Quiz 4 Review Microcoded and VLIW processors & Vector processors

Guowei Zhang

Lab 4

 Request a deadline extension till Wednesday 13 midnight if needed

Quiz 4 logistics

• Time: 1pm on Tuesday May 12

- Style: same as Quiz 3
- Zoom link: same as recitations

Topics

• Microcoded and VLIW processors

• Vector processing

• GPUs

Transactional memory

Microcoded processors

- Introduces a layer of interpretation
 - Each ISA instruction is executed as a sequence of simpler microinstructions
- Pros:
 - Enables simpler hardware
 - Enables more flexible ISA
- Cons:
 - Sacrifices performance

VLIW: Very Long Instruction Word

- The compiler:
 - Guarantees intra-instruction parallelism
 - Schedules (reorders) to maximize parallel execution
- The architecture:
 - Allows operation parallelism within an instruction
 - No cross-operation RAW check
 - Provides deterministic latency for all operations
- Enables simple hardware but leaves hard tasks to software

Trace scheduling

VLIW issues

- Limited by static information
 - Unpredictable branches
 - Possible solution: predicated execution
 - Unpredictable memory operations
 - Possible solution: Memory Latency Register (MLR)
- Code size explosion
 - Wasted slots
 - Replicated code
- Portability
- Compiler complexity

Vector processing

- Supercomputers in 70s 80s
- Multimedia/SIMD extensions in current ISAs
- Single-Instruction Multiple-Data (SIMD)
- Typical hardware implications
 - Simpler instruction fetch due to fewer instructions
 - Banked register files/memory due to simple access patterns

Vector processing

• Vector chaining

• Vector stripmining

• Vector scatter/gatter

• Masked vector instructions

Example: Masks

Solution: Add vector *mask* (or *flag*) registers

- vector version of predicate registers, 1 bit per element
- ...and maskable vector instructions
 - vector operation becomes NOP at elements where mask bit is clear

Code example:

CVM	# Turn on all elements
LV vA, rA	# Load entire A vector
SGTVS.D vA, F0	<pre># Set bits in mask register where A>0</pre>
LV vA, rB	<pre># Load B vector into A under mask</pre>
SV vA, rA	# Store A back to memory under mask

Wish you all the best!