
Last updated:

2/27/2020

Page 1 of 29

Problem M5.1: Fully-Bypassed Simple 5-Stage Pipeline

We have reproduced the fully bypassed 5-stage MIPS processor pipeline from Lecture 7 in

Figure M5.1-A. In this problem, we ask you to write equations to generate correct bypass and

stall signals. Feel free to use any symbol introduced in the lecture.

Problem M5.1.A Stall

Do we still need to stall this pipeline? If so, explain why. (1) Write down the correct equation for

the stall condition and (2) give an example instruction sequence which causes a stall.

Problem M5.1.B Bypass Signal

In Lecture 7, we gave you an example of bypass signal (ASrc) from EX stage to ID stage. In the

fully bypassed pipeline, however, the mux control signals become more complex, because we

have more inputs to the muxes in the ID stage.

Write down the bypass condition for each bypass path in Mux 1. Please indicate the priority of

the signals; that is, if all bypass conditions are met, indicate which signals have the highest and

the lowest priorities.

Bypass EX->ID ASrc = (rsD=wsE).we-bypassE.re1D (given in Lecture 7)

Bypass MEM->ID =

Bypass WB->ID =

Priority:

Problem M5.1.C Partial Bypassing

While bypassing gives us a performance benefit, it may introduce extra logic in critical paths and

may force us to lower the clock frequency. Suppose we can afford to have only one bypass in the

datapath. How would you justify your choice? Argue in favor of one bypass path over another.

Last updated:

2/27/2020

Page 2 of 29

Figure M5.1-A: Fully-Bypassed MIPS Pipeline

ASrc
IR IR IR

PC
A

B

Y

R

MD1 MD2

addr

inst

Inst
Memory

0x4

Add

IR ALU

Imm
Ext

rd1

GPRs

rs1
rs2

ws
wd rd2

we

wdat

a

addr

wdata

rdata
Data

Memory

we

31

nop

stall

D

E M W

PC for JAL, ...

BSrc

Last updated:

2/27/2020

Page 3 of 29

Problem M5.2: Basic Pipelining

Unlike the Harvard-style (separate instruction and data memories) architectures, machines using

the Princeton-style have a shared instruction and data memory. In order to reduce the memory

cost, Ben Bitdiddle has proposed the following two-stage Princeton-style MIPS pipeline to

replace a single-cycle Harvard-style pipeline from our lectures.

Every instruction takes exactly two cycles to execute (i.e., instruction fetch and execute) and

there is no overlap between two sequential instructions; that is, fetching an instruction occurs in

the cycle following the previous instruction’s execution (no pipelining).

Assume that the new pipeline does not contain a branch delay slot. Also, don’t worry about self-

modifying code for now.

IR

0x4

clk

RegDst

PCSrc1 RegWrite

BSrc zero?

WBSrc

31

PCSrc2

ExtSelOpCode

0x4
Add

rd1

GPRs

rs1
rs2

ws
wd rd2

we

Imm
Ext

addr

wdata

rdata
Data

Memory

z

ALU

Add

OpSel

ALU
Control

clk

Add

we

MemWrite

clk

PC

PCen

IRen AddrSrc

clk

Figure M5.2-A: Two-stage pipeline, Princeton-style

Last updated:

2/27/2020

Page 4 of 29

Problem M5.2.A Mux Control Signals (1)

Please complete the following control signals. You are allowed to use any internal signals (e.g.,

OpCode, PC, IR, zero?, rd1, data, etc.) but not other control signals (ExtSel, IRSrc, PCSrc, etc.).

Example syntax: PCEn = (OpCode == ALUOp) or ((ALU.zero?) and (not (PC == 17)))

You may also use the variable S which indicates the pipeline’s operation phase at a given time.

S := I-Fetch | Execute (toggles every cycle)

PCEn =

IREn =

AddrSrc = Case _____________

____________ => PC

____________ => ALU

Last updated:

2/27/2020

Page 5 of 29

Problem M5.2.B Modified pipeline

After having implemented his proposed architecture, Ben has observed that a lot of datapath is

not in use because only one phase (either I-Fetch or Execute) is active at any given time. So he

has decided to fetch the next instruction during the Execute phase of the previous instruction.

Figure M5.2-B: Modified Two-stage Princeton-style MIPS Pipeline

Do we need to stall this pipeline? If so, for each cause (1) write down the cause in one sentence

and (2) give an example instruction sequence. If not, explain why. (Remember there is no delay

slot.)

Last updated:

2/27/2020

Page 6 of 29

Problem M5.2.C Mux Control Signals (2)

Please complete the following control signals in the modified pipeline. As before, you are

allowed to use any internal signals (e.g., OpCode, PC, IR, zero?, rd1, data, etc.) but not other

control signals (ExtSel, IRSrc, PCSrc, etc.)

PCEnable =

AddrSrc = Case _____________

____________ => PC

____________ => ALU

IRSrc = Case _____________

____________ => nop

____________ => Mem

Last updated:

2/27/2020

Page 7 of 29

Problem M5.2.D

Now we are ready to put Ben’s machine to the test. We would like to see a cycle-by-cycle

animation of Ben’s two-stage pipelined, Princeton-style MIPS machine when executing the

instruction sequence below. In the following table, each row represents a snapshot of some

control signals and the content of some special registers for a particular cycle. Ben has already

finished the first two rows. Complete the remaining entries in the table. Use * for “don’t care”.

Label Address Instruction
I1 100 ADD

I2 104 LW

I3 108 J I7

I4 112 LW

I5 116 ADD

I6 120 SUB

I7 312 ADD

I8 316 ADD

Time PC “IR” PCenable PCSrc1 AddrSrc IRSrc

t0 I1:100 - 1 pc+4 PC Mem

t1 I2:104 I1 1 Pc+4 PC Mem

t2

t3

t4

t5

t6

Last updated:

2/27/2020

Page 8 of 29

Problem M5.2.E Self-Modifying Code

Suppose we allow self-modifying code to execute, i.e., store instructions can write to the portion

of memory that contains executable code. Does the two-stage Princeton pipeline need to be

modified to support such self-modifying code? If so, please indicate how. You may use the

diagram below to draw modifications to the datapath. If you think no modifications are required,

explain why.

Problem M5.2.F

Last updated:

2/27/2020

Page 9 of 29

To solve a chip layout problem Ben decides to reroute the input of the WB mux to come from

after the AddrSrc MUX rather than ahead of the AddrSrc MUX. (The new path is shown with a

bold line, the old in a dotted line.) The rest of the design is unaltered.

How does this break the design? Provide a code sequence to illustrate the problem and explain in

one sentence what goes wrong.

Problem M5.2.G Architecture Comparison

Give one advantage of the Princeton architecture over the Harvard architecture.

Give one advantage of the Harvard architecture over the Princeton architecture.

Last updated:

2/27/2020

Page 10 of 29

Problem M5.3: Processor Design (Short Yes/No Questions)

The following statements describe two variants of a processor which are otherwise identical. In

each case, circle "Yes" if the variants might generate different results from the same compiled

program, circle "No" otherwise. You must also briefly explain your reasoning. Ignore differences

in the time that each machine takes to execute the program.

Problem M5.3.A Interlock vs. Bypassing

Pipelined processor A uses interlocks to resolve data hazards, while pipelined processor B has

full bypassing.

Yes / No

Problem M5.3.B Delay Slot

Pipelined processor A uses branch delay slots to resolve control hazards, while pipelined

processor B kills instructions following a taken branch.

Yes / No

Problem M5.3.C Structural Hazard

Pipelined processor A has a single memory port used to fetch instructions and data, while

pipelined processor B has no structural hazards.

Yes / No

Last updated:

2/27/2020

Page 11 of 29

Problem M5.4: HAL 180 ISA and 6-Stage Pipelined Implementation (Spring

2015 Quiz 1, Part C)

Inspired by how the IBM 360 uses condition codes, Ben Bitdiddle designs the HAL 180

architecture, which features two flag registers. Table C-1 describes these flags.

Name Description

Sign Flag (SF) Stores 1 if the result of the last arithmetic or comparison

instruction was negative, 0 if it was positive

Zero Flag (ZF) Stores 1 if the result of the last arithmetic, logical, or

comparison instruction was zero, and 0 if it was non-zero

Table C-1. HAL 180 status flags.

Table C-2 summarizes the different instruction types and the flags they read or write. The SF and

ZF columns have an “R” when the instruction reads the status flag, a “W” if it writes the flag

(and does not read it), or a blank if the instruction does not affect the status flag. For example, JL

(jump if less than) reads SF; ADD writes all flags; and JMP (unconditional jump) does not affect

any flag. Some instructions, like CMP, write the status flags but do not return any result.

Instruction Description SF ZF

Arithmetic Instructions

ADD s1, s2 s1  s1 + s2 W W

SUB s1, s2 s1  s1 - s2 W W

MUL s1, s2 s1  s1 × s2 W W

Logical Instructions

AND s1, s2 s1  s1 & s2 W

OR s1, s2 s1  s1 | s2 W

XOR s1, s2 s1  s1 ^ s2 W

Comparison Instructions

CMP s1, s2 temp  s1 - s2 W W

Jump Instructions

JMP target jump to the address specified by target

JL target jump to target if SF == 1 R

JG target jump to target if SF == 0 and ZF == 0 R R

Memory Instructions

LD s1, s2 s1 M[s2]

ST s1, s2 M[s1]  s2

Table C-2. HAL 180 instruction set.

Last updated:

2/27/2020

Page 12 of 29

Ben also designs a 6-stage pipelined implementation of the HAL 180. In this pipeline, the ALU

takes three pipeline stages (E1, E2, and E3), and status flags are updated in stage E3. Table C-3

describes each stage, and Figure C-4 shows the datapath of this 6-stage pipelined architecture,

highlighting the differences with a conventional MIPS pipeline. Note that this implementation

does not have any data bypass paths.

Stage Description

Fetch and Decode

Stage (FD)

Fetch an instruction from the instruction memory, decode the

instruction, and fetch the register values from the register file.

The status flag checking for conditional jumps is also done in

this stage.

Execute Stage 1 (E1)
The first stage of the execution phase. Generate partial results

and store them in the pipeline registers.

Execute Stage 2 (E2)
The second stage of the execution phase. Generate partial

results and store them in the pipeline registers.

Execute Stage 3 (E3)
The final stage of the execution phase. Final results are

generated and flag registers get updated if necessary.

Memory Stage (M) Perform load/store from/to the data memory if necessary.

Writeback Stage (WB) Write to the register file if necessary.

Table C-3. HAL 180 pipeline stages.

Last updated:

2/27/2020

Page 13 of 29

Data
Memory

addr rdata

wdata

we

Instruction
Memory

addr inst

rs1
rs2

ws
wd

rd1

rd2

clk

GPRs

weclk

clk

ADD

0x4

A

MD1

B

MD2 MD3 MD4

Y

PC

IR

R

FD E1 E2 E3 M W

3-stage
pipelined ALU

IR IRIRIR
nop

Stall

SF
we

ZF
we

brTaken Flag
Check

Figure M5.4-A. HAL 180 6-Stage pipelined implementation.

Last updated:

2/27/2020

Page 14 of 29

Problem M5.4.A

Write the HAL 180 assembly for the following program. For maximum credit, use the minimum number of comparison and jump

instructions.

Assume variables a, b, and c are stored in registers R1, R2, and R3 respectively.

 CMP R1, R2

if (a < b) {
 c = c XOR b;
} else if (a > b) {
 c = c XOR a;
} else {
 c = 0;
}
a = 0;
b = 0;

Last updated:

2/27/2020

Page 15 of 29

Problem M5.4.B

Ben’s HAL 180 6-stage pipeline (Figure M5.4-A) stalls to avoid data hazards through registers, but does not yet handle hazards due to

status flags. To illustrate why this is problematic, consider the following instruction sequence:

I0: ADD R1, R2

I1: JG _L2

I2: XOR R1, R3

I3: JL _L2

I4: _L1: SUB R1, R2

I5: _L2: ADD R3, R1

Assume that when the program start, R1 = -1, R2 = -2, R3 = -3, and all the status flags are zero. Fill out the following instruction flow

diagram to incur the minimum amount of stalls while maintaining correct operation (i.e., use stalls to respect both data and status flag

dependences). Use “X”s to denote pipeline bubbles.

 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9

FD I0 I1

E1 I0

E2

E3

M

W

Last updated:

2/27/2020

Page 16 of 29

Problem M5.4.C

Let’s fix Ben’s implementation by extending the existing stall control signal, which already works for register hazards, to also stall on

status flag hazards.

First, derive the stall conditions for the different jumps: JMPstall, JLstall, and JGstall. Use OpcodeX(Y) to indicate the

condition when the instruction in X stage is Y. Y can be a specific instruction or an instruction class (see Table C-2). For example:

OpcodeFD(JG): if the instruction in the FD stage is a JG instruction.

OpcodeE1(Logic): if the instruction in the E1 stage belongs to the logical

instruction class (e.g. OR).

OpcodeE2(CMP|Arith): if the instruction in the E2 stage is a CMP instruction or

belongs to the arithmetic instruction class.

JMPstall =

JGstall =

JLstall =

Finally, write down the new stall signal (stall’) by using the old stall signal (stall) and stall conditions you derive.

stall’ =

Last updated:

2/27/2020

Page 17 of 29

Problem M5.4.D

Does this 6-stage pipeline add more challenges to precise exception handling? If so, please explain.

Last updated:

2/27/2020

Page 18 of 29

Problem M5.5: Pipelined Cache Access

This problem requires the knowledge of Lecture 3. Please, review it before answering the

following questions. You may also want to take a look at pipeline lectures if you do not feel

comfortable with the topic.

Problem M5.5.A

Ben Bitdiddle is designing a five-stage pipelined MIPS processor with separate 32 KB direct-

mapped primary instruction and data caches. He runs simulations on his preliminary design, and

he discovers that a cache access is on the critical path in his machine. After remembering that

pipelining his processor helped to improve the machine’s performance, he decides to try

applying the same idea to caches. Ben breaks each cache access into three stages in order to

reduce his cycle time. In the first stage the address is decoded. In the second stage the tag and

data memory arrays are accessed; for cache reads, the data is available by the end of this stage.

However, the tag still has to be checked—this is done in the third stage.

After pipelining the instruction and data caches, Ben’s datapath design looks as follows:

I-Cache

Address

Decode

I-Cache

Array

Access

I-Cache

Tag

Check

Instruction

Decode &

Register

Fetch

Execute

D-Cache

Address

Decode

D-Cache

Array

Access

D-Cache

Tag

Check

Write-

back

Alyssa P. Hacker examines Ben’s design and points out that the third and fourth stages can be

combined, so that the instruction cache tag check occurs in parallel with instruction decoding and

register file read access. If Ben implements her suggestion, what must the processor do in the

event of an instruction cache tag mismatch? Can Ben do the same thing with load instructions by

combining the data cache tag check stage with the write-back stage? Why or why not?

Problem M5.5.B

Alyssa also notes that Ben’s current design is flawed, as using three stages for a data cache

access won’t allow writes to memory to be handled correctly. She argues that Ben either needs to

add a fourth stage or figure out another way to handle writes. What problem would be

encountered on a data write? What can Ben do to keep a three-stage pipeline for the data cache?

Last updated:

2/27/2020

Page 19 of 29

Problem M5.5.C

With help from Alyssa, Ben streamlines his design to consist of eight stages (the handling of data

writes is not shown):

I-Cache

Address

Decode

I-Cache

Array

Access

I-Cache Tag

Check,

Instruction

Decode &

Register

Fetch

Execute

D-Cache

Address

Decode

D-Cache

Array

Access

D-Cache

Tag Check

Write-

Back

Both the instruction and data caches are still direct-mapped. Would this scheme still work with a

set-associative instruction cache? Why or why not? Would it work with a set-associative data

cache? Why or why not?

Problem M5.5.D

After running additional simulations, Ben realizes that pipelining the caches was not entirely

beneficial, as now the cache access latency has increased. If conditional branch instructions

resolve in the Execute stage, how many cycles is the processor’s branch delay?

Problem M5.5.E

Assume that Ben’s datapath is fully-bypassed. When a load is executed, the data becomes

available at the end of the D-cache Array Access stage. However, the tag has not yet been

checked, so it is unknown whether the data is correct. If the load data is bypassed immediately,

before the tag check occurs, then the instruction that depends on the load may execute with

incorrect data. How can an interlock in the Instruction Decode stage solve this problem? How

many cycles is the load delay using this scheme (assuming a cache hit)?

Problem M5.5.F

Alyssa proposes an alternative to using an interlock. She tells Ben to allow the load data to be

bypassed from the end of the D-Cache Array Access stage, so that the dependent instruction can

execute while the tag check is being performed. If there is a tag mismatch, the processor will

wait for the correct data to be brought into the cache; then it will re-execute the load and all of

the instructions behind it in the pipeline before continuing with the rest of the program. What

processor state needs to be saved in order to implement this scheme? What additional steps need

to be taken in the pipeline? Assume that a DataReady signal is asserted when the load data is

available in the cache, and is set to 0 when the processor restarts its execution (you don’t have to

worry about the control logic details of this signal). How many cycles is the load delay using this

scheme (assuming a cache hit)?

Last updated:

2/27/2020

Page 20 of 29

Problem M5.5.G

Ben is worried about the increased latency of the caches, particularly the data cache, so Alyssa

suggests that he add a small, unpipelined cache in parallel with the D-cache. This “fast-path”

cache can be considered as another level in the memory hierarchy, with the exception that it will

be accessed simultaneously with the “slow-path” three-stage pipelined cache. Thus, the slow-

path cache will contain a superset of the data found in the fast-path cache. A read hit in the fast-

path cache will result in the requested data being available after one cycle. In this situation, the

simultaneous read request to the slow-path cache will be ignored. A write hit in the fast-path

cache will result in the data being written in one cycle. The simultaneous write to the slow-path

cache will proceed as normal, so that the data will be written to both caches. If a read miss

occurs in the fast-path cache, then the simultaneous read request to the slow-path cache will

continue to be processed—if a read miss occurs in the slow-path cache, then the next level of the

memory hierarchy will be accessed. The requested data will be placed in both the fast-path and

slow-path caches. If a write miss occurs in the fast-path cache, then the simultaneous write to the

slow-path cache will continue to be processed as normal. The fast-path cache uses a no-write

allocate policy, meaning that on a write miss, the cache will remain unchanged—only the slow-

path cache will be modified.

Ben’s new pipeline design looks as follows after implementing Alyssa’s suggestion:

I-Cache

Address

Decode

I-Cache

Array

Access

I-Cache Tag

Check,

Instruction

Decode &

Register

Fetch

Execute

Fast-Path D-

Cache

Access and

Tag Check

& Slow Path

D-Cache

Address

Decode

Slow-Path

D-Cache

Array

Access

Slow-Path

D-Cache

Tag Check

Write-

Back

The number of processor pipeline stages is still eight, even with the addition of the fast-path

cache. Since the processor pipeline is still eight stages, what is the benefit of using a fast-path

cache? Give an example of an instruction sequence and state how many cycles are saved if the

fast-path cache always hits.

Last updated:

2/27/2020

 21

Problem M5.6: Write Buffer for Data Cache (2005 Fall Part C)

In order to boost the performance of memory writes, Ben Bitdiddle has proposed to add a write

buffer to our 5-stage fully-bypassed MIPS pipeline as shown below. Assuming a write-

through/write no-allocate cache, every memory write request will be queued in the write buffer

in the MEM stage, and the pipeline will continue execution without waiting for writes to be

completed. A queued entry in the write buffer gets cleared only after the write operation

completes, so the maximum number of outstanding memory writes is limited by the size of the

write buffer.

Please answer the following questions.

ASrc
IRIR IR

PC
A

B

Y

R

MD1 MD2

addr
inst

Inst
Cache

0x4

Add

IR ALU

Imm
Ext

rd1

GPRs

rs1
rs2

ws
wd rd2

we

wdata

addr

wdata

rdata
Data
Cache

we

31

nop

stall

D

E M W

PC for JAL, ...

BSrc

WBuf To main memory

Popcount(WBuf)

Problem M5.6.A

Ben wants to determine the size of the write buffer, so he runs benchmark X to get the

observation below. What will be the average number of writes in flight (=the number of valid

entries in the write buffer on average)?

1) The CPI of the benchmark is 2.

2) On average, one of every 20 instructions is a memory write.

3) Memory has a latency of 100 cycles, and is fully pipelined.

Last updated:

2/27/2020

 22

Problem M5.6.B

Based on the experiment in the previous question, Ben has added the write buffer with N entries

to the pipeline. (Do not use your answer in M5.6A to replace N.) Now he wants to design a stall

logic to prevent a write buffer overflow. The structure of the write buffer is shown in the figure

below. Popcount(WBuf) gives the number of valid entries in the write buffer at any given

moment.

ADDR0 DATA0

WAddr WData

0

0

1

Valid

Size

= N

Popcount(WBuf)

valid entries

Please write down the stall condition to prevent write buffer overflows. You should derive the

condition without assuming any modification of the given pipeline. You can use Boolean and

arithmetic operations in your stall condition.

Stall =

Last updated:

2/27/2020

 23

Problem M5.6.C

In order to optimize the stall logic, Ben has decided to add a predecode bit to detect store

instructions in the instruction cache (I-Cache). That is, now every entry in the I-Cache has a store

bit associated with it, and it propagates through the pipeline with an Sstage bit added to each

pipeline register (except the one between MEM and WB stages) as shown below.

Popcount(Pipeline) gives the number of store instructions that are in flight (= number of

Sstage bits set to 1).

ASrc
IRIR IR

PC
A

B

Y

R

MD1 MD2

addr
inst

Inst
Cache

0x4

Add

IR ALU

Imm
Ext

rd1

GPRs

rs1
rs2

ws
wd rd2

we

wdata

addr

wdata

rdata
Data
Cache

we

31

nop

stall

D

E M W

PC for JAL, ...

BSrc

WBuf

SD

SE SM

Popcount
(pipeline)

To main memory

Popcount(WBuf)

How will this optimization change the stall condition, if at all?

Stall =

Last updated:

2/27/2020

 24

Problem M5.7: Instruction Pipelining (Spring 2016 Quiz 1, Part C)

This problem requires the knowledge of Handout #8 (LMIPS) and Lecture 6 and 7. Please, read

these materials before answering the following questions.

Consider the following MIPS code sequence:

I1 LW R1, 0(R3)
I2 XOR R1, R1, R4
I3 MUL R2, R1, R4
I4 LW R4, 5(R2)
I5 XOR R4, R4, R5
I6 SW R2, 0(R3)

Problem M5.7.A

Assume the classic 5-stage MIPS pipeline as discussed in lecture, with full bypassing and

correct stall logic. Which instructions in the above sequence would have to stall?

Ben is unhappy with the performance of the classic 5-stage MIPS pipeline discussed in 6.823

lectures. Ben uses the L-MIPS ISA, presented in the L-MIPS handout, and pipelines the single-

cycle L-MIPS datapath in the handout as shown in the figure below. This is also a 5-stage

pipeline, with the following stages: instruction fetch (F), instruction decode and register file fetch

(D), address generation (A), memory access (M), and execute + write-back (X) stages. We will

ignore branches and jumps for all following questions.

Last updated:

2/27/2020

 25

Problem M5.7.B

Using the new class of Load-ALU instructions available in L-MIPS, rewrite the assembly

sequence to produce a code sequence with minimum number of instructions. Do not change the

order of any operations as you do this.

IRIR IR

PC
A

B

Y

MD1 MD2

addr
inst

Inst

Memory

0x4

Add

IR

Imm
Ext

+
rd1

GPRs

rs1
rs2

ws
wd rd2

we

wdata

addr

wdata

rdata

Data
Memory

we

31

nop

stall

D

A M X

0 A

B

MD3

Last updated:

2/27/2020

 26

Problem M5.7.C

Complete the instruction flow diagram for the new sequence of instructions for Ben’s pipelined L-MIPS processor. Assume no

bypassing and correct stall logic. (In case you need it, page 18 has an extra/scratch instruction flow diagram.)

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

I1 F D A M X

I2

I3

I4

I5

I6

I7

I8

Last updated:

2/27/2020

 27

Problem M5.7.D

Ben wants to improve performance by adding bypass paths to his pipeline. Help Ben by

indicating which locations he needs to insert bypass multiplexers. Ignore any bypasses needed

for control-flow instructions.

From ToFrom To

9 8

IRIR IR

PC
A

B

Y

MD1 MD2

addr
inst

Inst

Memory

0x4

Add

IR

Imm
Ext

+
rd1

GPRs

rs1
rs2

ws
wd rd2

we

wdata

addr

wdata

rdata

Data
Memory

we

31

nop

stall

D

A M X

0 A

B

0 2
5

8

3
6

1 4 7

9
10

11

MD3

Last updated:

2/27/2020

 28

Problem M5.7.E

Complete the instruction flow diagram for the new sequence of instructions for the L-MIPS pipeline. Assume full bypassing and

correct stall logic this time. Use arrows to show forwarding of values from one stage to another. (In case you need it, page 18 has an

extra/scratch instruction flow diagram.)

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

I1 F D A M X

I2

I3

I4

I5

I6

I7

I8

Last updated:

2/27/2020

 29

Problem M5.7.F

Is it possible to reorder the instructions in your code sequence (without affecting correctness) to

improve performance in the fully-bypassed L-MIPS pipeline? If so, give the reordered code

sequence and explain why. Otherwise, briefly explain why this is not possible.

	Assume that the new pipeline does not contain a branch delay slot. Also, don’t worry about self-modifying code for now.
	Figure M5.2-A: Two-stage pipeline, Princeton-style
	Please complete the following control signals. You are allowed to use any internal signals (e.g., OpCode, PC, IR, zero?, rd1, data, etc.) but not other control signals (ExtSel, IRSrc, PCSrc, etc.).
	You may also use the variable S which indicates the pipeline’s operation phase at a given time.
	Now we are ready to put Ben’s machine to the test. We would like to see a cycle-by-cycle animation of Ben’s two-stage pipelined, Princeton-style MIPS machine when executing the instruction sequence below. In the following table, each row represents a ...

	Problem M5.5: Pipelined Cache Access

