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Problem M5.1: Fully-Bypassed Simple 5-Stage Pipeline 

 
We have reproduced the fully bypassed 5-stage MIPS processor pipeline from Lecture 7 in 

Figure M5.1-A. In this problem, we ask you to write equations to generate correct bypass and 

stall signals. Feel free to use any symbol introduced in the lecture. 

 

Problem M5.1.A Stall 

 

Do we still need to stall this pipeline? If so, explain why. (1) Write down the correct equation for 

the stall condition and (2) give an example instruction sequence which causes a stall. 

 

Problem M5.1.B Bypass Signal 

 
In Lecture 7, we gave you an example of bypass signal (ASrc) from EX stage to ID stage. In the 

fully bypassed pipeline, however, the mux control signals become more complex, because we 

have more inputs to the muxes in the ID stage. 

 

Write down the bypass condition for each bypass path in Mux 1. Please indicate the priority of 

the signals; that is, if all bypass conditions are met, indicate which signals have the highest and 

the lowest priorities. 

 

Bypass EX->ID ASrc = (rsD=wsE).we-bypassE.re1D  (given in Lecture 7) 

 

Bypass MEM->ID  = 

 

Bypass WB->ID  = 

 

 

Priority:   

 

Problem M5.1.C Partial Bypassing 

 
While bypassing gives us a performance benefit, it may introduce extra logic in critical paths and 

may force us to lower the clock frequency. Suppose we can afford to have only one bypass in the 

datapath. How would you justify your choice? Argue in favor of one bypass path over another.
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Figure M5.1-A: Fully-Bypassed MIPS Pipeline 
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Problem M5.2: Basic Pipelining 
 

Unlike the Harvard-style (separate instruction and data memories) architectures, machines using 

the Princeton-style have a shared instruction and data memory. In order to reduce the memory 

cost, Ben Bitdiddle has proposed the following two-stage Princeton-style MIPS pipeline to 

replace a single-cycle Harvard-style pipeline from our lectures. 

 

Every instruction takes exactly two cycles to execute (i.e., instruction fetch and execute) and 

there is no overlap between two sequential instructions; that is, fetching an instruction occurs in 

the cycle following the previous instruction’s execution (no pipelining). 

 

Assume that the new pipeline does not contain a branch delay slot.  Also, don’t worry about self-

modifying code for now.   
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Figure M5.2-A: Two-stage pipeline, Princeton-style 
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Problem M5.2.A Mux Control Signals (1) 

Please complete the following control signals.  You are allowed to use any internal signals (e.g., 

OpCode, PC, IR, zero?, rd1, data, etc.) but not other control signals (ExtSel, IRSrc, PCSrc, etc.). 

 

Example syntax:  PCEn = (OpCode == ALUOp) or ((ALU.zero?) and (not (PC == 17)))   

You may also use the variable S which indicates the pipeline’s operation phase at a given time.   

 
S := I-Fetch | Execute  (toggles every cycle) 

 

 

 

PCEn =  
 

 

 

IREn =  
 

 

 

 

AddrSrc = Case _____________ 

 

____________  => PC 

 

____________  => ALU 
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Problem M5.2.B Modified pipeline 

 

After having implemented his proposed architecture, Ben has observed that a lot of datapath is 

not in use because only one phase (either I-Fetch or Execute) is active at any given time. So he 

has decided to fetch the next instruction during the Execute phase of the previous instruction. 

  

 

 

 

Figure M5.2-B: Modified Two-stage Princeton-style MIPS Pipeline 

 

Do we need to stall this pipeline? If so, for each cause (1) write down the cause in one sentence 

and (2) give an example instruction sequence. If not, explain why.  (Remember there is no delay 

slot.) 
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Problem M5.2.C Mux Control Signals (2) 

 

Please complete the following control signals in the modified pipeline.  As before, you are 

allowed to use any internal signals (e.g., OpCode, PC, IR, zero?, rd1, data, etc.) but not other 

control signals (ExtSel, IRSrc, PCSrc, etc.) 

 

PCEnable =  
 

 

 

 

 

 

AddrSrc = Case _____________ 

 

____________  => PC 

 

____________  => ALU 
 

 

IRSrc = Case _____________ 

 

____________  => nop 

 

____________  => Mem 
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Problem M5.2.D  

Now we are ready to put Ben’s machine to the test. We would like to see a cycle-by-cycle 

animation of Ben’s two-stage pipelined, Princeton-style MIPS machine when executing the 

instruction sequence below. In the following table, each row represents a snapshot of some 

control signals and the content of some special registers for a particular cycle. Ben has already 

finished the first two rows. Complete the remaining entries in the table. Use * for “don’t care”. 

 
Label Address Instruction 
I1 100 ADD 

I2 104 LW 

I3 108 J I7 

I4 112 LW 

I5 116 ADD 

I6 120 SUB 

I7 312 ADD 

I8 316 ADD 

 

 

 
 

 

 
 

 

 

Time PC “IR” PCenable PCSrc1 AddrSrc IRSrc 

t0 I1:100 - 1 pc+4 PC Mem 

t1 I2:104 I1 1 Pc+4 PC Mem 

t2       

t3       

t4       

t5       

t6       
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Problem M5.2.E Self-Modifying Code 

 

Suppose we allow self-modifying code to execute, i.e., store instructions can write to the portion 

of memory that contains executable code. Does the two-stage Princeton pipeline need to be 

modified to support such self-modifying code? If so, please indicate how.  You may use the 

diagram below to draw modifications to the datapath. If you think no modifications are required, 

explain why. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Problem M5.2.F  
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To solve a chip layout problem Ben decides to reroute the input of the WB mux to come from 

after the AddrSrc MUX rather than ahead of the AddrSrc MUX. (The new path is shown with a 

bold line, the old in a dotted line.) The rest of the design is unaltered. 

 

 
 

How does this break the design? Provide a code sequence to illustrate the problem and explain in 

one sentence what goes wrong. 

 

 

 

 

 

 

 

Problem M5.2.G Architecture Comparison 

 

Give one advantage of the Princeton architecture over the Harvard architecture. 

 

 

 

Give one advantage of the Harvard architecture over the Princeton architecture. 
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Problem M5.3: Processor Design (Short Yes/No Questions) 
 

The following statements describe two variants of a processor which are otherwise identical. In 

each case, circle "Yes" if the variants might generate different results from the same compiled 

program, circle "No" otherwise. You must also briefly explain your reasoning. Ignore differences 

in the time that each machine takes to execute the program. 

 

Problem M5.3.A Interlock vs. Bypassing 

 

Pipelined processor A uses interlocks to resolve data hazards, while pipelined processor B has 

full bypassing. 

 

Yes  /  No 

 

Problem M5.3.B Delay Slot 

 

Pipelined processor A uses branch delay slots to resolve control hazards, while pipelined 

processor B kills instructions following a taken branch. 

 

Yes  /  No 

 

Problem M5.3.C Structural Hazard 

 

Pipelined processor A has a single memory port used to fetch instructions and data, while 

pipelined processor B has no structural hazards. 

 

Yes  /  No 
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Problem M5.4: HAL 180 ISA and 6-Stage Pipelined Implementation (Spring 

2015 Quiz 1, Part C) 
 

Inspired by how the IBM 360 uses condition codes, Ben Bitdiddle designs the HAL 180 

architecture, which features two flag registers. Table C-1 describes these flags.  

 

Name Description 

Sign Flag (SF) Stores 1 if the result of the last arithmetic or comparison 

instruction was negative, 0 if it was positive 

Zero Flag (ZF) Stores 1 if the result of the last arithmetic, logical, or 

comparison instruction was zero, and 0 if it was non-zero 

Table C-1. HAL 180 status flags. 

 

 

Table C-2 summarizes the different instruction types and the flags they read or write. The SF and 

ZF columns have an “R” when the instruction reads the status flag, a “W” if it writes the flag 

(and does not read it), or a blank if the instruction does not affect the status flag. For example, JL 

(jump if less than) reads SF; ADD writes all flags; and JMP (unconditional jump) does not affect 

any flag. Some instructions, like CMP, write the status flags but do not return any result.  

 

Instruction Description SF ZF 

Arithmetic Instructions 

ADD s1, s2 s1  s1 + s2 W W 

SUB s1, s2 s1  s1 - s2 W W 

MUL s1, s2 s1  s1 × s2 W W 

Logical Instructions 

AND s1, s2 s1  s1 & s2  W 

OR s1, s2 s1  s1 | s2  W 

XOR s1, s2 s1  s1 ^ s2  W 

Comparison Instructions 

CMP s1, s2 temp  s1 - s2 W W 

Jump Instructions 

JMP target jump to the address specified by target   

JL target jump to target if SF == 1 R  

JG target jump to target if SF == 0 and ZF == 0 R R 

Memory Instructions 

LD s1, s2 s1 M[s2]   

ST s1, s2 M[s1]  s2   

Table C-2. HAL 180 instruction set. 
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Ben also designs a 6-stage pipelined implementation of the HAL 180. In this pipeline, the ALU 

takes three pipeline stages (E1, E2, and E3), and status flags are updated in stage E3. Table C-3 

describes each stage, and Figure C-4 shows the datapath of this 6-stage pipelined architecture, 

highlighting the differences with a conventional MIPS pipeline. Note that this implementation 

does not have any data bypass paths. 

 

Stage Description 

Fetch and Decode 

Stage (FD) 

Fetch an instruction from the instruction memory, decode the 

instruction, and fetch the register values from the register file. 

The status flag checking for conditional jumps is also done in 

this stage.  

Execute Stage 1 (E1) 
The first stage of the execution phase.  Generate partial results 

and store them in the pipeline registers.  

Execute Stage 2 (E2) 
The second stage of the execution phase.  Generate partial 

results and store them in the pipeline registers.  

Execute Stage 3 (E3) 
The final stage of the execution phase.  Final results are 

generated and flag registers get updated if necessary.  

Memory Stage (M) Perform load/store from/to the data memory if necessary.   

Writeback Stage (WB) Write to the register file if necessary.  

Table C-3. HAL 180 pipeline stages. 
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Problem M5.4.A  

 

Write the HAL 180 assembly for the following program. For maximum credit, use the minimum number of comparison and jump 

instructions. 

 

 
 

Assume variables a, b, and c are stored in registers R1, R2, and R3 respectively.  

 

 CMP R1, R2 

 

 

  

if (a < b) { 
    c = c XOR b; 
} else if (a > b) { 
    c = c XOR a; 
} else { 
    c = 0; 
} 
a = 0; 
b = 0; 



Last updated: 

2/27/2020 

Page 15 of 29 

Problem M5.4.B  

 

Ben’s HAL 180 6-stage pipeline (Figure M5.4-A) stalls to avoid data hazards through registers, but does not yet handle hazards due to 

status flags. To illustrate why this is problematic, consider the following instruction sequence: 

   

I0:  ADD R1, R2 

I1:  JG _L2 

I2:  XOR R1, R3 

I3:  JL _L2 

I4: _L1: SUB R1, R2 

I5: _L2: ADD R3, R1 

 

Assume that when the program start, R1 = -1, R2 = -2, R3 = -3, and all the status flags are zero. Fill out the following instruction flow 

diagram to incur the minimum amount of stalls while maintaining correct operation (i.e., use stalls to respect both data and status flag 

dependences). Use “X”s to denote pipeline bubbles.  

 

 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 

FD I0 I1         

E1  I0         

E2           

E3           

M           

W           
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Problem M5.4.C  

 

Let’s fix Ben’s implementation by extending the existing stall control signal, which already works for register hazards, to also stall on 

status flag hazards. 

 

First, derive the stall conditions for the different jumps: JMPstall, JLstall, and JGstall. Use OpcodeX(Y) to indicate the 

condition when the instruction in X stage is Y. Y can be a specific instruction or an instruction class (see Table C-2). For example:  

 

OpcodeFD(JG):  if the instruction in the FD stage is a JG instruction. 

OpcodeE1(Logic):  if the instruction in the E1 stage belongs to the logical 

instruction class (e.g. OR). 

OpcodeE2(CMP|Arith):  if the instruction in the E2 stage is a CMP instruction or 

belongs to the arithmetic instruction class. 

 

 

JMPstall =   
 

 

 

JGstall =  

 

 

 

JLstall =   

 

 

 

Finally, write down the new stall signal (stall’) by using the old stall signal (stall) and stall conditions you derive. 

 

 

stall’ = 
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Problem M5.4.D  

 

Does this 6-stage pipeline add more challenges to precise exception handling? If so, please explain. 
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Problem M5.5:  Pipelined Cache Access 

 

This problem requires the knowledge of Lecture 3. Please, review it before answering the 

following questions. You may also want to take a look at pipeline lectures if you do not feel 

comfortable with the topic. 

 

Problem M5.5.A  

 

Ben Bitdiddle is designing a five-stage pipelined MIPS processor with separate 32 KB direct-

mapped primary instruction and data caches. He runs simulations on his preliminary design, and 

he discovers that a cache access is on the critical path in his machine. After remembering that 

pipelining his processor helped to improve the machine’s performance, he decides to try 

applying the same idea to caches. Ben breaks each cache access into three stages in order to 

reduce his cycle time. In the first stage the address is decoded. In the second stage the tag and 

data memory arrays are accessed; for cache reads, the data is available by the end of this stage. 

However, the tag still has to be checked—this is done in the third stage. 

 

After pipelining the instruction and data caches, Ben’s datapath design looks as follows: 
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Alyssa P. Hacker examines Ben’s design and points out that the third and fourth stages can be 

combined, so that the instruction cache tag check occurs in parallel with instruction decoding and 

register file read access. If Ben implements her suggestion, what must the processor do in the 

event of an instruction cache tag mismatch? Can Ben do the same thing with load instructions by 

combining the data cache tag check stage with the write-back stage? Why or why not? 

 

Problem M5.5.B  

 

Alyssa also notes that Ben’s current design is flawed, as using three stages for a data cache 

access won’t allow writes to memory to be handled correctly. She argues that Ben either needs to 

add a fourth stage or figure out another way to handle writes. What problem would be 

encountered on a data write? What can Ben do to keep a three-stage pipeline for the data cache? 

  



Last updated: 

2/27/2020 

Page 19 of 29 

Problem M5.5.C  

 

With help from Alyssa, Ben streamlines his design to consist of eight stages (the handling of data 

writes is not shown): 

 

I-Cache 
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Both the instruction and data caches are still direct-mapped. Would this scheme still work with a 

set-associative instruction cache? Why or why not? Would it work with a set-associative data 

cache? Why or why not? 

 

 

Problem M5.5.D  

After running additional simulations, Ben realizes that pipelining the caches was not entirely 

beneficial, as now the cache access latency has increased. If conditional branch instructions 

resolve in the Execute stage, how many cycles is the processor’s branch delay? 

 

Problem M5.5.E  

 

Assume that Ben’s datapath is fully-bypassed. When a load is executed, the data becomes 

available at the end of the D-cache Array Access stage. However, the tag has not yet been 

checked, so it is unknown whether the data is correct. If the load data is bypassed immediately, 

before the tag check occurs, then the instruction that depends on the load may execute with 

incorrect data. How can an interlock in the Instruction Decode stage solve this problem? How 

many cycles is the load delay using this scheme (assuming a cache hit)? 

 

Problem M5.5.F  

 

Alyssa proposes an alternative to using an interlock. She tells Ben to allow the load data to be 

bypassed from the end of the D-Cache Array Access stage, so that the dependent instruction can 

execute while the tag check is being performed. If there is a tag mismatch, the processor will 

wait for the correct data to be brought into the cache; then it will re-execute the load and all of 

the instructions behind it in the pipeline before continuing with the rest of the program. What 

processor state needs to be saved in order to implement this scheme? What additional steps need 

to be taken in the pipeline? Assume that a DataReady signal is asserted when the load data is 

available in the cache, and is set to 0 when the processor restarts its execution (you don’t have to 

worry about the control logic details of this signal). How many cycles is the load delay using this 

scheme (assuming a cache hit)? 
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Problem M5.5.G  

 

Ben is worried about the increased latency of the caches, particularly the data cache, so Alyssa 

suggests that he add a small, unpipelined cache in parallel with the D-cache. This “fast-path” 

cache can be considered as another level in the memory hierarchy, with the exception that it will 

be accessed simultaneously with the “slow-path” three-stage pipelined cache. Thus, the slow-

path cache will contain a superset of the data found in the fast-path cache. A read hit in the fast-

path cache will result in the requested data being available after one cycle. In this situation, the 

simultaneous read request to the slow-path cache will be ignored. A write hit in the fast-path 

cache will result in the data being written in one cycle. The simultaneous write to the slow-path 

cache will proceed as normal, so that the data will be written to both caches. If a read miss 

occurs in the fast-path cache, then the simultaneous read request to the slow-path cache will 

continue to be processed—if a read miss occurs in the slow-path cache, then the next level of the 

memory hierarchy will be accessed. The requested data will be placed in both the fast-path and 

slow-path caches. If a write miss occurs in the fast-path cache, then the simultaneous write to the 

slow-path cache will continue to be processed as normal. The fast-path cache uses a no-write 

allocate policy, meaning that on a write miss, the cache will remain unchanged—only the slow-

path cache will be modified. 

 

Ben’s new pipeline design looks as follows after implementing Alyssa’s suggestion: 
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The number of processor pipeline stages is still eight, even with the addition of the fast-path 

cache. Since the processor pipeline is still eight stages, what is the benefit of using a fast-path 

cache? Give an example of an instruction sequence and state how many cycles are saved if the 

fast-path cache always hits. 



Last updated: 

2/27/2020 

 21 

Problem M5.6: Write Buffer for Data Cache (2005 Fall Part C) 
 

In order to boost the performance of memory writes, Ben Bitdiddle has proposed to add a write 

buffer to our 5-stage fully-bypassed MIPS pipeline as shown below. Assuming a write-

through/write no-allocate cache, every memory write request will be queued in the write buffer 

in the MEM stage, and the pipeline will continue execution without waiting for writes to be 

completed. A queued entry in the write buffer gets cleared only after the write operation 

completes, so the maximum number of outstanding memory writes is limited by the size of the 

write buffer. 

 

Please answer the following questions. 
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Problem M5.6.A  

 
Ben wants to determine the size of the write buffer, so he runs benchmark X to get the 

observation below. What will be the average number of writes in flight (=the number of valid 

entries in the write buffer on average)? 

 

1) The CPI of the benchmark is 2. 

2) On average, one of every 20 instructions is a memory write. 

3) Memory has a latency of 100 cycles, and is fully pipelined. 
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Problem M5.6.B  

 
Based on the experiment in the previous question, Ben has added the write buffer with N entries 

to the pipeline. (Do not use your answer in M5.6A to replace N.) Now he wants to design a stall 

logic to prevent a write buffer overflow. The structure of the write buffer is shown in the figure 

below. Popcount(WBuf) gives the number of valid entries in the write buffer at any given 

moment.   

 

ADDR0 DATA0

WAddr WData

0

0

1

Valid

Size

= N

Popcount(WBuf)

valid entries

 
Please write down the stall condition to prevent write buffer overflows. You should derive the 

condition without assuming any modification of the given pipeline. You can use Boolean and 

arithmetic operations in your stall condition.   

 

 

Stall = 

  



Last updated: 

2/27/2020 

 23 

Problem M5.6.C  

 
In order to optimize the stall logic, Ben has decided to add a predecode bit to detect store 

instructions in the instruction cache (I-Cache). That is, now every entry in the I-Cache has a store 

bit associated with it, and it propagates through the pipeline with an Sstage bit added to each 

pipeline register (except the one between MEM and WB stages) as shown below. 

Popcount(Pipeline) gives the number of store instructions that are in flight (= number of 

Sstage bits set to 1). 
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How will this optimization change the stall condition, if at all?   

 

 

Stall =   
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Problem M5.7: Instruction Pipelining (Spring 2016 Quiz 1, Part C) 
 

This problem requires the knowledge of Handout #8 (LMIPS) and Lecture 6 and 7. Please, read 

these materials before answering the following questions. 

 

Consider the following MIPS code sequence: 

 

I1   LW  R1, 0(R3) 
I2   XOR  R1, R1, R4 
I3  MUL   R2, R1, R4 
I4  LW  R4, 5(R2) 
I5  XOR  R4, R4, R5 
I6  SW  R2, 0(R3) 

 

 

Problem M5.7.A  

 

Assume the classic 5-stage MIPS pipeline as discussed in lecture, with full bypassing and 

correct stall logic. Which instructions in the above sequence would have to stall? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ben is unhappy with the performance of the classic 5-stage MIPS pipeline discussed in 6.823 

lectures. Ben uses the L-MIPS ISA, presented in the L-MIPS handout, and pipelines the single-

cycle L-MIPS datapath in the handout as shown in the figure below. This is also a 5-stage 

pipeline, with the following stages: instruction fetch (F), instruction decode and register file fetch 

(D), address generation (A), memory access (M), and execute + write-back (X) stages. We will 

ignore branches and jumps for all following questions. 
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Problem M5.7.B  

 

Using the new class of Load-ALU instructions available in L-MIPS, rewrite the assembly 

sequence to produce a code sequence with minimum number of instructions. Do not change the 

order of any operations as you do this. 
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Problem M5.7.C  

 

Complete the instruction flow diagram for the new sequence of instructions for Ben’s pipelined L-MIPS processor. Assume no 

bypassing and correct stall logic. (In case you need it, page 18 has an extra/scratch instruction flow diagram.) 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

I1 F D A M X               

I2                    

I3                    

I4                    

I5                    

I6                    

I7                    

I8                    
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Problem M5.7.D  

 

Ben wants to improve performance by adding bypass paths to his pipeline. Help Ben by 

indicating which locations he needs to insert bypass multiplexers. Ignore any bypasses needed 

for control-flow instructions. 
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Problem M5.7.E  

 

Complete the instruction flow diagram for the new sequence of instructions for the L-MIPS pipeline. Assume full bypassing and 

correct stall logic this time. Use arrows to show forwarding of values from one stage to another. (In case you need it, page 18 has an 

extra/scratch instruction flow diagram.) 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

I1 F D A M X               

I2                    

I3                    

I4                    

I5                    

I6                    

I7                    

I8                    

 



Last updated: 

2/27/2020 

 29 

Problem M5.7.F  

 

Is it possible to reorder the instructions in your code sequence (without affecting correctness) to 

improve performance in the fully-bypassed L-MIPS pipeline? If so, give the reordered code 

sequence and explain why. Otherwise, briefly explain why this is not possible. 
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