

Page 1 of 18

Computer System Architecture

6.823 Quiz #1

March 6th, 2020

Name: ___________________________

This is a closed book, closed notes exam.

80 Minutes

 16 Pages (+2 Scratch)

Notes:

 Not all questions are of equal difficulty, so look over the entire exam and

budget your time carefully.

 Please carefully state any assumptions you make.

 Show your work to receive full credit.

 Please write your name on every page in the quiz.

 You must not discuss a quiz's contents with other students who have not

yet taken the quiz.

 Pages 17 and 18 are scratch pages. Use them if you need more space to

answer one of the questions, or for rough work.

 Part A ________ 15 Points

 Part B ________ 25 Points

 Part C ________ 25 Points
 Part D ________ 35 Points

TOTAL ________ 100 Points

Name ____________________________

Page 2 of 18

Part A: Self-Modifying Code (15 Points)

In this part, we will use the EDSACjr instruction set from Handout 1.

Question 1 (8 points)

Consider the program shown below, which consists of a loop that runs once. The memory

map shows the memory contents before the program starts. An array A is stored in memory

in a contiguous manner, starting at location A. Memory locations N, I, COUNT, and ONE

are shown with their initial values of n (=1024), 0, 0, and 1, respectively. The output of the

program is stored in COUNT.

 Memory: Program:

Write C-like pseudocode that shows the computation this program performs. Your code

should operate on array A and the output in a variable named count.

 …

A: A[0]

 A[1]

 …

 A[n-1]

 …

ONE: 1

N: 1024

I: 0

COUNT: 0

loop: LOAD I

 SUB N

 BGE done

 CLEAR

arrayRd: ADD A

 BGE cont

 LOAD COUNT

 ADD ONE

 STORE COUNT

cont: LOAD arrayRd

 ADD ONE

 STORE arrayRd

 LOAD I

 ADD ONE

 STORE I

 BGE loop

done: END

Name ____________________________

Page 3 of 18

Question 2 (7 points)

Alyssa P. Hacker points out that the loop can be written with fewer branches by using bit

manipulation instructions. Note that, on EDSACjr, the most significant bit of each 16-bit

integer is a sign bit, which is set to 1 if the integer is negative. Shift instructions perform

arithmetic shifts.

Follow Alyssa’s suggestion and rewrite the loop with fewer branches. Part of the program

is already written for you. If you need to, you can use additional memory locations for your

own variables. You should label each variable and show its initial value in memory.

 Memory: Program:

loop: LOAD I

 SUB N

 BGE done

 CLEAR

 LOAD I

 ADD ONE

 STORE I

 BGE loop

done: END

 …

A: A[0]

 A[1]

 …

 A[n-1]

 …

ONE: 1

N: n

I: 0

COUNT: 0

Name ____________________________

Page 4 of 18

Part B: Cache Replacement Policy (25 Points)

Consider a 4-way set-associative cache that is accessed by the following sequence of

memory addresses:

A, B, A, B, C, D, E, F, A, B

Each letter represents a unique address of a line, NOT a byte or a word. Assume that all

these line addresses map to the same set of the cache. The set starts empty.

Question 1: Using LRU (4 points)

Suppose that the cache uses LRU replacement policy. Is each access a hit or a miss? Fill

the table below, writing H for a hit and an M for a miss.

Question 2: Using SRRIP (4 points)

Suppose that the cache uses a 2-bit SRRIP replacement policy. Check out the SRRIP

handout for more details. Is each access a hit or a miss? Fill the table below, writing H for

a hit and an M for a miss.

Line Address A B A B C D E F A B

H / M

Line Address A B A B C D E F A B

H / M

Name ____________________________

Page 5 of 18

Question 3: Comparing SRRIP and LRU (6 points)

Is SRRIP always better than LRU? If it is, state why. If it is not, construct a sequence of

line addresses on which LRU outperforms SRRIP on the 4-way cache from Questions 1

and 2.

Question 4: 2-bit SRRIP scan sequence length (6 points)

Consider another sequence of line addresses. All other conditions do not change.

 A1, A2, A1, A2, B1, B2, B3, … Bn, A1, A2

If the cache uses 2-bit SRRIP, and we want to guarantee that the last two accesses (to A1

and A2) both hit in the cache, what is the maximum possible value of n?

Question 5: M-bit SRRIP scan sequence length (5 points)

Consider an M-bit (instead of 2-bit) SRRIP. Other conditions remain the same as in

Question 4. What is the maximum possible value of n for which the last two accesses are

hits, expressed as a function of M?

n

Name ____________________________

Page 6 of 18

Part C: Segmented Page Table (25 Points)

Though hierarchical page tables are widely adopted now, they are not the only option. Back

in 1960s, Multics, a time-sharing operating system, proposed using segmentation to

address the efficiency issues of a linear page table. The observation behind this idea is that,

for a typical program, the pages in its virtual address space are clustered as shown in the

following figure:

Typical programs use both low and high virtual addresses, with code and heap located in

low addresses and the stack in high addresses (this lets the stack and heap grow as needed).

However, as shown in the figure, the code, heap, and stack each consists of a contiguous

chunk of pages. This clustering can be exploited to reduce the amount of memory allocated

for a flat page table.

Specifically, instead of having a single page table for a program, a machine can divide a

program’s virtual address space into 3 segments: code, stack, and heap, based on the

highest two bits of the virtual address. Each segment has its own page table, sized to track

only the translations of its corresponding segment.

Each segment page table is allocated in a consecutive chunk of physical memory. The PTEs

are stored consecutively and are directly indexed by the virtual page number. The base

address and the size (in bytes) of the page table are stored in six registers. The base address

is the physical address of the first PTE in the page table.

Code

Heap

Stack

Virtual address space

of a typical program

Higher addresses

Lower addresses

Name ____________________________

Page 7 of 18

Ben Bitdiddle has designed a machine based on this idea. The machine uses 26-bit virtual

addresses, 32-bit physical addresses, 64KB pages, and 32-bit PTEs. All PTEs in a page

table are valid. Please read their formats below carefully. Assume there is no TLB.

Virtual address:

25 24 23 16 15 0

Segment

Number

Virtual page

number
Page offset

Physical address:

31 16 15 0

Physical page number Page offset

PTE:

31 16 15 1 0

PPN/DPN
Irrelevant

status bits

Resident

bit

Below is a snapshot of the six page-table-related registers. On

the right is a snapshot of the physical memory.

For your convenience, a colon (“:”) separates the lower 16

bits from the upper bits of each address and data value.

Snapshot of page table base and size registers

Segment

Number

(in binary)

Segment
Page table

Base

Page table

Size

(in bytes)

00 Unused - -

01 Code 0x100:0000 0x40
10 Heap 0x100:0404 0x40
11 Stack 0x104:6134 0x40

Physical
Address

Data

0x201:91A0 0xD:2E5C
0x201:919C 0x3:A000
0x201:9198 0x6:010C
0x201:9194 0xA:74CC
0x201:9190 0x7:30B1

... ...
0x104:6144 0x093:2048
0x104:6140 0x09D:2011
0x104:613C 0x8D0:2038
0x104:6138 0xE0E:2028
0x104:6134 0x193:0084

... ...
0x100:0414 0xC44:7BFA
0x100:0410 0x111:B021
0x100:040C 0xA9C:A120
0x100:0408 0x743:0492
0x100:0404 0x332:0320
0x100:0400 0xABC:04FD
0x100:03FC 0x123:DDAF

... ...
0x100:0010 0x345:CAAF
0x100:000C 0x109:FEED

0x100:0008 0x0C2:93AB

0x100:0004 0x2A6:7447

0x100:0000 0x003:FD41

Snapshot of
physical memory

Name ____________________________

Page 8 of 18

Question 1: Address translation (15 points)

The table below lists four virtual addresses. Assume the program issues an access with

each of these addresses. For each access, answer the following questions:

A) Does the access trigger a segmentation fault, i.e., use an illegal memory location?

B) Does the access trigger a page fault?

C) What is the result of the address translation? This can be physical (byte) address in the

absence of faults, a disk page number in the case of a page fault, or “None” in all other

cases.

Virtual address

A) Segmentation

fault? (Yes/No)

B) Page fault?

(Yes/No)

C) Translation result

(specific PA or DPN, or “None”)

0x104:6140

0x201:9190

0x1FF:AC5D

0x000:5123

Name ____________________________

Page 9 of 18

Question 2: Segmented vs. flat page table (4 points)

Compared to a single flat page table, does this segmented page table design:

A) Reduce the amount of allocated memory for page tables?

B) Reduce the number of PTEs accessed by a specific program?

Question 3: Segmented vs. hierarchical page table (6 points)

Does each of the following programs prefer a segmented or a hierarchical page table? Why?

A) A program that uses almost all the virtual address space as its heap?

B) A program that frequently accesses a small chunk of virtual memory, on a system with

no TLB.

Name ____________________________

Page 10 of 18

Part D: Instruction Pipelining (35 Points)

Throughout this part of the quiz, the questions will refer to executing the computation

shown in the following C-like pseudocode segment, which computes the product of 4096

integers held in an array:

int A[4096];

...

int product = 1;
for (int i = 0; i < 4096; i++) {
 product = product * A[i];
}

...

We will consider performing this computation using the following MIPS code segment:

0x0FC: ...
0x100: ADDI r1, r0, 4096
0x104: ADDI r2, r0, 1
0x108: loop: LW r4, 0(r3)
0x10C: MUL r2, r2, r4
0x110: ADDI r3, r3, 4
0x114: ADDI r1, r1, -1
0x118: BNEZ r1, loop
0x11C: SUB ...

(Refer to the handout on the MIPS ISA.) Assume register r3 initially points to the first

element of array A. Register r2 is used to hold the product of the array elements.

Note: Some of the questions use pipeline diagrams, and in others, you may find it helpful

to draw them. Page 17 includes additional pipeline diagrams in case you need them.

Name ____________________________

Page 11 of 18

Question 1: Pipelined Princeton architecture (8 points)

Consider the 2-stage pipelined Princeton architecture implementation discussed in lecture,

where instruction fetches and data accesses both use one single-port unified memory. This

memory can perform only one access on each cycle.

(a) Fill in the following resource-use diagram to show the steady-state execution of the

loop on the pipelined architecture. You must show instructions from at least one

full loop iteration. (5 points)

(b) During the loop’s steady-state execution, what is the average number of clock

cycles per loop iteration? (3 points)

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Fetch LW

Exec

Name ____________________________

Page 12 of 18

Question 2: Using interleaved memory (15 points)

Ben Bitdiddle is unhappy with the frequency of stalls, so he decides to improve the

Princeton architecture by replacing the single-port unified memory with an interleaved

memory. (Described in the “Interleaved Memory” handout.)

(a) Help Ben complete his datapath by drawing wires to connect the three unconnected

address and data inputs of the interleaved memory below. (4 points)

(b) What type of hazard is a bank conflict an example of: a structural, control, or data

hazard? (2 points)

Name ____________________________

Page 13 of 18

(c) Consider again the code from page 10. During the steady-state execution of the

loop, what is the average number of bank conflicts that would occur per iteration if

we failed to stall conflicting instructions? Does it depend upon the initial value of

r3, the address of the first element of the array in memory? (3 points)

(d) If we stall to deal with bank conflicts in the memory, what is the average number

of clock cycles needed per iteration? (2 points)

(e) In lecture, we derived the following stall signal for the 2-staged pipelined Princeton

architecture shown in Question 1.

Stall = (OpCode is LW, SW, or jump)
 + ((OpCode is branch)∙(branch is taken))

If we now implement stalling to deal with bank conflicts in Ben’s new machine,

what will be the new stall signal? You may write an expression for the new signal

in terms of the old stall signal together with other values available in Ben’s datapath

from Question 2 part (a). (4 points)

 NewStall = ___________________________

Name ____________________________

Page 14 of 18

Question 3: Unrolling the loop (5 points)

Alyssa P. Hacker suggests that Ben can reduce bank conflicts by carefully controlling data

layout in memory and rewriting the MIPS code as follows:

0x0FC: ...
0x100: ADDI r1, r0, 4096
0x104: ADDI r2, r0, 1
0x108: loop: LW r6, 0(r3)
0x10C: LW r7, 4(r3)
0x110: MUL r2, r2, r6
0x114: MUL r2, r2, r7
0x118: ADDI r3, r3, 8
0x114: ADDI r1, r1, -2
0x118: BNEZ r1, loop
0x124: SUB ...

During the loop’s steady-state execution, what is the average number of clock cycles

needed per element of the array that is accessed? Does it depend upon the initial value of

r3, the address of the first element of the array in memory?

Name ____________________________

Page 15 of 18

Question 4: Five-stage pipeline (7 points)

To increase clock frequency, we divide the datapath into the five standard pipeline stages.

As in Ben’s design, we still use a Princeton architecture design with a single memory.

The pipeline is shown below in a stylized fashion, with the same memory drawn once in

the I-Fetch stage and once in the Memory stage. Both stages use the same two-bank

interleaved memory described in the handout, but each stage is connected to a different

port of that memory. Assume the pipeline is fully bypassed as shown in lecture, and that

branches are resolved in the decode stage.

Consider again the first MIPS code segment, which performs one load per iteration:

0x0FC: ...
0x100: ADDI r1, r0, 4096
0x104: ADDI r2, r0, 1
0x108: loop: LW r4, 0(r3)
0x10C: MUL r2, r2, r4
0x110: ADDI r3, r3, 4
0x114: ADDI r1, r1, -1
0x118: BNEZ r1, loop
0x11C: SUB ...

(a) Assuming we stall for bank conflicts, what is the average number of clock cycles

needed per iteration during the loop’s steady-state execution? Does it depend upon the

initial value of r3, the address of the first element of the array in memory? (4 points)

Name ____________________________

Page 16 of 18

(b) Reorder the instructions in the code segment to reduce stalls without changing the

functionality of the code, while still performing only one load per iteration. Indicate

how many fewer stalls per iteration your revised loop incurs on the 5-stage pipeline.

(3 points)

Name ____________________________

Page 17 of 18

Space for pipeline diagrams

We will not grade anything from this page unless you 1) clearly label a section of this page

as answering a particular question AND 2) you put an indication near the question that

your answer can be found on this page.

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Name ____________________________

Page 18 of 18

Scratch space

Use these extra pages if you run out of space or for your own personal notes. We will not

grade this unless you tell us explicitly in the earlier pages.

