz 3

• Zoom link: same as recitations

5/7/20 36.823 Spring 2020

Topics

• Microcoded and VLIW processors

• Vector processing

• GPUs

• Transactional memory

5/7/20 46.823 Spring 2020

Microcoded processors

• Introduces a layer of interpretation
– Each ISA instruction is executed as a sequence of

simpler microinstructions

• Pros:
– Enables simpler hardware
– Enables more flexible ISA

• Cons:
– Sacrifices performance

5/7/20 56.823 Spring 2020

VLIW: Very Long Instruction Word

• The compiler:

– Guarantees intra-instruction parallelism

– Schedules (reorders) to maximize parallel execution

• The architecture:

– Allows operation parallelism within an instruction

• No cross-operation RAW check

– Provides deterministic latency for all operations

• Enables simple hardware but leaves hard tasks to

software

5/7/20 66.823 Spring 2020

Software pipelining vs. Unrolling

5/7/20 76.823 Spring 2020

time

performance

time

performance

Loop Unrolling

Software Pipelining

Startup overhead

Wind-down overhead

Loop Iteration

Loop Iteration

Software pipelining pays startup/wind-down
costs only once per loop, not once per iteration

Trace scheduling

5/7/20 86.823 Spring 2020

VLIW issues
• Limited by static information
– Unpredictable branches

• Possible solution: predicated execution
– Unpredictable memory operations

• Possible solution: Memory Latency Register (MLR)

• Code size explosion
– Wasted slots
– Replicated code

• Portability
• Compiler complexity

5/7/20 96.823 Spring 2020

Vector processing

• Supercomputers in 70s – 80s
• Multimedia/SIMD extensions in current ISAs

• Single-Instruction Multiple-Data (SIMD)

• Typical hardware implications
– Simpler instruction fetch due to fewer instructions
– Banked register files/memory due to simple access

patterns

5/7/20 106.823 Spring 2020

Vector processing

• Vector chaining

• Vector stripmining

• Vector scatter/gatter

• Masked vector instructions

5/7/20 116.823 Spring 2020

Example: Masks

5/7/20 126.823 Spring 2020

Problem: Want to vectorize loops with conditional code:
for (i = 0; i < N; i++)

if (A[i] > 0) then

A[i] = B[i];

Solution: Add vector mask (or flag) registers
– vector version of predicate registers, 1 bit per element

…and maskable vector instructions
– vector operation becomes NOP at elements where mask bit is clear

Code example:
CVM # Turn on all elements

LV vA, rA # Load entire A vector

SGTVS.D vA, F0 # Set bits in mask register where A>0

LV vA, rB # Load B vector into A under mask

SV vA, rA # Store A back to memory under mask

Wish you all the best!

5/7/20 6.823 Spring 2020 13

