
Last updated: 

2/27/2020 

 1 

Problem M5.1: Fully-Bypassed Simple 5-Stage Pipeline 
 

Problem M5.1.A Stall 

 
We still need the logic for stalls, because we cannot prevent load-use hazard. If a load instruction is followed by an 

instruction which takes the loaded value as a source operand, we cannot avoid stalling for a cycle. The following 

instruction sequence illustrates this hazard. 

 
LW  R1, 0(R2)    # R1 <- M[R2] 

ADD R3, R5, R1   # R1 is a source operand of ADD (data dependency) 

       # The correct value of R1 is not available when 

       # ADD is in ID stage.  So it has to stall for a cycle. 

 

 

Problem M5.1.B Bypass Signal 

 
Here are the bypass conditions. 

 

Bypass EX->ID ASrc = (rsD=wsE).we-bypassE.re1D  

 

Bypass MEM->ID  = (rsD=wsM).weM.re1D 

 

Bypass WB->ID  = (rsD=wsW).weW.re1D 

 

Priority: Bypass EX->ID  > Bypass MEM->ID > Bypass WB->ID 

(In order to execute a given program correctly, the value from the latest producer must be taken if multiple bypass 

paths are active.)  

 

 

Problem M5.1.C Partial Bypassing 

 
It is an open question and there is no single correct answer. Here are a couple of issues to consider as a guideline. 

 

First, you may consider the penalty for not having all the bypass paths. If we don’t have the bypass path EX→ID, 

we have to stall for three cycles for the hazard to be resolved. Likewise, not having MEM→ID results in a stall of 

two cycles, and not having WB→ID, in one. Therefore, you can conclude that the bypass path between EX→ID is 

the most beneficial. 

 
Secondly, the best bypass path depends on the access patterns of data. The EX→ID bypass path is effective if a 

producer instruction is followed by a consumer, except load-use cases (See solution for M5.1.A). On the other hand, 

the MEM→ID bypass path works best if there are many load-use cases or many (producer, consumer) pairs have an 

independent instruction between them. Likewise, the WB→ID bypass path helps when many (producer, consumer) 

pairs are separated by exactly two independent instructions. 



Last updated: 

2/27/2020 

 2 

Problem M5.2: Basic Pipelining  

 

Problem M5.2.A Mux Control Signals (1) 

 

PCEn = (S==Execute) 
 

IREn = (S==I-Fetch) 
 

 

AddrSrc = Case S 

 

I-Fetch => PC 

 

Execute  => ALU 
 

 

 

Problem M5.2.B Modified pipeline 
 

A stall can occur in 2 different cases. 

1. A structural hazard in the shared memory. 

LD  R1, 16(R2) 

Any instruction following this LD instruction should be stalled. 

 

2. The other is caused by a control hazard, because we don’t have a delay slot. 

J 200 

Any instruction following this J instruction should be flushed. 
 

Problem M5.2.C Mux Control Signals (2) 
 

 

PCEnable = not ((opcode == LW) or (opcode == SW)) 
 

 

 

 

AddrSrc = Case opcode 

 

not (LW or SW)  => PC 

 

(LW or SW)  => ALU 
 

 



Last updated: 

2/27/2020 

 3 

 

IRSrc = Case opcode 

 

LW or SW or Jump or Brtaken  => nop 

 

Else  => Mem 
 

 

 

Problem M5.2.D  
 

Time PC “IR” PCenable PCSrc1 AddrSrc IRSrc 
t0 I1:100 - 1 pc+4 PC Mem 

t1 I2:104 I1 1 Pc+4 PC Mem 

t2 I3:108 I2 0 * ALU Nop 

t3 I3:108 - 1 pc+4 PC Mem 

t4 I4:112 I3 1 jabs PC Nop 

t5 I7:312 - 1 pc+4 PC Mem 

t6 I8:316 I7 1 pc+4 PC Mem 

 

 

Problem M5.2.E Self-Modifying Code 
 

The answer is no. The hazard is resolved by the datapath itself because (1) memory accesses are 

serialized by the stall logic at the shared memory and (2) memory write takes only one cycle. 
 

Problem M5.2.F  
 

Due to this rerouting we will now have to stall even if it is an ALU instruction. 
 

Problem M5.2.G Architecture Comparison 
 

The Princeton architecture is cheaper than the Harvard architecture, but the Harvard architecture 

is faster than the Princeton architecture. 



Last updated: 

2/27/2020 

 4 

  

Problem M5.3: Processor Design (Short Yes/No Questions) 
 

Problem M5.3.A Interlock vs. Bypassing 

 

No. Data dependencies are preserved with either interlocks or bypassing, so the processors 

always generate the same results. Bypassing improves performance by eliminating stalls. 

 

 

Problem M5.3.B Delay Slot 

 

Yes. The instruction following a taken branch is executed on processor A, but killed on 

processor B so the processors can generate different results. 

 

 

Problem M5.3.C Structural Hazard 

 

No. Both processors retrieve the same data values. There is only a performance difference 

because processor A must stall an instruction fetch to allow a load instruction to access memory. 

 

 

  



Last updated: 

2/27/2020 

 5 

Problem M5.4: HAL 180 ISA and 6-Stage Pipelined Implementation (Spring 

2015 Quiz 1, Part C) 
 

Inspired by how the IBM 360 uses condition codes, Ben Bitdiddle designs the HAL 180 

architecture, which features two flag registers. Table C-1 describes these flags.  

 

Name Description 

Sign Flag (SF) Stores 1 if the result of the last arithmetic or comparison 

instruction was negative, 0 if it was positive 

Zero Flag (ZF) Stores 1 if the result of the last arithmetic, logical, or 

comparison instruction was zero, and 0 if it was non-zero 

Table C-1. HAL 180 status flags. 

 

 

Table C-2 summarizes the different instruction types and the flags they read or write. The SF and 

ZF columns have an “R” when the instruction reads the status flag, a “W” if it writes the flag 

(and does not read it), or a blank if the instruction does not affect the status flag. For example, JL 

(jump if less than) reads SF; ADD writes all flags; and JMP (unconditional jump) does not affect 

any flag. Some instructions, like CMP, write the status flags but do not return any result.  

 

Instruction Description SF ZF 

Arithmetic Instructions 

ADD s1, s2 s1  s1 + s2 W W 

SUB s1, s2 s1  s1 - s2 W W 

MUL s1, s2 s1  s1 × s2 W W 

Logical Instructions 

AND s1, s2 s1  s1 & s2  W 

OR s1, s2 s1  s1 | s2  W 

XOR s1, s2 s1  s1 ^ s2  W 

Comparison Instructions 

CMP s1, s2 temp  s1 - s2 W W 

Jump Instructions 

JMP target jump to the address specified by target   

JL target jump to target if SF == 1 R  

JG target jump to target if SF == 0 and ZF == 0 R R 

Memory Instructions 

LD s1, s2 s1 M[s2]   

ST s1, s2 M[s1]  s2   

Table C-2. HAL 180 instruction set. 

  



Last updated: 

2/27/2020 

 6 

Ben also designs a 6-stage pipelined implementation of the HAL 180. In this pipeline, the ALU 

takes three pipeline stages (E1, E2, and E3), and status flags are updated in stage E3. Table C-3 

describes each stage, and Figure C-4 shows the datapath of this 6-stage pipelined architecture, 

highlighting the differences with a conventional MIPS pipeline. Note that this implementation 

does not have any data bypass paths. 

 

Stage Description 

Fetch and Decode 

Stage (FD) 

Fetch an instruction from the instruction memory, decode the 

instruction, and fetch the register values from the register file. 

The status flag checking for conditional jumps is also done in 

this stage.  

Execute Stage 1 (E1) 
The first stage of the execution phase.  Generate partial results 

and store them in the pipeline registers.  

Execute Stage 2 (E2) 
The second stage of the execution phase.  Generate partial 

results and store them in the pipeline registers.  

Execute Stage 3 (E3) 
The final stage of the execution phase.  Final results are 

generated and flag registers get updated if necessary.  

Memory Stage (M) Perform load/store from/to the data memory if necessary.   

Writeback Stage (WB) Write to the register file if necessary.  

Table C-3. HAL 180 pipeline stages. 

 



Last updated: 

2/27/2020 

 7 

 
 

 

 

Data 
Memory

addr rdata

wdata

we

Instruction 
Memory

addr inst

rs1
rs2

ws
wd

rd1

rd2

clk

GPRs

weclk

clk

ADD

0x4

A

MD1

B

MD2 MD3 MD4

Y

PC

IR

R

FD E1 E2 E3 M W

3-stage 
pipelined ALU

IR IRIRIR
nop

Stall

SF
we

ZF
we

brTaken Flag
Check

Figure C-4. HAL 180 6-Stage pipelined implementation. 



Last updated: 

2/27/2020 

 8 

Problem M5.4.A  

 

Write the HAL 180 assembly for the following program. For maximum credit, use the minimum number of comparison and jump 

instructions. 

 

 
 

Assume variables a, b, and c are stored in registers R1, R2, and R3 respectively.  

 

 CMP R1, R2 

 JL _L1 

 JG _L2 

 XOR R3, R3 

 JMP _L3 

_L1: XOR R3, R2 

if (a < b) { 
    c = c XOR b; 
} else if (a > b) { 
    c = c XOR a; 
} else { 
    c = 0; 
} 
a = 0; 
b = 0; 



Last updated: 

2/27/2020 

 9 

 JMP _L3 

_L2: XOR R3, R1 

_L3: XOR R1, R1 

 XOR R2, R2 

 

 

 

 

 

 

Problem M5.4.B  

 

Ben’s HAL 180 6-stage pipeline (Figure C-4) stalls to avoid data hazards through registers, but does not yet handle hazards due to 

status flags. To illustrate why this is problematic, consider the following instruction sequence: 

   

I0:  ADD R1, R2 Set SF = 1 ZF = 0  

I1:  JG _L2 Not Taken   

I2:  XOR R1, R3 Set ZF = 0   

I3:  JL _L2 Taken    

I4: _L1: SUB R1, R2     

I5: _L2: ADD R3, R1     

 

Assume that when the program start, R1 = -1, R2 = -2, R3 = -3, and all the status flags are zero. Fill out the following instruction flow 

diagram to incur the minimum amount of stalls while maintaining correct operation (i.e., use stalls to respect both data and status flag 

dependences). Use “X”s to denote pipeline bubbles.  

 



Last updated: 

2/27/2020 

 10 

 

 

 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 

FD I0 I1 I1 I1 I1 I2 I3 I5   

E1  I0 X X X I1 I2 I3 I5  

E2   I0 X X X I1 I2 I3 I5 

E3    I0 X X X I1 I2 I3 

M     I0 X X X I1 I2 

W      I0 X X X I1 
 

  



Last updated: 

2/27/2020 

 11 

Problem M5.4.C  

 

Let’s fix Ben’s implementation by extending the existing stall control signal, which already works for register hazards, to also stall on 

status flag hazards. 

 

First, derive the stall conditions for the different jumps: JMPstall, JLstall, and JGstall. Use OpcodeX(Y) to indicate the 

condition when the instruction in X stage is Y. Y can be a specific instruction or an instruction class (see Table C-2). For example:  

 

OpcodeFD(JG):  if the instruction in the FD stage is a JG instruction. 

OpcodeE1(Logic):  if the instruction in the E1 stage belongs to the logical 

instruction class (e.g. OR). 

OpcodeE2(CMP|Arith):  if the instruction in the E2 stage is a CMP instruction or 

belongs to the arithmetic instruction class. 

 

 

JMPstall =  0 
 

 

 

JGstall = OpcodeE1(logic|Arith|CMP)|OpcodeE2(logic|Arith|CMP)| 

OpcodeE3(logic|Arith|CMP) 

 

 

JLstall =  OpcodeE1(Arith|CMP)|OpcodeE2(Arith|CMP)| 

OpcodeE3(Arith|CMP) 

 

 
  

 

Finally, write down the new stall signal (stall’) by using the old stall signal (stall) and stall conditions you derive. 

 

 



Last updated: 

2/27/2020 

 12 

stall’ = stall | (OpcodeFD(JL) & JLstall) |  

(OpcodeFD(JG) & JGstall)|  

 

Problem M5.4.D  

 

Does this 6-stage pipeline add more challenges to precise exception handling? If so, please explain. 

 

Yes. Since the status flags are set in E3 stages, you will need some mechanism to roll back in order to handle exceptions after E3 

stages. 



Last updated: 

2/27/2020 

 13 

 

Problem M5.5:  Pipelined Cache Access 

 

Problem M5.5.A 

 

 

Ben’s initial datapath design is shown below: 

 

I-Cache 

Address 

Decode 

I-Cache 

Array 

Access 

I-Cache 

Tag 

Check 

Instruction 

Decode & 

Register 

Fetch 

Execute D-

Cache 

Address 

Decode 

D-

Cache 

Array 

Access 

D-

Cache 

Tag 

Check 

Write-

back 

 

Alyssa suggests combining the third and fourth stages, which would result in the following 

design (used in the MIPS R4000 processor discussed in Appendix A of the textbook): 

 

I-Cache 

Address 

Decode 

I-Cache 

Array 

Access 

I-Cache 

Tag 

Check, 

Instruction 

Decode & 

Register 

Fetch 

Execute D-Cache 

Address 

Decode 

D-Cache 

Array 

Access 

D-Cache 

Tag 

Check 

Write-

Back 

 

This scheme allows an instruction to be read from the register file before it is known whether the 

instruction is valid. However, reading values from the register file does not affect processor state 

and thus does not affect the correctness of the program execution. If the tag check fails—

meaning that the fetched instruction is invalid—the incorrect instruction can be replaced with a 

NOP in the Execute stage, and the processor can wait for the correct instruction to be brought 

into the I-cache. 

 

That raises the question of whether Ben can similarly combine the data cache tag check stage 

with the write-back stage. Theoretically, the answer is yes, although the issues involved with 

combining these two stages make it highly impractical. Thus, both answers are acceptable—the 

important thing to consider is the reasoning used. Combining the last two stages would result in 

the following pipeline: 

 

 

I-Cache 

Address 

Decode 

I-Cache 

Array 

Access 

I-Cache 

Tag Check, 

Instruction 

Decode & 

Register 

Fetch 

Execute D-Cache 

Address 

Decode 

D-Cache 

Array 

Access 

D-Cache 

Tag Check 

& Write-

Back 

 



Last updated: 

2/27/2020 

 14 

The obvious problem with this scheme is that a load instruction that misses in the data cache will 

write an incorrect value into the register file—therefore merging the stages does not work. This 

is correct.  However, one can also argue that the scheme can be made to work by modifying the 

pipeline. This argument is based on the fact that even if a load instruction places incorrect data 

into a register, the load can re-execute and place the correct data into the register, overwriting the 

wrong value. As a side note, it should be pointed out that allowing processor state to be 

incorrectly updated in a machine which implements precise interrupts would not work without 

substantial hardware modifications. However, ignoring the issue of interrupts (which had not 

been covered in lecture at the time of the problem set), there is a more fundamental issue with 

this approach. Ben’s pipeline currently has no means of correctly re-executing the load 

instruction.  Simply flushing the pipeline on a data cache miss and restarting execution with the 

load instruction does not work because of the following type of instruction: 

 
LW R1, 0(R1) 

 

If the load results in a D-cache miss, it will have overwritten the value in R1 before it re-

executes, meaning that the incorrect address will be calculated the second time around.  Another 

alternative is to store the address once it has been calculated in the Execute stage. This requires 

special address registers in each pipeline stage starting with D-Cache Address Decode. But 

another problem is the fact that cache access is pipelined, so a load in the write-back stage that 

has caused a D-cache miss has to be sent backwards in the pipeline (along with the correct 

address) in order to access the cache once the correct data has been fetched. This requires 

additional bypass paths in the processor. In general, speculatively updating processor state 

requires rollback mechanisms to be implemented. Backing up the pipeline is the approach used 

in the MIPS R4000 in the event of a data cache miss, but the tag check and write-back stages are 

separate. 

 

Problem M5.5.B  

 

Ben’s current design does not work for data writes because the tag needs to be checked before 

the cache is updated. One solution is to add a fourth stage which handles the actual write in the 

event of a cache hit. However, unless the cache can handle two simultaneous accesses, this 

scheme does not allow a store to be in this fourth stage at the same time that another memory 

operation is in the D-Cache Array Access stage. A better solution is to use a delayed write buffer 

(also see Problem M5.6). The store data is written into the write buffer, and if a hit occurs in the 

D-Cache Tag Check stage, the data will be written into the cache at a later time (for example, 

when the next store instruction is processed)—the processor can continue execution as normal. 

This requires load instructions to check the write buffer as well as the cache to ensure that the 

correct value is read. With this scheme, a three-stage pipeline can be maintained for the data 

cache. 

 

Problem M5.5.C  

 

Ben’s final 8-stage pipeline is shown below: 

  



Last updated: 

2/27/2020 

 15 

I-Cache 

Address 

Decode 

I-Cache 

Array 

Access 

I-Cache 

Tag 

Check, 

Instruction 

Decode & 

Register 

Fetch 

Execute D-Cache 

Address 

Decode 

D-Cache 

Array 

Access 

D-Cache 

Tag 

Check 

Write-

Back 

 

This pipeline uses direct-mapped instruction and data caches. Replacing these direct-mapped 

caches with set-associative caches could potentially reduce the miss rate, at a possible cost in hit 

time. However, a close examination of the pipeline and the diagram for a set-associative cache 

(seen in Problem M2.1.B) shows that the I-cache must be direct-mapped. For a set-associative 

cache, when a word is being read, the result of the tag check is used as an enable signal for the 

value being read. However, in the above pipeline, the instruction is needed at the beginning of 

the I-Cache Tag Check stage so that it can be decoded in parallel with the tag check. Thus, the I-

cache must be direct-mapped. 

 

For the data cache, the tag check occurs in its own stage. This makes it possible to use a set-

associative cache, since the data for a load instruction isn’t needed until the beginning of the 

Write-Back stage. However, in practice this would probably be a bad idea, since the extra delay 

required to wait for the tag check before driving out the data might lengthen the clock period. 

 

Problem M5.5.D  

 

Pipelining the caches has a harmful effect on branches. If conditional branch instructions resolve 

in the Execute stage, then the processor’s branch delay is 3 cycles, as shown by the following 

example in which there are no delay-slot instructions and the datapath is fully-bypassed: 

 
    ADDI R1, R0, #1 

    BEQ  R1, R0, L1 

    SUB  R2, R3, R4 

L1: AND  R5, R6, R7 

 

 

 t1 t2 t3 t4 t5 

IAD BEQ    SUB 

IAA ADDI BEQ    

ITC/ID  ADDI BEQ   

EX   ADDI BEQ  

DAD    ADDI BEQ 

DAA     ADDI 

DTC      

WB      

 

  



Last updated: 

2/27/2020 

 16 

Problem M5.5.E  

 

Since a data cache access takes 3 cycles, it will take more cycles (as compared to the five-stage 

pipeline) to obtain the result of a load instruction. If an instruction depends on the load, a simple 

scheme is to wait until after the D-Cache Tag Check stage before bypassing the load value. This 

will ensure that the dependent instruction does not execute with incorrect data. An interlock can 

be used to implement this solution. If an instruction in the Instruction Decode stage needs to read 

the result of a load instruction that is either in the Execute, D-Cache Address Decode, D-Cache 

Array Access, or D-Cache Tag Check stages, then that dependent instruction will be stalled until 

the load reaches the Write-Back stage (at which point the load value will be bypassed to the 

Execute stage). This is illustrated by the below example. 

 
LW R1, 0(R2) 

ADD R3, R1, R2 

 

 t1 t2 t3 t4 t5 t6 t7 

IAD ADD       

IAA LW ADD      

ITC/ID  LW ADD ADD ADD ADD  

EX   LW    ADD 

DAD    LW    

DAA     LW   

DTC      LW  

WB       LW 

 

As shown by the above resource usage diagram, the load delay for this scheme is 3 cycles. 

 

Problem M5.5.F  

 

Another alternative to waiting until after the D-Cache Tag Check stage before bypassing the load 

value is to bypass the value at the end of the D-Cache Array Access stage. If there is a tag 

mismatch, the processor will wait for the correct data to be brought into the cache; then it will re-

execute the load and all of the instructions behind it in the pipeline.  In order to implement this 

scheme, only the program counter of the load instruction needs to be saved in the event of a tag 

mismatch. The load instruction will be nullified (as well as instructions behind it in the pipeline). 

When the DataReady signal is asserted (indicating that the load data is now available in the 

cache), the processor can restart the load instruction and continue as normal. The benefit of this 

scheme is that the load delay is now reduced to 2 cycles. 

  



Last updated: 

2/27/2020 

 17 

Problem M5.5.G  

 

Even with the scheme in Problem M5.5.F, the load delay is 2 cycles, while it was only 1 cycle in 

the original 5-stage pipeline (although to be fair, the cycle time should be shorter in the 8-stage 

pipeline). One solution to this problem is the addition of a fast-path cache that can be accessed in 

one cycle. The resulting pipeline is shown below. 

 

I-Cache 

Address 

Decode 

I-Cache 

Array 

Access 

I-Cache 

Tag Check, 

Instruction 

Decode & 

Register 

Fetch 

Execute Fast-Path 

D-Cache 

Access and 

Tag Check 

& Slow 

Path 

D-Cache 

Address 

Decode 

Slow-

Path 

D-Cache 

Array 

Access 

Slow-Path 

D-Cache 

Tag Check 

Write-

Back 

 

The benefit of this approach is that a load instruction that hits in the fast-path cache will now 

have its value available at the end of the Slow-Path D-Cache Address Decode stage, whereas 

before it wasn’t available until the end of the Slow-Path D-Cache Array Access stage. We can 

re-examine the instruction sequence from the solution to Problem M5.5.E: 

 
LW R1, 0(R2) 

ADD R3, R1, R2 

 

If the fast-path cache always hits, the load delay will only be 1 cycle, which saves 1 cycle over 

the scheme from Problem M5.5.F and 2 cycles over the scheme from Problem M5.5.E. This 

scheme differs from having a single D-cache in the original 5-stage pipeline because the fast-

path cache will be very small in order to avoid lengthening the cycle time. The idea is to keep the 

low miss rate of a large primary cache, the shorter cycle time available with a pipelined cache, 

and the single-cycle load delay associated with an unpipelined cache. 

 

 



Last updated: 

2/27/2020 

 18 

Problem M5.6: Write Buffer for Data Cache (2005 Fall Part C) 

 
Problem M5.6.A  

 

Little’s law:  T = 1 / (20*2)  = 1 / 40 

                      L = 100 

           Therefore, N = T*L = 2.5 (entries on average) 

 

 

Problem M5.6.B  

 

Stall = ( Popcount(Wbuf) >= (N – 2) ) . (IR == Store) 

               

If you assume that you can figure out the number of store instructions in flight by decoding the 

IR in each stage, you will be able to eliminate (-2) in the answer above. 

 

 

Problem M5.6.C  

 

Stall =  ( Popcount(WBuf) + Popcount(Pipeline) >N ) 

 
If you assume in the previous question that you can figure out the number of store instructions in 

flight by decoding the IR in each stage, you may conclude the optimization does not make any 

change. 

 



Last updated: 

2/27/2020 

 19 

Problem M5.7: Instruction Pipelining (Spring 2016 Quiz 1, Part C) 
 

Consider the following MIPS code sequence: 

 
I1   LW  R1, 0(R3) 
I2   XOR  R1, R1, R4 
I3  MUL   R2, R1, R4 
I4  LW  R4, 5(R2) 
I5  XOR  R4, R4, R5 
I6  SW  R2, 0(R3) 

 

 

Problem M5.7.A  

 

Assume the classic 5-stage MIPS pipeline as discussed in lecture, with full bypassing and 

correct stall logic. Which instructions in the above sequence would have to stall? 

 

 

I2, I5 will stall due to load-to-use hazards. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ben is unhappy with the performance of the classic 5-stage MIPS pipeline discussed in 6.823 

lectures. Ben uses the L-MIPS ISA, presented in the L-MIPS handout, and pipelines the single-

cycle L-MIPS datapath in the handout as shown in the figure below. This is also a 5-stage 

pipeline, with the following stages: instruction fetch (F), instruction decode and register file fetch 

(D), address generation (A), memory access (M), and execute + write-back (X) stages. We will 

ignore branches and jumps for all following questions. 

 

 

 



Last updated: 

2/27/2020 

 20 

 

 
Problem M5.7.B  

 

Using the new class of Load-ALU instructions available in L-MIPS, rewrite the assembly 

sequence to produce a code sequence with minimum number of instructions. Do not change the 

order of any operations as you do this. 

 

 
I1:  XORM R1, 0(R3), R4 
I2:  MUL  R2, R1, R4 
I3:  XORM R4, 5(R2), R5 
I4:  SW   R2, 0(R3) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

IRIR IR

PC
A

B

Y

MD1 MD2

addr
inst

Inst

Memory

0x4

Add

IR

Imm
Ext

+
rd1

GPRs

rs1
rs2

ws
wd rd2

we

wdata

addr

wdata

rdata

Data 
Memory

we

31

nop

stall

D

A M X

0 A

B

MD3



Last updated: 

2/27/2020 

 21 

 

Problem M5.7.C  

 

Complete the instruction flow diagram for the new sequence of instructions for Ben’s pipelined L-MIPS processor. Assume no 

bypassing and correct stall logic. (In case you need it, page 18 has an extra/scratch instruction flow diagram.) 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

I1 F D A M X               

I2  F D D D D A M X           

I3   F F F F D D D D A M X       

I4       F F F F D A M X      

I5                    

I6                    

I7                    

I8                    



Last updated: 

2/27/2020 

 22 

Problem M5.7.D  

 

Ben wants to improve performance by adding bypass paths to his pipeline. Help Ben by 

indicating which locations he needs to insert bypass multiplexers. Ignore any bypasses needed 

for control-flow instructions. 

 

 

IRIR IR

PC
A

B

Y

MD1 MD2

addr
inst

Inst

Memory

0x4

Add

IR

Imm
Ext

+
rd1

GPRs

rs1
rs2

ws
wd rd2

we

wdata

addr

wdata

rdata

Data 
Memory

we

31

nop

stall

D

A M X

0 A

B

0 2
5

8

3
6

1 4 7

9
10

11

MD3

From To

9 8

9 10

9 5

9 6

9 11

9 2

From To

8 5

8 6

8 11

8 2



Last updated: 

2/27/2020 

 23 

Problem M5.7.E  

 

Complete the instruction flow diagram for the new sequence of instructions for the L-MIPS pipeline. Assume full bypassing and 

correct stall logic this time. Use arrows to show forwarding of values from one stage to another. (In case you need it, page 18 has an 

extra/scratch instruction flow diagram.)  

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

I1 F D A M X               

I2  F D A M X              

I3   F D D D A M X           

I4    F F F D A M X          

I5                    

I6                    

I7                    

I8                    

 



Last updated: 

2/27/2020 

 24 

Problem M5.7.F  

 

Is it possible to reorder the instructions in your code sequence (without affecting correctness) to 

improve performance in the fully-bypassed L-MIPS pipeline? If so, give the reordered code 

sequence and explain why. Otherwise, briefly explain why this is not possible. 

 
I1:  XORM R1, 0(R3), R4 
I2:  MUL  R2, R1, R4 
I3:  XORM R4, 5(R2), R5 
I4:  SW   R2, 0(R3) 
 

Instructions I3 and I4 in the above sequence may be re-ordered without affecting correctness. 

Note that both I3 and I4 have a dependence on I2. However, I3 requires the value from I2 in the 

decode stage (D), whereas I4 requires the value from I2 only in the address generation stage (A).  

 
I1’:  XORM R1, 0(R3), R4 
I2’:  MUL  R2, R1, R4 
I3’:  SW   R2, 0(R3) 
I4’:  XORM R4, 5(R2), R5 
 
 
The re-ordered sequence of instructions completes one cycle earlier as shown in the diagram 

below. I3’ proceeds to the address generation stage one cycle earlier as compared to I3. We 

engage suitable bypass paths (9 → 6, 9 → 2) from I2’ to I3’ and I4’. 

 

 0 1 2 3 4 5 6 7 8 

I1’ F D A M X     

I2’  F D A M X    

I3’   F D A A M X  

I4’    F D D A M X 


	Here are the bypass conditions.
	Bypass EX->ID ASrc = (rsD=wsE).we-bypassE.re1D
	Bypass MEM->ID  = (rsD=wsM).weM.re1D
	Bypass WB->ID  = (rsD=wsW).weW.re1D
	Priority: Bypass EX->ID  > Bypass MEM->ID > Bypass WB->ID
	It is an open question and there is no single correct answer. Here are a couple of issues to consider as a guideline.
	Problem M5.2: Basic Pipelining
	PCEn = (S==Execute)
	IREn = (S==I-Fetch)
	LD  R1, 16(R2)
	Any instruction following this LD instruction should be stalled.
	J 200
	Any instruction following this J instruction should be flushed.
	PCEnable = not ((opcode == LW) or (opcode == SW))
	Due to this rerouting we will now have to stall even if it is an ALU instruction.
	Problem M5.3: Processor Design (Short Yes/No Questions)
	Problem M5.5:  Pipelined Cache Access

