
6.823 
Handout#7  

Page 1 of 3 
 

 6.823 Computer System Architecture  
 Nested Paging  
 

http://csg.csail.mit.edu/6.823/ 
 
This handout explores the architectural impact of running a process in a virtual machine, as it 
relates to virtual memory and address translation.  
 
Platform virtualization (or simply virtualization) is a technique to allow running multiple 
operating systems over the same physical hardware. Each of these operating systems, called a 
guest operating system, believes it has access to a full physical machine (with a CPU, memory, 
disks, and other devices). But in fact these resources are emulated—they constitute a virtual 
machine, rather than a physical one, as shown in Figure 1. 
 
The actual physical hardware is in control of the host operating system.  The host OS in turn can 
run one or more virtual machines, each with its own emulated resources and guest OS. The host 
OS abstracts each physical resource and arbitrates access to it among the guest OSs. 
 
Much like an operating system brings the benefits of protection among processes and abstraction 
of the underlying machine’s resources, virtualization achieves protection and abstraction at the 
level of full virtual machines. Therefore, virtualization has many applications. For example, it 
can be used to consolidate multiple legacy systems on the same physical hardware; provide 
stronger levels of security; make it easier to rent physical hardware, as is done in cloud 
computing; migrate virtual machines among physical machines, etc.  
 

 
Figure 1: Key elements in systems (a) without and (b) with platform 

virtualization, and corresponding layers of address translation. 



6.823 
Handout#7  

Page 2 of 3 
 

Virtualization requires emulating each of the physical machine’s resources. Here we focus on 
memory. We will discuss other facets of virtualization later in the course.  
 
Each guest OS has access to its guest memory space, distinct from the host memory space. 
Processes running on the guest issue loads and stores using virtual addresses, and these are 
translated to physical addresses, just as we have seen before. However, because the guest 
memory is distinct from the host memory, this translation alone is insufficient for the host to 
serve the data to the guest from its real physical memory. In fact, two layers of address 
translation are required, as shown in Figure 1: 

• gVA=>gPA: guest virtual address to guest physical address translation. 
• gPA=>hPA: guest physical address to host physical address translation. 

Every guest physical address appears to the host as a host virtual address. 
 
Nested paging is a common design to perform these two address translations. Figure 2 shows an 
implementation of nested paging using 2-level hierarchical page tables. Below, the host performs 
gPA=>hPA translations through a per-VM 2-level hierarchical page table that resides in host 
physical memory, and whose PTEs use host physical addresses. 
 
 

 
Figure 2: Implementation of nested paging with 2-level hierarchical page tables. 

gVA

0xB29A0	(gPA)

L1	Index L2	Index Page	Offset
2 bits 2	bits																						16	bits

Guest	Table	
Base	Address

gPPN OffsetgPA

gPA (aka	hVA)

0x02000	(hPA)

2 bits 2	bits																						16	bits

Host	Table	
Base	Address

PPN OffsethPA

Guest	Page	Table

Host	Page	Table



6.823 
Handout#7  

Page 3 of 3 
 

 
The guest also has a 2-level hierarchical guest page table for the gVA=>gPA translation, whose 
PTEs use guest physical addresses. We assume the guest L1 and L2 page tables reside in host 
physical memory. This means that every guest table lookup (which uses a gPA) requires an 
additional gPA=>hPA translation. This complexity exists because the guest is unaware it does not 
run on a real processor! 
 
To make this process efficient, modern systems have hardware support for nested paging. The 
processor’s MMU has two page table base address registers, for the host and guest page tables. 
The host table base address register holds an hPA, and the guest table base address register holds 
a gPA.  
 
The processor’s TLB caches only the full gVA=>hPA translations. On a TLB miss, the MMU 
translation performs the nested page table walk. Notice that the lookup of a guest L1 table entry 
(i.e.  0xB29A0 + gVA's L1index) itself requires a (nested) translation of guest physical address 
into a host physical address, in order to fetch the relevant guest L1 entry from host physical 
memory. 


