
 6.823 Spring 2017
	

1
	

Quiz 2 Handout

Figure 1 shows the pipeline of an out-of-order machine. Flip flops represent stage boundaries.
Blocks in parallel to each other represent parallel operations occurring within the same stage.
This machine uses a Data-in-ROB design.

The processor consists of the following stages:

1. Instruction Fetch: The instruction at PC is fetched from the instruction cache/memory.
• The PC is also fed into a branch target buffer (BTB), which stores mappings from

source PC to target PC. On a hit in the BTB, the next PC to be fetched is updated
as the target PC indicated in the BTB.

2. Instruction Decode: The instruction is decoded.
• If the decoded instruction was a conditional branch, its direction is predicted by a

branch predictor. The branch predictor is described in the next page.
Note: Direct jumps (J/JAL) are always taken, so no prediction is needed.

• For direct branches (BEQZ/BNE/J/JAL), the branch target is calculated by a
branch target calculator and updates the next PC to be fetched according to the
prediction, if required.

3. Pre-Dispatch Check:
• The reorder buffer (ROB) is checked for an available slot.
• For store instructions, the store buffer is checked for an available slot.
• For load instructions, the load buffer is checked for an available slot.

The ROB slot index is this instruction’s “tag”. To obtain any required operands, the
rename table and register file are read simultaneously. If the rename table has a valid tag
for an operand, then the corresponding ROB entry must be checked for that operand.
Otherwise the value in the register file can be used. If the instruction writes a register, its
tag is written to the destination register entry in the rename table.

4. Dispatch: The instruction is inserted into the ROB only if all the checks in the previous
cycle (Pre-Dispatch Check) pass. The ROB source fields store either the tag of the data-
producing ROB entry, or the actual data when it becomes available.

5. Execute: The ROB issues an instruction whose operands are all present.
6. Write-Back: The output from the functional units, or memory access, if any, are written

back to the data field in the ROB and the pd bit is set. Additionally, any dependent
instructions in the reorder buffer will receive the value.

7. Commit: Instructions are committed in-order. If the instruction writes a register, the
result is written to the register file, and if the tag in the rename table for this register
matches the tag of the result, the rename table valid bit is cleared.

Note that not all sources, and not all control logic for next PC are shown in Figure 1 for
simplicity.

 6.823 Spring 2017
	

2
	

Figure 1: Out-of-order pipeline

gshare Branch Predictor:

The Branch Predictor used in this processor is called gshare, which uses exclusive OR (XOR) to
combine the global history and the PC. The gshare branch predictor takes the lower three bits
from the global history and the lower three bits from the PC (excluding the last 2 bits which are
always 00 for aligned instructions), and calculates an index into an array of the two-bit counters
by exclusive OR-ing them (Figure 2).

Figure 2: gshare branch predictor

In the global history, 1 represents Taken and 0 represents Not-Taken. The 2-bit counters in this
design follow the state-diagram shown in Figure 3. In state 1X, we will guess Taken; in state
0X, we will guess Not-Taken.

Figure 3: State Diagram of 2-bit counters

Fetch Decode Pre-Dispatch	
Check Execute Write-

Back

BTB

0x4

next PC

Branch	
Predictor

Dispatch Commit

8-bit	global	history

PC

XOR

2-bit	prediction	counters

00

3-bits
3-bits

 6.823 Spring 2017
	

3
	

Processor State

Figure 4: Processor State

A snapshot of the processor state is shown in Figure 4. It consists of the following components:

• Fetched Instruction Queue: Holds the fetched instructions.
• Decoded Instruction Queue: Holds the decoded instructions.
• Next PC to be fetched: See Figure 1.
• Branch Target Buffer (BTB): Holds map of source PC to target PC. If a fetched

instruction PC hits in the BTB, the next PC to fetch is the corresponding target PC.
• Prediction Counter: 2-bit counters for branch prediction.
• Branch Global History: 8-bit global branch history.
• Register File: Holds the committed data values of architectural registers.
• Rename Table: A map from architectural register name to ROB tag (if valid).
• Reorder Buffer (ROB): Contains the bookkeeping information for managing the out-of-

order execution and register renaming, and operand data values when they become
available.

Reorder	Buffer
Tag Inum PC Use Ex Op p1 src1 p2 src2 pd dest data

… … … …

T6 I6 … …
T7 I7 0x20 1 1 addi 1 3980 1 R2 4000
T8 I8 0x24 1 1 div 1 1000 1 25 R4
T9 I9 0x28 1 1 sw 1 4000 1 4000
T10 I10 0x2c 1 beqz T8
T11 I11 0xa0 1 lw 1 4000 R1
T12 I12 0xa4 1 sw T11 1 4000
T13 I13 0xa8 1 div 1 4000 T11 R5
T14 I14 0xac 1 beqz T13
T15 I15 0xb0 1 1 lw 1 3980 R1
T16 I16 0xb4 1 1 sub 1 4000 1 3980 1 R5 20

Prediction	Counter
Index Value

000 01
001 11
010 00
011 00
100 00
101 11
110 01
111 10

Global	History

00011010

Fetched	Inst.	Queue

I18:	0xbc

Decoded	Inst.	Queue

I17:	0xb8

Branch	Target	Buffer
Entry PC Target

1 0x2c 0xa0
2
3
4

Next	PC	to	Fetch

I19:	

Rename	Table
Reg Valid Tag

R1 1 T15
R2 1 T7
R3
R4 1 T8
R5 1 T16
R6

Register	File
Reg Value

R1 25
R2 1234
R3 3980
R4 1000
R5

R6

Store Buffer
Entry Valid Speculative Inum Addr Data

1 1 0 I2 3800 129
2 1 1 I6 4004 692
3 1 1 I9 4168 4000
4 I12

Load	Buffer
Entry Valid Inum Addr.

1 1 I1 2008
2 1 I5 1004
3 I11
4 1 I15 4100

Next	to	
commit

Next	
available

 6.823 Spring 2017
	

4
	

• Store Buffer: The address and data from an executed SW instruction are temporarily
kept in a store buffer, and then moved to the cache after the instruction commits or
cleared if the instruction is aborted.

• Load Buffer: The address from an executed LW instruction is temporarily kept in the
load buffer, and cleared after the instruction commits, or is aborted.

For SW instructions, assume the first operand (src1) provides the base register for the store
address, and the second operand (src2) provides the data source for the store.

We provide a list of actions below. Study them carefully and relate them to the concepts covered
in the lectures. You will be required to associate events in the processor to one of these actions,
and, if required, one of the choices for the blank.

Label List:

A. Satisfy a dependence on ______ by stalling
B. Satisfy a dependence on ______ by bypassing a speculative value
C. Satisfy a dependence on ______ by using a committed value
D. Satisfy a dependence on ______ by speculation using a static prediction
E. Satisfy a dependence on ______ by speculation using a dynamic prediction
F. Write a speculative value using lazy data management
G. Write a speculative value using greedy data management
H. Speculatively update a prediction on ______ using lazy value management
I. Speculatively update a prediction on ______ using greedy value management
J. Non-speculatively update a prediction on ______
K. Check the correctness of a speculation on ______ and find a correct speculation
L. Check the correctness of a speculation on ______ and find an incorrect speculation
M. Abort speculative action and cleanup lazily managed values
N. Abort speculative action and cleanup greedily managed values
O. Commit correctly speculated instruction, where there was no value management
P. Commit correctly speculated instruction, and replace old values with lazily updated values
Q. Commit correctly speculated instruction, and free log associated with greedily updated values
R. Illegal or broken action

Blank choices:

i. Register value
ii. PC value
iii. Branch direction
iv. Memory address
v. Memory value
vi. Latency of operation
vii. Functional unit

