
6.823
Spring 2017 Quiz 1 Handout

Page 1 of 2

 6.823 Computer System Architecture
 BigMIPS ISA

http://csg.csail.mit.edu/6.823/

In most modern processors, general-purpose registers are used to hold both data and addresses.
This ties the width of each general-purpose register and the size of the address space (i.e., the
maximum amount of addressable memory). For example, machines with 32-bit registers can
address at most 232 = 4GB of memory, which these days is too small for many applications.
Machines with 64-bit registers can address 264 = 16 EB (exabytes) of memory, which is plenty.
But they use wider registers and ALUs, which consume more area, more power, and are slower.

To solve this problem, we define BigMIPS, a new ISA that supports 64-bit addresses but uses
32-bit registers (and therefore can be implemented with efficient 32-bit datapaths). BigMIPS
modifies the load and store instructions of the MIPS ISA to use 64-bit addresses. Instructions
other than Load Word and Store Word are identical to MIPS. Refer to the handout “RISC ISA –
MIPS32” for the MIPS ISA.

BigMIPS loads and stores have exactly the same instruction format as MIPS loads and stores (I-
type, i.e., rs, rt, and 16-bit offset). They build a 64-bit address by concatenating the contents of
two consecutive 32-bit registers, rs and rs+1. Specifically, the effective address is the 64-bit sum
of the 64-bit sign-extended offset and the contents of a 64-bit base value whose upper 32 bits are
the contents of register rs, and its lower 32 bits are the contents of register rs+1. The value rs
must be even, so that rs+1 can be efficiently computed by rs OR 1. Table 1 gives the precise
description of loads and stores.

Instruction Format and Description
Load Word LW rt, offset(rs)

 rt ß Mem[((rs) << 32 | (rs+1)) + SignExt64(offset)]

Sign-extend offset and add to the concatenation of contents of registers rs and
rs+1 to form a 64-bit effective address. rs must be even. Load contents of the
addressed word into register rt.

Store Word SW rt, offset(rs)

 Mem[((rs) << 32 | (rs+1)) + SignExt64(offset)] ß rt

Sign-extend offset and add to the concatenation of contents of registers rs and
rs+1 to form a 64-bit effective address. rs must be even. Store the contents of
register rt at the addressed location.
Table 1. BigMIPS 64-bit-addressed LW and SW instructions.

opcode rs rt offset
31												26	25			21	20		16	15			 0			

6.823
Spring 2017 Quiz 1 Handout

Page 2 of 2

For example, the following instructions load the word at address 0x0100000008 into register R1.

 ADDI R4, R0, 1 ;; R4 <- 1
 ADDI R5, R0, 0 ;; R5 <- 0

LW R1, 8(R4)

The following instruction is forbidden, because rs is odd:
SW R2, 8(R3)

